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Abstract

The results of experiments on the application
of tree-distance to an answer-retrieval task are
reported. Various parameters in the definitions
of tree-distance are considered, including whole-
vs-sub tree, node weighting, wild cards and lex-
ical emphasis. The results show that improving
parse-quality maps to improved performance on
this tree-distance answer-retrieval task. It also
shown that one of the parametrisations of tree-
distance performs better than the more familiar
string-distance measure.

keywords: tree-distance, question-answering,
retrieval

1. Introduction

This concern of this paper is the use of tree-
distance in an answer retrieval task. Given a
question eg.

what does malloc return ¢

and a collection of sentences (eg. a manual),
the task is to retrieve the sentences that answer
the question, eg.

the malloc function returns a null
pointer

The paper presents results on this answer
retrieval task in which the strategy adopted
is to compare syntactic structures assigned to
the question and the potential answers, to see
how much editing of the answer structure (dele-
tion,insertion, substitution) is needed to derive
the question structure. The less editing the an-
swer structure needs, the lower its tree-distance
from the question structure is deemed to be,

and the higher it is rated as an answer to the
question.

Two results are presented. Structures are
assigned to the questions and potential answers
automatically; they are not hand-crafted. The
first result is that improving the structures which
the parser generates does improve performance
on the answer retrieval task. This is not a
given, as one could be very sceptical that sim-
ilarity of syntactic structure could be a guide
to answerhood. Also this has significance if
seen the other way around: performance on
the answer retrieval task, using tree-distance,
has potential for use as an evaluation metric
for parsers. The second result concerns a com-
parison of tree-distance with the better known
string-distance, which can also be used to quan-
tify the amount of editing (deletion, insertion,
substitution) needed to transform the answer
into the question. If string distance is used,
the answers and questions are represented sim-
ply by word sequences and not by tree struc-
tures. We show that with a particular choice
of how to compute tree-distance, tree-distance
does out-perform string-distance.

2. Tree Distance

The tree distance [1] between two trees can be
defined by considering all the possible 1-to-1
partial maps, o, between source and target trees
S and T, which preserve left to right order and
ancestry: if S;, and S;, are mapped to T}, and
Tj,, then (i) S;, is to the left of S;, iff T}, is to
the left of T}, and (ii) S;, is a descendant of S,
iff T}, is a descendant of Tj,.

Nodes of S which are not in the domain
of o are considered deleted, with an associated



cost. Nodes of T" which are not in the range
of o are considered inserted, with an associated
cost. Otherwise, where T; = o(S;), and T} #
S;, there is a substitution cost. The least cost
belonging to a possible mapping between the
trees defines the tree distance.

In the following example, a distance of 3 be-
tween 2 trees is obtained, assuming unit costs
for deletions (shown in red and double outline),
insertions (shown in green and double outline),
and substitutions (shown in blue and linked
with an arrow):

@ whole tree matching dist=3.0
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Nodes which are mapped unaltered are dis-
played at the same height but with no linking

arrow.
In the work reported in this paper the defi-
nition of tree distance is varied along a number
of dimensions.
Sub-tree: in this variant, the sub-tree distance
is the cost of the least cost mapping from a sub-
tree of the source. Figure 1 shows an example.
The source tree nodes which do not belong to
the chosen sub-tree are shown in grey. The low-
est vp sub-tree in the source is selected, and
mapped to the vp in the target. This leaves
the remaining target nodes to be inserted, but
this costs less than starting the match higher in
the source and doing some deletions and sub-
stitutions.
Sub-traversal: the least cost mapping from
a sub-traversal of the left-to-right post-order
traversal of the source.
Structural weights: the outcome in Figure 1
is not completely intuitive, because 4 of the
nodes in the source represent the use of an aux-
iliary verb, which should be negligible. In the
weighted version nodes have a weight between
0 and 1, assigned according to the syntactic
structure. In Figure 2, the nodes associated
with the auxiliary have a low weight, changing

s sub tree matching dist=5.0

np vp

process

Fig. 1. Sub tree example

the optimum match to one covering the whole
source tree. There is some price paid in match-
ing the dissimilar subject nps. The procedure

sub tree matching dist=3.6

Fig. 2. Weighted example

for structural weighting depends on classifying
nodes as heads vs. complements vs. adjuncts
vs. the rest, with essentially adjuncts given
1/5th the weights of heads and complements,
and other daughters 1/2.

Target wild cards: in this variant, marked
target sub-trees can have zero cost matching
with sub-trees in the source. Such wild card
trees can be put in the position of the gap



in wh-questions, allowing for example what is
memory allocation, to closely match any sen-
tences with memory allocation as their object,
no matter what their subject — see Figure 3.

sub tree matching dist=1.6

Fig. 3. Wild example

Target disjunctions: in this variant, marked
target sub-trees compete as alternatives, which
can be used for example to allow what is = to
match both z is y and y is z.

Source ’self effacers’: in this variant, marked
source sub-trees (such as optional adjuncts) can
be deleted in their entirety for no cost.

Lexical Emphasis: in this variant, the leaf
nodes have weights which are scaled up in com-
parision to tree-internal nodes.

String Distance: if you code source and tar-
get word sequences as vertical trees, the string
distance [2] between them coincides with the
the tree-distance, and the sub-string distance
coincides with the sub-traversal distance.

The basis of the algorithm used is the Zhang-
Shasha algorithm [1] to compute the cost of the
least cost mapping. The Appendix summarises
it. The implementation is an adaptation of
[3], allowing for the above-mentioned variants,
and which generates human-readable displays
of the chosen alignments (such as seen in fig-
ures 1,2,3).

3. The Answer Retrieval Task

Queries were formulated whose answers are sin-

gle sentences in the manual of the GNU C Li-

brary !. For example

Q what is a page fault

A When a program attempts to access a page
which is not at that moment backed by real
memory , this is known as a page fault

what does the free function do

- Function : woid free ( void * ptr ) The
free function deallocates the block of memory
pointed at by ptr

>~ O

In the retrieval task, each sentence in the
manual is assigned a distance rating, measur-
ing the distance from it, to the question. The
correct cutoff is the proportion of the answers
whose distance is less than or equal to the dis-
tance for the correct answer. Thus the lower
this number is for a given query, the better the
system performs on that query.

There are 88 queries. The text from which
the answers come was turned into a part-of-
speech tagged version which contains 360326
tokens, split into 31625 units. Usually the units
are sentences, but sometimes they may be sec-
tion titles.

4. Parse Quality vs Retrieval
Performance

Mostly linguists agree that semantics is some
kind of function of, or has some dependency on,
syntactic structure. But on what semantics is,
and the transparency of the relation between
syntactic and semantic structures, there is a
wide range of opinion. Although most would
agree that one of the roles of syntactic struc-
ture is to group items which are semantically
related, there are rival aims which designers of
syntactic structures are striving to achieve, and
these may pull syntactic structures away from
semantics.

Because of this, its hard to know how suc-
cessful retrieving answers to questions by means
of their structural similarity could be expected
to be. On the one hand there is an optimistic

1
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view. If thematic roles can be determined fairly
easily from syntactic structure, then similar syn-
tactic structures should be expected to lead to
similar thematic role assignments and similar
semantics. So, if a question has the free func-
tion as its subject np, other sentences which
also have this as their subject, or something
similar, might be expected to be a likely an-
swers. On the other hand, there is a pessimistic
view, according to which semantic structure is
mostly very difficult to discern from syntac-
tic structure, that sees syntactic structure as
more of an encryption of semantics than a use-
ful gateway into it.

This section addresses this question, and
provides some evidence that one need not be
overly pessimistic. What we look at is whether
improvements to parse quality lead to improve-
ments in retrieval performance.

First the performance of a particular pars-
ing system, making uses of particular linguistic
knowledge bases (see full in the tables below)
was determined. For this discussion, the de-
tails of this parsing system are not important:
briefly, it combines a disambiguating part-of-
speech tagger with a bottom-up chartparser,
refering to CFG-like syntax rules and a sub-
categorisation system somewhat in a categorial
grammar style. Right-branching analyses are
prefered and a final selection of edges from all
available is made using a leftmost /longest selec-
tion strategy. For ease of reference let this be
known as the trinity parser. The parsing sys-
tem is imperfect, and there is much that could
be objected to in the structures produced. But
it could be worse. If we randomly remove 50%
of the linguistic knowledge base, we could ex-
pect the structures produced to be worse (see
thin50). Also if we manually strip out parts,
again we should expect the structures to be
worse (see manual). Worst of all, we could
move to entirely flat parses, simply attaching
unanalysed words to a top-most node. In each
of these cases, we checked whether these intu-
itively worse parses actually diminish retrieval
performance.

Damaging the grammar is easy, improving
it more difficult. To try to get a picture of what
might happen to retrieval performance if the

parse quality improved, we hand-corrected the
parses of the queries and their correct answers
— see gold in the tables below.

Tables 1 and 2 give the results using the
sub-tree and weighted sub-tree distances. The
numbers describe the distribution of the correct
cutoff over the queries, so lower numbers are
better.

Table 1. Correct Cutoff in different parse settings,
ranking by sub-tree distance

Parsing | 1st Qu. Median Mean  3rd Qu.
flat 0.1559  0.2459  0.2612 0.3920
manual | 0.0349  0.2738  0.2454 0.3940
thin50 | 0.01936 0.1821  0.2115 0.4193
full 0.0157  0.1195 0.1882 0.2973
gold 0.00478 0.04 0.1450 0.1944

Table 2. Correct Cutoff in different parse settings,
ranking by weighted sub-tree distance

Parsing | 1st Qu. Median Mean  3rd Qu.
flat 0.1559  0.2459  0.2612 0.3920
manual | 0.0215  0.2103  0.2203 0.3926
thin50 | 0.01418 0.02627 0.157  0.2930
full 0.00389 0.04216 0.1308 0.2198
gold 0.00067 0.0278  0.1087 0.1669

Clearly as the parsing improves there is ten-
dency for the correct cutoff of a query to go
down, or equivalently for the correct answer
to be placed higher in the ranking. Figure 4
shows the empirical cumulative density func-
tion (ecdf) of correct cutoff obtained with the
weighted sub-tree with wild cards measure. For
each possible value of correct cutoff, it plots the
percentage of queries whose cut-off is less than
or equal to it.

I said one might be sceptical of the extent
to which syntactic structures could be used as a
substitute for semantic structures. An extreme
sceptic would expect the strategy to produce a
diagonal line in Figure 4, with the ranking plac-
ing the correct answer at a basically random
point in the ordering. Instead of that, what
we see is that improved parse quality pulls the
line more and more towards the top left hand
corner, as the number of queries answered cor-
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Fig. 4. Success vs Cut-off for different parse set-
tings: x = correct cutoff, y = proportion of queries
whose correct cutoff < x (ranking by weighted sub-
tree with wild cards)

rectly for a given cutoff goes steadily up.

Besides pointing in a direction in which to
go to improve retrieval performance, this is also
at least suggestive of a way in which the re-
trieval task could be used as an evaluation met-
ric for a parser. Such an application could have
some attractive features. The raw materials for
the retrieval task are questions and answers, as
plain text, not syntactic structures. Also, all
the parser has to supply to the tree distance
code is a post-order traversal of a tree, with
node-types identified by positions in a symbol
table. These 2 features mean that it should be
fairly straightforward to use the retrieval task
to evaluate any parser.

This is not the case if parsers are evaluated
against a set of gold-standard parses — either
the parser has to work directly in the notation
of the gold-standard parses or there must be
some kind of mapping between the notations
of the parse and the gold standard.

5. Distance Measures
Compared

In section 2 some parameters of variation in
the definition of tree-distance were introduced:
such as sub-tree vs whole tree, weights, wild
cards, and lexical emphasis. The performance
of some of these variants is reported in this
section, including the performance of the sub-
string distance. Because the tree-distance algo-

rithm is a generalisation of the string-distance
algorithm (see Appendix) it seemed natural to
make a comparison. Table 3 below summarises
the distribution of the correct cut-off over the
queries for the different settings, whilst in Fig-
ure 5 the ecdf plots are given (for the distance
type column -we = structural weights, -wi =
wild cards, -lex = lexical emphasis, sub = sub-
tree).

Table 3. Correct CutOff for different distance
measures

distance type  1st Qu. Median Mean

sub-we-wi-lex  9.414e-05 1.522e-03 4.662e-02
substring 2.197e-04 3.609e-03 5.137e-02
sub-we-wi 7.061e-04 1.919e-02 1.119e-01
sub-we 3.891e-03 4.216e-02 1.308e-01
sub 1.517e-02  1.195e-01 1.882e-01
whole 0.040710  0.159600  0.284600

— sub we wi lex
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Fig. 5. Success vs Cut-off for different distance
measures: x = correct cutoff, y = proportion of
queries whose correct cutoff < x

What the data show is that the version of
tree distance which uses sub-trees, weights, wild-
cards and lexical emphasis, performs better than
the sub-string distance, and that each of the
parameters make a contribution to improved
performance.

Lexical emphasis makes a large contribution
to the performance. Without it, what can hap-
pen is that a structurally similar but lexically
completely dissimilar false answer can be rated
about the same as a lexically more similar but
structurally less similar correct answer.



6. Using a different parser

Some experimentation has been done with a
different parser — the Collins parser [4] (Model
3 variant). This is a probabilistic parser, us-
ing a model of trees as built top-down with a
repertoire of moves, learnt from the Penn Tree-
bank. We performed experiments? in which the
repertoire of moves was truncated, see Table 4.
The trend seems to replicate the findings of

Table 4. Reducing possible parser moves: mn in
column ¢ is number of queries whose correct cut-off
s <c

% moves | 1 10 | 50 | 100 | 1000
65 6 9 17 | 31 68
85 11121 | 45 | 51 81
100 11|22 | 49 | 58 82

section 4. We also compared results obtained?
with the trinity parser and Collins parser — see
Table 5

Table 5. Collins and Trinity parser: n in column
c is number of queries whose correct cut-off is < ¢

parser | 1 | 10 | 50 | 100 | 1000
collins | 4 | 20 | 41 | 54 84
trinity | 8 | 27 | 49 | 59 79

These are preliminary results, starting a pro-
cess of substantiating the claim made in sec-
tion 4, that the tree-distance approach should
be fairly easily portable to any parser. The
poorer performance with the Collins parser could
be due to the way that it infers a part-of-speech
for any words it has encountered in the Penn
Treebank, rather than refering to the input part-
of-speech tagging, which leads to some miscat-
egorisations.

2for these experiments, there was a preselection of
those answers with a non-empty bag-of-words overlap
with the query, and then within these, ranking was by
weighted sub-trees with self-effacing answer adjuncts.

3The same preselection was applied, and then an-
swers were sorted by the weighted sub-traversal dis-
tance.

7. Conclusion and Future
Work

We have given evidence that the tree-distance
cousin of the string-distance measure can per-
form better than the string-distance measure
on an answer retrieval task. We have also shown
that improved parse quality leads to better per-
formance by the tree-distance measure, and sug-
gested that this shows that this kind of retrieval
task could be used an evaluator for parsers.
Used as an evaluator of parsers, the absolute
level of retrieval performance is not particularly
important, only that it increase with improve-
ments to the parser. To use practically for an-
swer retrieval, there are some areas to look at
increase performance. We deliberately made no
use of any statistics concerning the likely sig-
nificance of a word, the kind of statistics used
in many text retrieval approaches, focusing ex-
clusively instead on features intrinsic to a sin-
gle answer-query pair. Use of corpus-derived
statistics is a topic for further work, but we an-
ticipate such features are equally applicable to
any of the distance measures considered here,
and that our findings will persist in systems
using such features, albeit at a higher perfor-
mance level.

8. Appendix

This appendix briefly summarises the algorithm
to compute the tree-distance, based on [1] (see
Section 2 for definition of tree-distance). The
algorithm operates on the left-to-right post-order
traversals of trees. Given source and target
trees S and T', the output is a table 7, indexed
vertically by the traversal of S and horizontally
by the traversal of T, and position 7 [é][j] is the
tree-distance from the S subtree rooted at 7,
to the T" subtree rooted at j. Thus the bottom
righthand corner of the table represents the tree
distance between S and T

If k is the index of a node of the tree, the
left-most leaf, I(k), is the index of the leaf reached
by following the left-branch down. For a given
leaf there is a highest node of which it is the
left-most leaf. Let such a node be called a key-
root. Let KR(T) be the sequence of key-roots



in T. The algorithm is a doubly nested loop as-
cending throught the key-roots of S and T, in
which for each pair of key-roots (4, j), a routine
tree_dist(i, j) updates the 7 table.

Suppose ¢ is any node of S. Then for any i,
with (i) < is < 4, the subsequence of S from
[(7) to is can be seen as a forest of subtrees of S,
denoted F(I(i),is). tree_dist(i,j) creates a ta-
ble F, indexed vertically from /() to ¢ and hori-
zontally from [(j) to j, such that F[is][j;] repre-
sents the distance between the forests F'(1(i),is)
and F(I(j), j¢). Also the F table should be seen
as having an extra left-most column, represent-
ing for each i4, (i) < ig < 4, the F(l(i),is) to
() mapping (pure deletion), and an extra up-
permost row representing for each for each j;,
1) < ji < j, the 0 to F(I(j), j) mapping (pure
insertion).
tree_dist(i, j){

initialize:
FU@O), ..., Fl)0) =1,...,a —1(i) + 1
FOEG - FOIG) =1,....5 — 1) +1

loop: Vis, 1(i) < is < i,Vje, 1(§) < jr < j
{
case 1: I(is) =1(i) and I(j:) = I(§)
T is][jt) = Flis][j:] = min of swap, delete,
insert, where
swap = -7:[15 - 1][.7t - 1] + Swap(i&jt)
delete = Flis — 1][ji] + delete(is)
insert = Flis][ji — 1] + insert(ji)

case 2: either l(is) # (i) or I(j:) # 1())
Flis][jt] = min of delete, insert, for + tree,
where

swap, delete, insert as before and
for+tree = Fli(is) — 11G0) — 1] + Tlis)lj
}
}

In case 1, the forests’ F'(I(i), i) and F(I(5), ji)

are both single trees and the computed forest
distance is transferred to the tree-distance ta-
ble 7. In case 2, at least one of F(I(i),is) or
F(l(3), i) represents a forest of more than one
tree. This means there is the possibility that
the final trees in the two forests are mapped to
each other. This quantity is found from the 7
table.

This formulation gives the whole-tree dis-

tance between S and 7. For the sub-tree dis-
tance, you take the minimum of the final col-
umn of 7. For the sub-traversal case, you do
the same but on the final iteration , you set the
pure deletion column of F to all 0s, and take
the minimum of the final column of F.

To obtain the structurally weighted versions
defined in section 2, each node in the tree traver-
sal was assigned a weight between 0 and 1, in
a top-down fashion, with the weight depending
on the head vs. complement vs. adjunct vs.
other status of the node and upon the weight of
the mother node. Insertion and deletion costs
= node weight, and swap costs = the heavier
node weight. Space precludes giving details of
the weighting procedure. For the trinity parser,
the necessary node distinctions are furnished
directly by the parser for vp, and by a small
set of structure matching rules for other struc-
tures (nps, pps etc). The collins parser gives
the distinctions directly.

To accommodate wild-card target trees, case
1 in the above is extended to allow 7 [is][j:] =
Flis][jz] = 0 in case j; is the root of a wild-
card tree. To accommodate self-effacing source
trees, case 2 in the above is extended to also
consider for + tree_.del = F[l(is) — 1,7:]. To
accommodate disjunctive target trees, the fi-
nal distance is the minimum of the distances to
each disjunct.
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