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L Standard tree- and sequence-distances

Simple edit distance

Consider transforming a sequence SintoT,S =T

At any given moment an initial portion of S has been transformed into an
initial portion of T, S[0..(i — 1)] = T[0..(j — 1)].

Suppose the process is allowed to continue in one of 4 ways

» delete
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Suppose the process is allowed to continue in one of 4 ways
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Simple edit distance

Consider transforming a sequence SintoT,S =T

At any given moment an initial portion of S has been transformed into an
initial portion of T, S[0..(i — 1)] = T[0..(j — 1)].

Suppose the process is allowed to continue in one of 4 ways
» delete the next symbol of S; denote this operation with (S[i], \), where
S[i] is the next symbol of S

» insert the next ungenerated symbol of T; denote this operation with
(A, T[j]), where T|[j] is the next symbol of T

» swap the next symbol of S for the next ungenerated symbol T, if these
are different; denote this operation with (S[i], T [j]), where SJi] is the next
symbol of S, and T [j] is the next symbol of T
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[ Standard tree- and sequence-distances

Simple edit distance

Consider transforming a sequence SintoT,S =T

At any given moment an initial portion of S has been transformed into an
initial portion of T, S[0..(i — 1)] = T[0..(j — 1)].

Suppose the process is allowed to continue in one of 4 ways
» delete the next symbol of S; denote this operation with (S[i], \), where
S[i] is the next symbol of S

» insert the next ungenerated symbol of T; denote this operation with
(A, T[j]), where T|[j] is the next symbol of T

» swap the next symbol of S for the next ungenerated symbol T, if these
are different; denote this operation with (S[i], T [j]), where SJi] is the next
symbol of S, and T [j] is the next symbol of T

» match just skip past the next symbol of S as it is the same as the next
ungenerated symbol of T; denote this also with (S[i], T[j])

Call the sequence of ops edit-script between S and T.
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Scripts and Mappings
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(s, 2)
(0,€)
(1N

(d.d)
(A.e)
(A1)



On stochastic tree distances and their training via expectation-maximisation
L Standard tree- and sequence-distances

Scripts and Mappings

sold to elder



On stochastic tree distances and their training via expectation-maximisation
L Standard tree- and sequence-distances

Scripts and Mappings

sold to elder

(s, 1)
(0,€)
(1N

(d.d)
(A.e)
(A1)

o —0o w

o — o



On stochastic tree distances and their training via expectation-maximisation
L Standard tree- and sequence-distances

Scripts and Mappings

sold to elder

(s, 2)
(0,e)
(1N

(d.d)
(A.e)
(A1)

o —o w

o — o
o — o



On stochastic tree distances and their training via expectation-maximisation
L Standard tree- and sequence-distances

Scripts and Mappings

sold to elder

(s, 2)
(0,€)
(1Ln

(d.d)
(A.e)
(A1)

o —o w

o — o
o — o
o — o



On stochastic tree distances and their training via expectation-maximisation
L Standard tree- and sequence-distances

Scripts and Mappings

sold to elder

(s, 2)
(0,€)
(1N

(d.d)
(A.e)
(A1)

o —o w
o — o
o — o
o — o
o — o



On stochastic tree distances and their training via expectation-maximisation

L Standard tree- and sequence-distances

Scripts and Mappings

sold to elder
(s,A) s
(0,e) o o e e e e
((H)) [ I I N
(d,d) d d d d d d
(A e) e

(A1)



On stochastic tree distances and their training via expectation-maximisation

L Standard tree- and sequence-distances

Scripts and Mappings

sold to elder

(s:A)
(0,e)
(1N

(d,d)
(A.e)
(A1)

o —o w
o — o
o — o
o — o
o — o
® QO — o
- o Q — o



On stochastic tree distances and their training via expectation-maximisation

L Standard tree- and sequence-distances

Scripts and Mappings

sold to elder
(s,A) s (r.€)
(0,e) o o e e e e e A0
(nn [ (s,d)
(d,d) d d d d d d d (0,e)
(A e) e e (1, A)
(A1) r (d,r)

o 5 = = £ DA



On stochastic tree distances and their training via expectation-maximisation
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Scripts and Mappings

sold to elder

(s, 2)
(0,e)
(11

(d,d)
(2. e)
(A1)

each script corresponds to an order preserving, partial mapping, and

vice-versa

(2. e)
(A1
(s,d)
(0,e)
(I, 2)
(d,r)

DA
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(s, A)
(0,€) U
(1,1) !
(d,d) I~ -d
(Ae) a- e
(A1) r
a cost table defines label-dependent costs
for example with total cost of script or mapping is 4
table this is also a least cost mapping/script for this

table




Costs for scripts or mappings

(s,A)

(o,e) s/ye
(,1) 0" _ |
(d,d) - _d
(A e) d- e
(A ) r

a cost table defines label-dependent costs

for example with

table

total cost of script or mapping is 4
this is also a least cost mapping/script for this
table

Definition
(Sequence-distance) between S and 7 is the

cost of the least-costly mapping/scirpt
fromSto T
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insert
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operations

:
atrees S can be transformed into a tree T, by delete, insert, swap/match
delete

dtrs of x made dtrs of x’s parent m
insert

some dtrs of m made
daughtery of m

dtrs new
swap/match
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L Standard tree- and sequence-distances

Tree edits

atrees S can be transformed into a tree T, by delete, insert, swap/match

operations
delete dtrs of x made dtrs of x’s parent m
insert some dirs of m made dtrs new
daughtery of m
swap/match node x turned to node y
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a a a a delete g

A A /N /N

a
|
a b abob : aabaab
b b . b bt‘, b b b b b b

S T
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a swap a swap . swap swap

a insert a swap a delete

/a\(bm a\(aa) ;,\(bb)/a\ a\(bb)/a\a) /\\(ac)/\\
ab b g b b 4 b b a b b a a ab aa
b b ! b b b b b b b b b

S T
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swap a delete swap

a swap swap swap insert
P S
.a) a\(bb)/a\ a)a/‘\(aC;/L\b

(b,b) (a,a)
PGNP LN
a b b a7 b b

a
b b . b b b b b b b b b
S T
The script encodes a partial map-
pingo :S+— T
aF ---------------- > C6
A //T\
a
alz‘ i 7 |2 a?——’bs
b1b3 Pl 4b3

it is a mapping which respects left-
to-right order and ancestry — call
such mappings Tai mappings



Example

a swap swap swap
a
|
(b, b) (a.a) b,b
a a b b a b b ab
b b b b
S

The script encodes a partial map-
pingo :S+— T

a? -------------- > Cg
PN
a?.“L b4< ?Q %{)%
by by b bs

it is a mapping which respects left-
to-right order and ancestry — call
such mappings Tai mappings

a swap a delete g swap
AL /1N w/I\
a a a a b
b b b b b ﬂ b b
T

costs can be assigned to scripts or
mappings

Definition

(Tree- or Tai-distance) between S
and T is the cost of the
least-costly Tai mapping (or
script) fromSto 7
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» where X is an alphabet, let edit operation identifiers, EdOp, be:

EdOp = ((Z U {A}) x (FU{AN)NAA)
and represent a script with op; . . . opn#, with each op; € EdOp.

» assuming a prob distribution p on EdOp U {#}, define a script probability
as

P(el...en):Hp(ei)



Stochastic string distances

» for the case of strings (linear trees), a stochastic variant was first
proposed by Ristad and Yianilos (98)

» where X is an alphabet, let edit operation identifiers, EdOp, be:
EdOp = ((Z U {A}) x (FU{AN)NAA)

and represent a script with op; . . . opn#, with each op; € EdOp.

» assuming a prob distribution p on EAOp U {#}, define a script probability
as

P(el...en):Hp(ei)

» Can think of a script as yielding a pair of strings (s, t). If E(s,t) is all
scripts which yield (s, t), they defined

all-paths stochastic edit distance:
the sum of the probabilities of all scripts e € E (s, t)

viterbi stochastic edit distance:
prob. of the most probable e € E (s, t)
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Definition (All-scripts stochastic Tai similarity/distance)

The all-scripts stochastic Tai similarity, ©5(S, T), is the sum of the
probabilities of all edit-scripts which represent a Tai-mapping from Sto T.
The all-scripts stochastic Tai distance, AZ(S, T), is its negated logarithm, ie.
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Stochastic tree distances

this can be adapted to the case of trees (first proposed by Boyer et al 2007)

Definition (All-scripts stochastic Tai similarity/distance)

The all-scripts stochastic Tai similarity, ©5(S, T), is the sum of the
probabilities of all edit-scripts which represent a Tai-mapping from Sto T.
The all-scripts stochastic Tai distance, AZ(S, T), is its negated logarithm, ie.

2-85ET) _ gA(s,T)

Definition (Viterbi-script stochastic Tai similarity/distance)

The Viterbi-script stochastic Tai similarity, ©Y (S, T), is the probability of the
most probable edit-script which represents a Tai-mapping from S to T. The
Viterbi-script stochastic Tai distance, AY (S, T), is its negated logarithm, ie.

-85 _gY¥(s,T)
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Voa. e
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neighbourhood with ’
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+ . +
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EM Cost adaptation

» a possible use of a distance is k-NN classifier:
cat(S) = VOTE({categories of k nearest neighbours of S })

» change cost table = change nearest neighbours = change
categorisation:
+ +
Voo @

A

neighbourhood with " \//

A another cost table

neighbourhood with ’
one cost table

toal A
+ *

+ . +
infer @ infer A\

nearest N AN category neighbours should have
same-category distinctive probs = perhaps can
neighbours AN use Expectation-Maximisation tech-
niques to adapt edit-probs from a

PN corpus of same-category nearest

neighbours

scripts between between same-
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I—AII-scripts EM

Brute force All-paths EM (infeasible)

Given a corpus of trainings pairs 7P = ...(S,T)..., let the brute-force
all-scripts EM algorithm, EM{}, be iterations of pair of steps

DA
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Given a corpus of trainings pairs 7P = ...(S,T)..., let the brute-force
all-scripts EM algorithm, EM;;, be iterations of pair of steps

(Exp)a generate a virtual corpus of scripts by treating each
training pair (S, T) as standing for all the edit-scripts
o, which can relate S to T, weighting each by its condi-
tional probability P (o/©%(S, T), under current probali-
ties C®
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training pair (S, T) as standing for all the edit-scripts
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ties C®

(Max)  apply maximum likelihood estimation to the virtual cor-
pus to derive a new probability table.



On stochastic tree distances and their training via expectation-maximisation
[ EM for cost adaptation
L All-scripts EM

Brute force All-paths EM (infeasible)

Given a corpus of trainings pairs 7P = ...(S,T)..., let the brute-force
all-scripts EM algorithm, EM;;, be iterations of pair of steps

(Exp)a generate a virtual corpus of scripts by treating each
training pair (S, T) as standing for all the edit-scripts
o, which can relate S to T, weighting each by its condi-
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ties C®
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o:S—T
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L All-scripts EM

Brute force All-paths EM (infeasible)

Given a corpus of trainings pairs 7P = ...(S,T)..., let the brute-force
all-scripts EM algorithm, EM;;, be iterations of pair of steps

(Exp)a generate a virtual corpus of scripts by treating each
training pair (S, T) as standing for all the edit-scripts
o, which can relate S to T, weighting each by its condi-
tional probability P (o/©%(S, T), under current probali-
ties C®

(Max)  apply maximum likelihood estimation to the virtual cor-
pus to derive a new probability table.

A virtual count or expectation s 1 (op) contributed by S, T for an operaton op
can be defined by

vs1(0p) = Y [ o= x freq(op € 0)]
o:S—T eA(S T)

(Exp)a accumulates the ~s r (op) for all op’s, for all (S, T)
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Brute force All-paths EM (infeasible)

T
S O P N —
@ =3P@) /_)/4,/ S0, 9 /7 =occ. of (a,
4 Vs T B e
P \ N c
ST a \ ~ aQ
‘ // _ A (@) i Q\;Vx
/K /d\ \ ;\uﬁ‘ ‘a | b —— a b i ‘L
a | \ ) o aab
\ N ' , N0
b b A AN T b b
L NN kT
\,Q"\ T /d
Il R g

vsr(op) = > [eA ) x freq(op € o)]

o:S—T



Brute force All-paths EM (infeasible)

P \\\\\ - N —
@ =3P@) /_)/4,/ S0, 9 /7 =occ. of (a,
4 Vs T B e
P \ N c
ST a ~
A A (@) PPN AN
/K id\ \ ;\uﬁ‘ | o a b ‘!
a | \ bo | o aab
\ < ' , N0
b b A EZONERN T b b
RN NN kT
\,Q"\ T /d
Il R g

vsr(op) = > [eA ) x freq(op € o)]

o:S—T

» infeasible
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(mi,m/) € o if o = pre o (m, m’) o suff {some SUff € E(Sisar, Tirr)
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try to split exp. ys,ty(0op) into position specific versions s 1)[i,j](op) and
then sum

Ys,m)(0P) Z’YST)['][J] (op)

m

e B A
k i)
1. 72.73. 74.”175. 76.77.

Define (m;,m{) € o, occurrence of posn-specific subst (m, m’) in o as

some pre € E(Sl;ifl,Tl;jfl)

(mi,m/) € o if o = pre o (m, m’) o suff {some SUff € E(Sisar, Tirr)

then define (s 1)[4][4](m, m’), the expectation for a swap (m, m’) at (4,4) as



try to split exp. ys,t)(0op) into position specific versions s 1)[i,j](op) and
then sum

sm(op) = > wsmlillil(op)
i

A W}?mi 5 6
k )
l. 72.73. 74.m75. 76.77.

Define (m;,m{) € o, occurrence of posn-specific subst (m, m’) in o as

some pre € E(Syi—1, T1j-1)

m’ if o = !
(mi,m{) € o if ¢ = pre o (m, m’) o suff {SOmESUﬁGE(Si+1;I,Tj+1:J)

then define (s 1)[4][4](m, m’), the expectation for a swap (m, m’) at (4,4) as
in words,

the sum over the conditional probabilities of any script o containing
a my4, my substitution, given that it is a script between S and T



try to split exp. ys,ty(0op) into position specific versions s 1)[i,j](op) and
then sum

n(op) = > wsmlillil(op)
¥

A W}?mi 5 6
k )
l. 72.73. 74.m75. 76.77.

Define (m;,m{) € o, occurrence of posn-specific subst (m, m’) in o as

some pre € E(Syi—1, T1j-1)

m’ if o0 = !
(mi,m{) € o if ¢ = pre o (m, m’) o suff {SOmESUﬁGE(Si+1;I,Tj+1:J)

then define (s 1)[4][4](m, m’), the expectation for a swap (m, m’) at (4,4) as

p(o
Vs[4, 4](m,m’) = > [ﬁ]
O’GE(S,T),(m47m£)eo— S )

1
= m X Z [p(o)]

0€E(S,T),(ma,m))E0
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Ristad observes the sum can be factorised into a product of 3 terms
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Ristad observes the sum can be factorised into a product of 3 terms

> [ppre)] il

1 pre€E(S1:3,T1:3) -
Ysm4,4)(mm') = ————x | x p(m, m’) [ii]
oG T) | S [p(suff)] il

suff €E(S4:6,Ta:7)

[i] values of the sum over p(pre) can efficiently tabulated — this is the
all-scripts algorithm
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zfl’»\ 2 Te e
e e el ¢ e )
1* T2 I R - S S
Ysmld Al(m.m') = — Y )
e T ks )

Ristad observes the sum can be factorised into a product of 3 terms

> [ppre)] il

1 pre€E(S1:3,T1:3) -
Ysm4,4)(mm') = ————x | x p(m, m’) [ii]
oG T) | S [p(suff)] il

suff €E(S4:6,Ta:7)

[i] values of the sum over p(pre) can efficiently tabulated — this is the
all-scripts algorithm

[iii] values of sum over p(suff) can be efficiently tabulated by an easily
formulated 'backwards’ variant.
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All-paths EM for linear trees

procedure for determining expectations st (m, m’) is then:

>

compute table of *forward’ probs: «fi][j] = Z [p(pre)]
pre€E(Sy1—1,T1j-1)

compute table of 'backward’ probs: S[i][j] = Z [p(suff)]
Suff EE(Sit1:1,Tj+1.)

use to calculate pos.-dept exp:

vs.7(mi,mf) = afi = 1] — 1] x p(mi,m’,j) x Bli + 1, + 1]

use to calculate pos-indpt exp: ys 1(m,m’) = Z[WSJ [iG](m, m")]

i

first is essentially the algorithm proposed by Ristad and Yianilos (98)
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[ EM for cost adaptation
L All-scripts EM

All-paths EM for linear trees

procedure for determining expectations st (m, m’) is then:
» compute table of ‘forward’ probs: «fi][j] = Z [p(pre)]
pre€E(S11—1,T15-1)

» compute table of 'backward’ probs: g[i][j] = Z [p(suff)]
suff €E(Sj 1.1, Tj41.9)
» use to calculate pos.-dept exp:
s, 1 (mi,m) = afi — 1][j — 1] x p(mi,m’,j) x i +1,j + 1]

» use to calculate pos-indpt exp: s t(m,m’) Z[WST[I]U] (m,m")]

first is essentially the algorithm proposed by Ristad and Yianilos (98)

this has seen widely used to train a string distance measure (ie. linear trees)
from a corpus of pairs
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6 7
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lets try to apply similar reasoning to stochastic tree distance

/B.m\ PN
4® 5. 4® 6.

. \ »*
1 /\\\ “1/,//\ ‘ |
B ® )
L 2 1* 3 5

again define (m;, m/) € o, occurrence of posn-specific subst (m,m’) in o as

some pre € E(Syi—1, T1j-1)

(mi,m{) € o if ¢ = pre o (m, m’) o suff {some SUff € E(Sisar, Tiero)

and define (s 1)[4][4](m, m"), the expectation for a swap (m, m’) at (4,4) as
in words,

the sum over the conditional probabilities of any script o containing

a mg4, my substitution, given that it is a script between S and T
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lets try to apply similar reasoning to stochastic tree distance

. .

6 7
/‘m\ /.m\.
® ° ° ) 4
S D N R
2. 3. i 1. 30 50

again define (m;, m/) € o, occurrence of posn-specific subst (m,m’) in o as

some pre € E(Syi—1, T1j-1)

m’ if o0 = !
(mi,m/) € o if o = pre o (m, m’) o suff {somesuﬁeE(Si+1;|,Tj+1;J)

and define (s 1)[4][4](m, m"), the expectation for a swap (m, m’) at (4,4) as

plo
endamm) =y (B
aEE(S,T),(nM-,m:‘)Eo' S ’

1
= m X Z [p(o)]

aEE(S,T),(nM-,m:‘)Eo'
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Efficient calculation of (s 1) [i][i](op) ?

e
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4® 6.
2
LA
2 AT SR
So how to efficiently calculate:
1

ers.T) | >

[p(o)]
aeE(S,T),(m4,m"1)Eo'

DA
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I—AII-scripts EM

Efficient calculation of (s 1)[i][i](op) ?

Boyer et al (2007) suggest the fectorisation

> Ip(e)lx > [p(e2)]xp(m,m)x > [p(es)]

e1€E([1],[2(-1)]) e2€E([-2-3],[3]) e3€E([-6(-5)l[7(-6(-5))])

but we can show that this is not a sound factorisation
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Unsoundness

>

o€E(S,T),(mg,m})Ec

p(c) means sum p(c) for scripts which represent a
mapping containing (m4,m})

= if an ancestor of m, is in the mapping (ie. not deleted)

then its image under the mapping must be an ancestor of m} also
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Unsoundness
Z p(c) means sum p(c) for scripts which represent a
o €E(S,T),(Mmg,m}) €0 mapping containing (m4,my)

= if an ancestor of m, is in the mapping (ie. not deleted)
then its image under the mapping must be an ancestor of m; also

so -s of S being mapped to -7 of T is consistent with (m4, m,)

- B
lm\. N .m\.
l. 4-.\\\ 5 2: ,’44} 6‘
P S N S
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l—AII-scrlpts EM

Unsoundness
Z p(c) means sum p(c) for scripts which represent a
o €E(S,T),(Mmg,m}) €0 mapping containing (m4,my)

= if an ancestor of my is in the mapping (ie. not deleted)
then its image under the mapping must be an ancestor of m; also

but -¢ of S being mapped to -s of T is not consistent with (m4, my)

A 7
T35
lm\. ./.m’\.
l. 4~.\\\ 5 2: ,’44} 6\
R S S
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so the problem with the factorisation

> ple)lx > [p(e2)] x p(m,m’) x > [p(es)]

e1€E([1],[-2(-1)]) e2€E([-2-3],['3]) e3€E([6('s)]['7(-6(*5))])

is the third term sums both things consistent and inconsistent with (m,4, mj)

2esc(lsCo)l (o5 [P(83)] =

6. 77777777 > 70 60—»"\\\ 70
* GT + s ‘”767 +
5 5
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unsolved problem.

For general trees, a feasible equivalent to the brute-force EM%' remains an
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- Viterbi EM

Let the Viterbi EM algorithm EMY, be iterations of pair of steps

(Exp)v generate a virtual corpus of scripts by treating each
training pair (S, T) as standing for the best edit-script
o, which canrelate S to T, weighting it by its conditional
probability P(¢)/©%(S, T), under current costs C

(Max) apply maximum likelihood estimation to the virtual cor-
pus to derive a hew probability table.

Where V is the best-script, the virtual count or expectation ~s 1 (op)
contributed by S, T for the operation op is defined by

©:(S,T)

o' (s.T) x freq(op € V)
S I

Ys,my(0p) =
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- Viterbi EM

Let the Viterbi EM algorithm EMY, be iterations of pair of steps

(Exp)v generate a virtual corpus of scripts by treating each
training pair (S, T) as standing for the best edit-script
o, which canrelate S to T, weighting it by its conditional
probability P(¢)/©%(S, T), under current costs C

(Max) apply maximum likelihood estimation to the virtual cor-
pus to derive a hew probability table.

Where V is the best-script, the virtual count or expectation ~s 1 (op)

contributed by S, T for the operation op is defined by

_ed(s,T)
©5(s,T)

(Exp)v accumulates the ~s 1 (op) for all op’s, for all (S, T)

Ys,1)(0P) x freq(op € V)



Viterbi approximation EMV (feasible)

All paths
B N
@\:ZP(GI) /_>/7,// \\\\\‘\{&\L_O-‘i\ \/\/\)
a s - *?’/',’ a v goa ¢
h \7\\ iﬂ&
a,. % &
/"’\ %w'w e S
ale B
~ /

b b N o~ -7 b b
w -~ \\ N ///d//fv/l
&_\r____b//

vsr(op) = > [@A j *frea(op € o)

o:S—T

= occ. of (a,.



Viterbi approximation EMV (feasible)

Viterbi

O = occ. of (a,.)

on best-path
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2. derive a corpus of edit scripts in accordance with C®
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L Experiments
L Synthetic Data

The methodology in outline is
1. choose a set of parameters C ie. probs for all ops
2. derive a corpus of edit scripts in accordance with C®
3. generate a corpus 7P of tree pairs consistent with these edit scripts

4. apply learning algorithm to tree-pair corpus 7P to learn parameters C’
and compare to see if C’ is close to original C.
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Choosing a set of (target) parameters

» label alphabet > = {A,B,C,D,E}
» define subst. prob to be:

max for letters one apart in Ascii code (eg A/B
falling as you get further from this (eg A/C < A/B)

P(x,y) a (|(JASCII(x) — ASCII(y)| - 1)])®

» del and ins uniform, and such that ins+del ist just more than the worst
swap

table (as neg. logs):

| A A B c D E
6.907 6007 6.07 6.907 6.907
6.907 4.907 3.907 4.907 7.907 12.91
6.907 3.907 4.907 3.907 4.907 7.907
6.907 4.907 3.907 4.907 3.907 4.907
6.907 7.907 4.907 3.907 4.907 3.907
6.907 12.91 7.907 4.907 3.907 4.907

moOm@> >



The target parameters

plot of assumed subsitution probs (neg. logs)

—log(P of subst)

2 3 456 7 89

n
—

™
—

11

A substcosts A /x
subst costs B /x
subst costs C /x
subst costs D /x
subst costs

moO

letter substituted
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L Synthetic Data

Deriving a set of edit-scripts

generated 5k scripts in accordance with these parameters

it starts like this:

0 [(AD),(E,D),(D,A),(C,D),(D,C),(A,B), (E, C), (D, C),(C,B),(C, D), (A, B), (C,A),
1 [(8,D)]

2 [(¢,C),(D,B),(E,D),(B,D)]

3 [(D,B).(C,E).(AA),(D,B),(C,B),(E,E),(C,D), (D, B), (A A), (E, C), (E, D)]

u]
|
1
ul
!
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Generating tree pairs

» from these scripts a corpus 7P of consistent tree-pairs is generated
» for each script, a random 5 are chosen from all pairs consistent
» following pages for the script:

[(E,D)(D,C)(A,B)(B,B)(A, C)(C,C)([], A)E, D)(E, C)(A,A)]

show the consistent tree pairs
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Applying training algorithm

Viterbi EM applied to corpus of tree pairs 7P
starting from initial uniform costs:

n
—
™ A substcosts A /x
- C D E identical plot
- |

AH

@ L

Qo

>

Qo -

o

oo —

>

o~ -

|
O
o A A A A A
<r f—
o =
N ! ! !

A B C D

letter substituted



Applying training algorithm

Viterbi EM applied to corpus of tree pairs 7P
learns costs:

—log(P of subst)

2 3 456 7 89

Lo
—

13

11

subst costs
subst costs B /x
subst costs C /x
subst costs D /x
subst costs

mooO

letter substituted
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» a possible use of a distance is k-NN classifier:
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» a possible use of a distance is k-NN classifier:
cat(S) = VOTE({categories of k nearest neighbours of S })

» change cost table = change nearest neighbours = change
categorisation:

v

+
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neighbourhood with \/
another cost table ’ /é\O
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category neighbours should have
distinctive probs
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Adapting a k-NN classifier

» a possible use of a distance is k-NN classifier:
cat(S) = VOTE({categories of k nearest neighbours of S })

» change cost table = change nearest neighbours = change
categorisation:

v

+
v .
neighbourhood with \/
another cost table ’/é\O
o

A A e
+‘ +

neighbourhood with
one cost table

infer @ infer A\

nearest
same-category

neighbours

neighbours

scripts between between same-
category neighbours should have
distinctive probs =- perhaps can
use Expectation-Maximisation tech-
niques to adapt edit-probs from a
corpus of same-category nearest
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On stochastic tree distances and their training via expectation-maximisation

[ Experiments

l_ Real Data

Data set: QuestionBank

2755 syntactically analysed and semantically categorised questions

AN HUM

Cat

SONENTY QO Num Q\(Loe oo - 2755

Example

NUM

LOC

HUM

When was London ’s Docklands Light Railway constructed ?
(SBARQ (WHADVP (WRB When))(SQ (VBD was)(NP (NP (NNP London)(POS 's))(NNPS Docklands)

(3J Light)(NN Railway))(VP (VBN constructed)))(. ?))

What country is the biggest producer of tungsten ?

(SBARQ (WHNP (WDT What)(NN country))(SQ (VBZ is)(NP (NP (DT the)(JJS biggest)(NN producer))

(PP (IN of)(NP (NN tungsten)))))(. ?))

What is the name of the managing director of Apricot Computer ?
(WHNP (WP What))(SQ (VBZ is)(NP (NP (DT the)(NN name))(PP (IN of)(NP (NP (DT the)(JJ managing)(NN director))
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[ Experiments
- Real Data

Data set: QuestionBank

2755 syntactically analysed and semantically categorised questions

SO N ENTY QN NUM Q\(LOC - = 2%

Cat Example
When was London ’s Docklands Light Railway constructed ?
(SBARQ (WHADVP (WRB When))(SQ (VBD was)(NP (NP (NNP London)(POS 's))(NNPS Docklands)
(JJ Light)(NN Railway))(VP (VBN constructed)))(. ?))
What country is the biggest producer of tungsten ?
(SBARQ (WHNP (WDT What)(NN country))(SQ (VBZ is)(NP (NP (DT the)(JJS biggest)(NN producer))
(PP (IN of)(NP (NN tungsten)))))(. ?))

HUM  What is the name of the managing director of Apricot Computer ?

(WHNP (WP What))(SQ (VBZ is)(NP (NP (DT the)(NN name))(PP (IN of)(NP (NP (DT the)(JJ managing)(NN director))

Intuitiion: in scripts between between same-category neighbours should have
distinctive probs eg. . P(who/when) << P(state/country).
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» experiments make 9:1 split into Examples vs Testing and evaluate a
distance measure in k-NN classifier

so for each T in Testing, assign a category based on the categories of its
k nearest neighbours in Examples
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- Real Data

k-NN categorisation

» experiments make 9:1 split into Examples vs Testing and evaluate a
distance measure in k-NN classifier

so for each T in Testing, assign a category based on the categories of its
k nearest neighbours in Examples

cat(T) = VOTE({categories of k nearest neighbours of T })

» compare
tree-distance with standard unit costs
stochastic tree-distance with untrained costs

stochastic tree distance with trained costs
training by EMY on same-category neighbours from the Example set
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Experimental outcome (brief)

» standard unit-costs
<, max. 67.7%

» initial stochastic costs
7 max. 63.8%
worse than unit costs

» best EMY-adapted costs
o, max. 72.5%
about 5% better than unit-costs
(v, max. 67.7%)

% accuracy

72

o lam 0.99

lam 0.9
+ lam 0.5
x lam 0.1
¥ unit costs
o V untrained

10 20 30 50 100 200
k values
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[ Experiments
L Further details: Experiment One

Stochastic cost initialisation

EMV needs an initialisation of its parameters.
we used a basically uniform initialisation except
diagonal entries are d times more probable than non-diagonal.

examples for d = 3, 10, 100, and 1000 are:

3| a b 10| A a b

A 3737 37 A | 4.755 4.755 4.755
a| 3.7 2115 3.7 a | 4.755 1.433 4.755
b|3737 2115 b | 4.755 4.755 1.433
100/A a b 1000/ A a b

A 7.693 7.693 7.693 A 10.97 10.97 10.97
a 7.693 1.05 7.693 a 10.97 1.005 10.97
b 7.693 7.693 1.05 b 10.97 10.97 1.005

NOTE: diagonal entries are not insignificant



e
On stochastic tree distances and their training via expectation-maximisation
L Experiments
L Further details: Experiment One

We used a smoothing option on a table C2 derived by EMV, interpolating it
with the stochastic initialisation C*,(d) as follows:
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- Further details: Experiment One

Smoothing

We used a smoothing option on a table C2 derived by EMV, interpolating it
with the stochastic initialisation C*,(d) as follows:

2-Coabb1 — 2~ Cowy 4 (1 — y)(2-C vy
with0 < A <1
A = 1 gives all the weight to the derived table

A = 0 gives all the weight to the initial table
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Experiment One

% accuracy
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Experiment One

» unit-costs (v, max. 67.7%)
exceeds non-adapted C2,(3)
costs (o, max. 63.8%)

% accuracy
40 43 46 49 52 55 58 61 64 67
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Experiment One

» unit-costs (v, max. 67.7%)
exceeds non-adapted C2,(3)
costs (o, max. 63.8%)

» unsmoothed EM" -adapted costs
(A, max. 53.2%) worse than
initial, stochastic costs (o, max.
63.8%)

d>IIIIIIIII

o untrained stochastic AN
~ trained stochastic unsmoothed 7
— -+ trained stochastic smoothed .
[ v unit costs LA
- | | | | | [
1 5 10 20 30 50 100 200

k values

% accuracy
40 43 46 49 52 55 58 61 64 67
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Experiment One

» unit-costs (v7, max. 67.7%)
exceeds non-adapted C2,(3)
costs (o, max. 63.8%)

» unsmoothed EMY -adapted costs
(A, max. 53.2%) worse than
initial, stochastic costs (o, max.
63.8%)

» EMV-adapted costs on training
set gives 95% accuracy: = EMVY
makes training pairs too probable,
and over-fits.

o untrained stochastic
trained stochastic unsmoothed

[ + trained stochastic smoothed
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Despite poor performace of the EMY -adapted costs, some of the adapted
costs seem intuitive. Here is a sample from top 1% of adapted swap costs,
which are plausibly discounted relative to others:

8.50 7 . 12.31 The the
8.93 NNP NN 12.65 you |

9.47 VBD VBZ 13.60 can do
9.51 NNS NN 13.83 many much
9.78 a the 13.92 city state
11.03 was is 13.93 city  country
11.03 ’s is
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diagonal
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setting, which is clearly 'uniform’ in a sense, out-performs the 'uniform’
stochastic initialisations
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» asingle 0 entry in C2implies infinite cost entries everywhere else.
= a stochastically valid cost table cannot have zero costs on the
diagonal

» perhaps this impedes good categorisation; note also the unit-cost
setting, which is clearly 'uniform’ in a sense, out-performs the 'uniform’
stochastic initialisations

» suggests final step in which all the entries on the cost-table’s diagonal
are zeroed.
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» Recall: For the stochastic distance AY cost-table entries represent
probabilities via

_C%x,
277 M =p(x,y)
» asingle 0 entry in C2implies infinite cost entries everywhere else.
= a stochastically valid cost table cannot have zero costs on the
diagonal

» perhaps this impedes good categorisation; note also the unit-cost
setting, which is clearly 'uniform’ in a sense, out-performs the 'uniform
stochastic initialisations

1

» suggests final step in which all the entries on the cost-table’s diagonal
are zeroed.

» Bilenko et al 2003 does essentially this in work on stochastic string
distance
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» now with smoothing at varius
levels of interpolation
(A € {0.99,0.9,0.5,0.1}) and
with the diagonal zeroed, the
EMY -adapted costs clearly
out-perform the unit-costs case

(¥)-

% accuracy
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N
~r
» now with smoothing at varius e
levels of interpolation
(A €{0.99,09,05,01})and B
with the diagonal zeroed, the 3
EMY -adapted costs clearly g 8
out-perform the unit-costs case S o lam 0.99
<[ ~ lam 0.9
(). © |+ lam 0.5
» the best result being 72.5% ~| XlamoO01

(k = 20, A = 0.99), as compared ~ €[ v unitcosts
to 67.5% for unit-costs (k = 20) 3

L 1 1 1 1 1
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that attained in the unit-cost setting,

» evidence to show that Viterbi EM cost-adaptation can increase the
performance of a tree-distance based classifier, and improve it to above
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» evidence to show that Viterbi EM cost-adaptation can increase the
performance of a tree-distance based classifier, and improve it to above
that attained in the unit-cost setting,

» experiments on further data-sets is required: one possibility is the
NLP-related tasks of question-answering, where the need is to assess
pairs of sentences for their likelihood to be a question-answer pairs. A
training set of such pairs could also serve as potential input to the cost
adaptation algorithm.
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