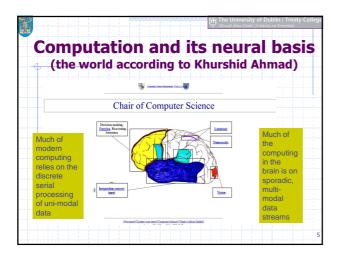


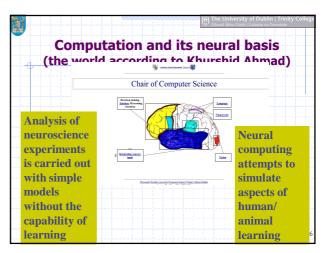
Real Neuroscience

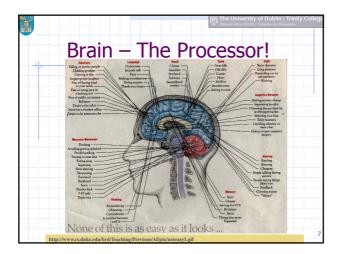
To compute is to:

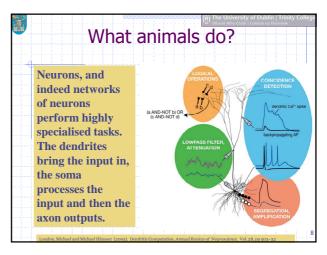
To determine by arithmetical or mathematical reckoning; to calculate, reckon, count. In later use chiefly: to ascertain by a relatively complex calculation or procedure, typically using a computer or calculating machine.

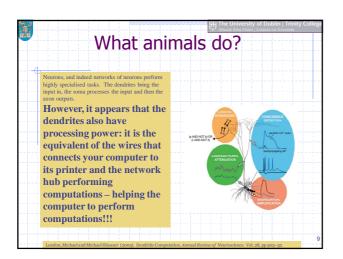
But the human brain :

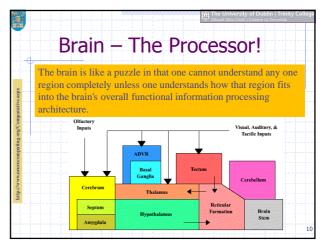

is considered as the centre of mental activity; the organ of thought, memory, or imagination.

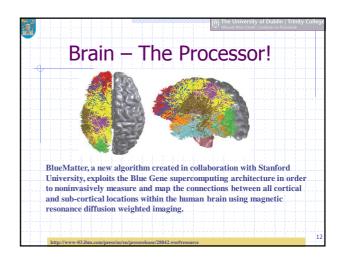

	Real Neuroscience	
-		
	I am (intelligent) because:	
	I can converse in natural languages;	
	I can analyse images, pictures (comprising images), and scenes	
	(comprising pictures);	~~~
	I can reason, with facts available to me, to infer new facts and contradict	
	what I had known to be true;	
	I can plan (ahead);	
	I can use symbols and analogies to represent what I know;	
	I can learn on my own, through instruction and/or experimentation;	
	I can compute trajectories of objects on the earth, in water and in the air;	
	I have a sense of where I am physically (prio-perception)	
	I can deal with instructions, commands, requests, pleas;	
	I can 'repair' myself;	

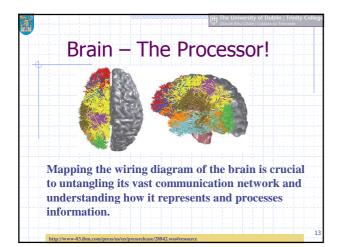

Real Neuroscience

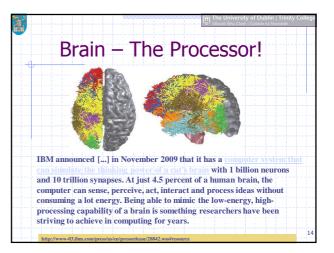

But I cannot compute or reckon intensively beacuse:

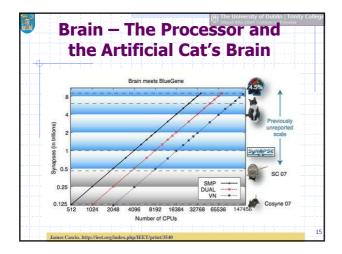

- I cannot add/subtract/multiply/divide with consistent accuracy;
- I forget some of the patterns I had once memorised; I confuse facts;
- I cannot recall immediately what I know;
- I cannot solve complex equations;
- I am influenced by my environment when I make
- decisions, ask questions, pass comments;
- I will (eventually) loose my faculties and then die!!

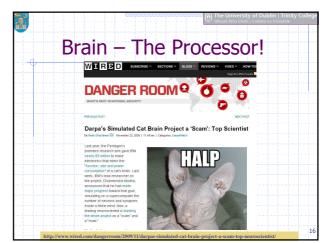


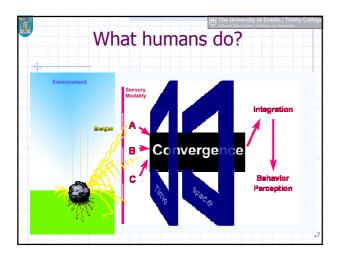


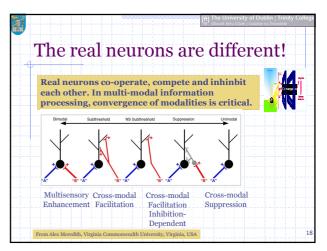


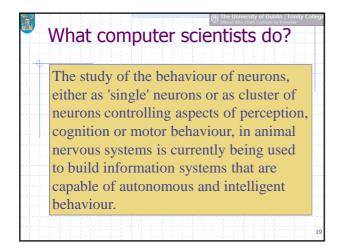


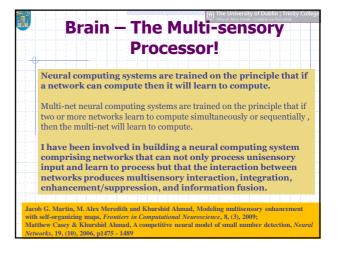


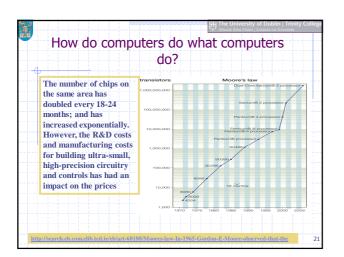

Brain –	The Processor!
	n that one cannot understand any one region
completely unless one unde functional information pro	erstands how that region fits into the brain's overall cessing architecture.
The Hypothalamus is the c	ore of the brain having spontaneously active neuron
that "animate" everything constraints to these basic a	g else. Other brain regions just layer on various nimating signals.
The Thalamus (Diencephal	on) seems to have started out as a contra-indicator
center and later became mo brain circuits that are activ	ostly an attention controller. It does this by inhibiting vated from other regions.
The Tectum (Optic Lobe) lo part) motions to the anima	ocalizes interesting (innately defined for the most l.
	tive predictive (feedforward) control system. As sucl rns generated in the brain stem and spinal cord.

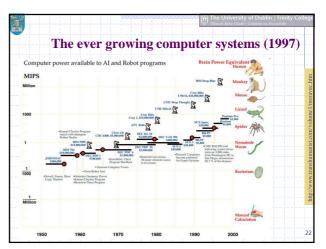


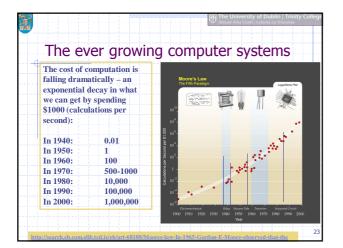


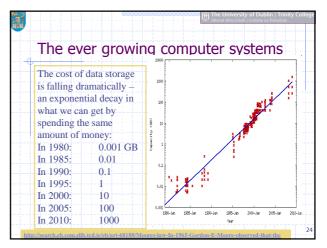


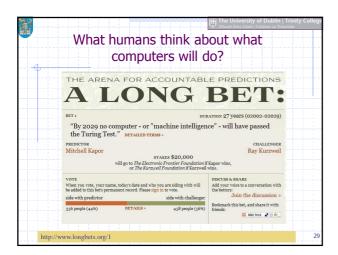


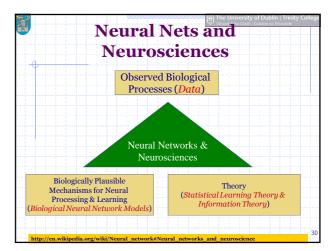











					g computer sy outers of today	
Rank 🗟	Rmax Rpeak (Mops)	Name B	Computer Processor cores #	Maker	Site Country, Year ⊮	300 to
1	1105.00 1456.70	Roadrunner	BladeCenter QS22/LS21 129600 (Cell/Opteron)	IBM	Los Alamos National Laboratory	1400 Trillion
2	1059.00 1381.40	Jaguar	Cray XT5 150152 (Opteron)	Cray	Oak Ridge National Laboratory United States, 2008	- Floating
3	825.50 1002.70	JUGENE	Blue Gene/P Solution 294912 (Power)	IBM	Jülich Research Centre Germany, 2009	Point
4	487.01 608.83	Pleiades	SGI Altix ICE 8200EX 51200 (Xeon), InfiniBand	SGI	NASA/Ames Research Center United States, 2008	Operations
5	478.20 596.38	Blue Gene/L	eServer Blue Gene Solution 212992 (Power)	IBM	Lawrence Livermore National Laboratory United States, 2007	per Second
6	463.30 607.20	Kraken	Cray XT5 66000 (Opteron)	Cray	National Institute for Computational Sciences	
7	458.61 557.06	Intrepid ⁽⁴⁾	Blue Gene/P Solution 163840 (Power)	IBM	Argonne National Laboratory United States, 2007	
8	433.20 579.38	Ranger	Sun Constellation System 62976 (Opteron), Infiniband	Sun	Texas Advanced Computing Center United States, 2008	
9	415.70 501.35	Dawn	Blue Gene/P Solution 147456 (Power)	IBM	Lawrence Livermore National Laboratory United States, 2009	
10	274.80 308.28	JUROPA	Sun Constellation System 26304 (Xeon), Infiniband	Bul	Jülich Research Centre Germany, 2009	

What computers cannot do?
The Vision Problem 1967-1997 Thirty years of computer vision reveals that
1 MIPS can extract simple features from real-time imagerytracking a white line or a white spot on a mottled background.
10 MIPS can follow complex gray-scale patchesas smart bombs, cruise missiles and early self-driving vans attest.
100 MIPS can follow moderately unpredictable features like roadsas recent long NAVLAB trips demonstrate.
1,000 MIPS will be adequate for coarse-grained three-dimensional spatial — awareness
10,000 MIPS can find three-dimensional objects in clutter

What computers cannot do?
The Vision Problem – The story continues (2009)
 VC4458
The VC4458 is one of the world's fastest and most excellent smart cameras with computational power of 8000 MIPS rivaling a 7.2 GHz Pentum. It has 64 MB DR4M, 4 MB Flash EPROM for program and data storage (Expanded by the standard 612 MB SD card inside). It cam acquire full fame account points a 242 frames per table acquire full fame account
The own internal operating system "VORT" of the VC4488 executed in parallel. The science of the state of high Speed Thoger input with The science of the science of the speed Thoger input with the science of the science of the science of the science of the science of the science of the science of the science of the science of the science of the science of the science parallel of the science of
And whereas a standard progressive scan camera gats a him work-486 has optimized the image acquisition process that optimized the image acquisition process be that appendix and the image processing can be that an 8 bit colour overlay which can operate in operate if has an 8 bit colour overlay which can operate in operate

	What computers cannot do?
	The Vision Problem – The story continues (2009
	Processors add HD video playback and recording support to Renesas Technology's popular SH772x series of low power multimedia processors
	ews Release from: Renesas Technology Europe Ltd 7/05/2009
se	enesas has announced the release of the SH7724, the third product in the SH772x ries of low power application processors designed for multimedia applications suc s audio and video for portable and industrial devices.
in	/hen operating at 500 MHz, general processing performance is 900 million structions per second (MIPS) and FPU processing performance is 3.5 giga [billion oating-point operations per second (GFLOPS).

Cognitive neuroscience has many intellectual roots. The experimental side includes the very different methods of systems neuroscience, human experimental psychology and, functional imaging. The theoretical side has contrasting approaches from neural networks or connectionism, symbolic artificial intelligence, theoretical linguistics and information-processing psychology.

Tim Shallice (2006). From lesions to cognitive theory. Nature Neuroscience Vol 6, pp 215 (Book Review: Mark D'Esposito (2002). Neurological Foundations of Cognitive Neuroscien

Brains compute? This means that they process information, creating abstract representations of physical entities and performing operations on this information in order to execute tasks. One of the main goals of computational neuroscience is to describe these transformations as a sequence of simple elementary steps organized in an algorithmic way.

London, Michael and Michael Häusser (2005). Dendritic Computation.

Annual Review of Neuroscience, Vol. 28, pp 503-3

8

Real Neuroscience

Brains compute?

The mechanistic substrate for these computations has long been debated. Traditionally, relatively simple computational properties have been attributed to the individual neuron, with the complex computations that are the hallmark of brains being performed by the network of these simple elements.

London, Michael and Michael Häusser (2005). Dendritic Computation. Annual Review of Neuroscience. Vol. 28, pp 503-32

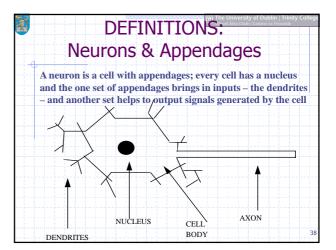
DEFINITIONS: Artificial Neural Networks

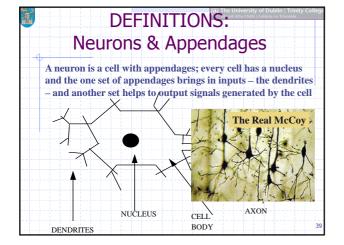
Artificial Neural Networks (ANN) are computational systems, either hardware or software, which mimic animate neural systems comprising biological (*real*) neurons. An ANN is architecturally similar to a biological system in that the ANN also uses a number of simple, interconnected artificial neurons.

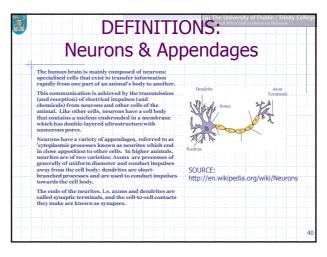
DEFINITIONS: Artificial Neural Networks

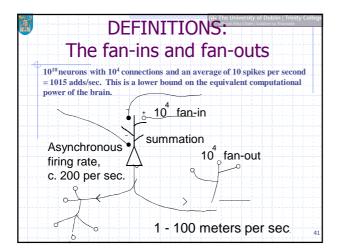
Artificial neural networks emulate threshold behaviour, simulate co-operative phenomenon by a network of 'simple' switches and are used in a variety of applications, like banking, currency trading, robotics, and experimental and animal psychology studies.

These information systems, neural networks or neuro-computing systems as they are popularly known, can be simulated by solving first-order difference or differential equations.

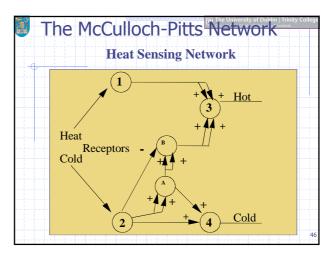

What computers can do? Artificial Neural Networks	College
Intelligent behaviour can be simulated through	
computation in massively parallel networks of simple processors that store all their	
long-term knowledge in the connection strengths.	
	36


What computers can do? Artificial Neural Networks


According to Igor Aleksander, Neural Computing is the study of *cellular networks* that have a natural propensity for storing experiential knowledge.

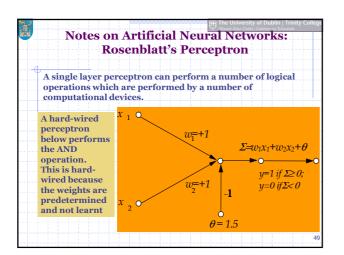

Neural Computing Systems bear a resemblance to the brain in the sense that knowledge is acquired through *training* rather than *programming* and is retained due to changes in node functions.

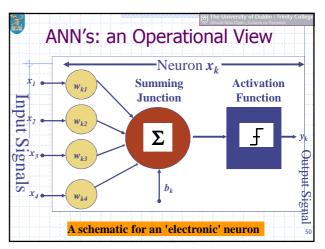
Functionally, the knowledge takes the form of stable states or cycles of states in the operation of the net. A central property of such states is to recall these states or cycles in response to the presentation of cues.



Siologian	l and Artific	ial NNP
biologica	i and Artific	ai min s
Entity	Biological Neural Networks	Artificial Neural Networks
Processing Un	its Neurons	Network Nodes
Ing	Dendrites (Dendrites may form synapses onto other dendrites)	Network Arcs (No interconnection between arcs)
Outŗ	Axons or Processes (Axons may form synapses onto other axons)	Network Arcs (No interconnection between arcs)
Inter-link:	ge Synaptic Contact (Chemical and Electrical)	Node to Node via Arcs
	Plastic Connections	Weighted Connections Matrix

Networks Networks Output Dendrites bring inputs from different locations: so does the brain wait for all the inputs and then start up the summing All inputs arrive instantaneously and a summed up in the sar computational cycle distance (or location	Biological	and Artific	al NN's
from different locations: so does the brain wait for all the inputs and then start up the summing exercise or does it perform many different intermediate	Entity		Artificial Neura Networks
	Output	from different locations: so does the brain wait for all the inputs and then start up the summing exercise or does it perform many different intermediate	instantaneously and a summed up in the san computational cycles distance (or location between neuronal nod


he McCulloch-Pitts Network			
. McCulloch and Pitts demonstrated that any logical function can be duplicated by some network of all-or-			
none neurons referred to as an artificial neural network (ANN).			
Thus, an artificial neuron can be embedded into a network in such a manner as to fire selectively in			
response to any given spatial temporal array of firings of other neurons in the ANN.			


Th	e McCulloch-Pitts Network
Cor	sider a McCulloch-Pitts network which
can	act as a minimal model of the sensation of
hea	t from holding a cold object to the skin and
the	removing it or leaving it on permanently.
Eac	h cell has a threshold of TWO , hence fires
whe	enever it receives two excitatory (+) and no
inhi	bitory (-) signals from other cells at a
prev	vious time.
Arti	icial Neural Networks for Real Neuroscientists: Khurshid Ahmad, Trinity College, 28 Nov 200

The Mc	Cull Heat	OC Sens	-Pit	¹⁶⁰ oi	letv ork	Coláiste na Ti		
	Truth tables of the firing neurons when the col object contacts the skin and is then removed							
object contac	Time	Cell 1	Cell 2	Cell a	Cell b	Cell 3	Cell 4	
		INPUT	INPUT	HIDDEN	HIDDEN	OUTPUT	OUTPUT	
Heat ++++	1	No	Yes	No	No	No	No	
Receptor/ ^B // Cold // +	2	No	No	Yes	No	No	No	
	3	No	No	No	Yes	No	No	
2 + (<u>)</u> Cold	4	No	No	No	No	Yes	No	

Heat Sensing Network	
'Each bet' 'Each add' neurong show how to exact	
ENHANCEMENT.	
The absence or presence of a stimulus in the	
PREVIOUS time cycle plays a major role here.	
The McCulloch-Pitts Network demonstrates how	
this ENHANCEMENT can be simulated using an	
ALL-OR-NONE Network.	
	The McCulloch-Pitts Network demonstrates how this ENHANCEMENT can be simulated using an

	The University of Dublin T Oliscell Atha Cliath Colaiste na Triono	rinity College
AN AN	NN's: an Operational View	
	x ₂ + x ₂ Suming Activation Junction Function	
Input Signals		
Signals	z₂↔ vµ	
	Net input or weighted sum: $net = w_1 * x_1 + w_2 * x_2 + w_3 * x_2 + w_4 * x_4$	
	Neuronal output	
	identity function $\Rightarrow y_1 = net$	
	non – negative identity function	
	$y_1 = 0$ if $net \le THRESHOLD(\theta)$	
	$y_1 = net \ if \ net > THRESHOLD(\theta)$	51

Notes on Artificial Neural Networks: Rosenblatt's Perceptron									
A learning perceptron below performs the AND operation.	An algorithm: Train the network for a number of epochs (1) Set initial weights w1 and w2 and the threshold θ to set of random numbers; (2) Compute the weighted sum: $x_i^*w_i+x_g^*w_y+\theta$ (3) Calculate the output using a delta function $y(i) = delta(x_i^*w_i+x_g^*w_y+\theta);$ delta(x)=1, if x is greater than zero, $delta(x)=0, if x is less than equal to zero(4) compute the difference between the actual output anddesired output:e(i) = y(0)-y_{desired}(5) If the errors during a training epoch are all zero then stopotherwise updatew_j(i+1)=w_j(i) + \alpha^*x_j^*e(i), j=1,2$								

			R	osen	blatt'	s Per	cept	ron	
					rry out a n I by a num				ber of logical
						=0.1			
					Θ	=0.2			
poch	Xı	X2	Y _{desire} d	Initial W1	Weights W2	Actual Output	Error	Final W1	Weights W2
1	0	0	0	0.3	-0.1	0	0	0.3	-0.1
	0	1	0	0.3	-0.1	0	0	0.3	-0.1
	1	0	0	0.3	-0.1	1	-1	0.2	-0.1
	1	1	1	0.2	-0.1	0	1	0.3	0.0

					y out a nur y a numbe				r of logical
Epoch	Xı	X2	Y _{desire} d	Initial W1	Weights W2	Actual Output	Error	Final W1	Weights W2
2	0	0	0	0.3	0.0	0	0	0.3	0.0
	0	-1-	0	0.3	0.0	0	0	0.3	0.0
	1	0	0	0.3	0.0	1	-1	0.2	0.0
	1	1	1	0.2	0.0	1	0	0.2	0.0

					y out a nur y a numbe				r of logical
Epoch	X1	X2	Y _{desire}	Initial W1	Weights W2	Actual Output	Error	Final W1	Weights W2
3	0	0	0	0.2	0.0	0	0	0.2	0.0
	0	1	0	0.2	0.0	0	0	0.2	0.0
	1	0	0	0.2	0.0	1	-1	0.1	0.0
	1	1	1	0.1	0.0	1	1	0.2	0.1

					y out a nur y a numbe				r of logical
Epoch	X1	X2	Y _{desire} d	Initial W1	Weights W2	Actual Output	Error	Final W1	Weights W2
4	0	0	0	0.2	0.1	0	0	0.2	0.1
	0	1	0	0.2	0.1	0	0	0.2	0.1
	1	0	0	0.2	0.1	1	-1	0.1	0.1
	1	1	1	0.1	0.1	1-	0	0.1	0.1

					y out a nur y a numbe				r of logical
Epoch	X1	X2	Y _{desire} d	Initial W1	Weights W2	Actual Output	Error	Final W1	Weights W2
5	0	0	0	0.1	0.1	0	0	0.1	0.1
	0	1	0	0.1	0.1	0	0	0.1	0.1
	1	0	0	0.1	0.1	0	0	0.1	0.1
	1	1	1	0.1	0.1	1	0	0.1	0.1

Oliscui Atha Cliath Colaiste na Trionóide	llege
Computers and Brain: A neuroscience	
perspective	
 "Professor Jefferson's Lister Oration for 1949, from which I quote.	
"Not until a machine can write a sonnet or compose a concerto because of thoughts and emotions felt, and not by the chance fall	
of symbols, could we agree that machine equals brain-that is, not only write it but know that it had written it.	
No mechanism could feel (and not merely artificially signal, an easy contrivance) pleasure at its successes, grief when its valves	
fuse, be warmed by flattery, be made miserable by its mistakes,	
be charmed by sex, be angry or depressed when it cannot get what it wants."	
Alan Turing (1950) 'Computer Machinery and Intelligence'. Mind Vol. LIX (No. 2236), pp 433-460.	58