Unifying Synchronous Systems

Dr. Andrew Butterfield
School of Computer Science & Statistics
Trinity College, Dublin 2

May 15, 2007

This document is an extract from research proposal CMSF186 submitted to
Science Foundation Ireland for funding.

What is the question that this proposal addresses? This proposal will
explore the development of a theory of hardware compilers within the UTP
framework [HH9S8], thus bridging the synchronous-hardware, state-based, and
message-based software domains under one theoretical umbrella. Furthermore,
it will look at developing a parameterized collection of theories that allow
straightforward verification of simple designs, whilst still being able to support
reasoning involving the more complex properties required in more sophisticated
systems. The key idea is to be able to integrate the simple and complex reason-
ing as required by the design of different parts of a system.

How will the question be addressed? A key observation in the work done
on the operational semantics of Handel-C, and that work currently in progress
for its denotational semantics, is that much of the complexity in the theory
arises from the need to support relatively few language constructs, and even
then only their more advanced features. In fact, most of the complexity can
be laid at the feet of the so-called “prialt” construct, which allows a process
to make a prioritised list of communication requests. Indeed, even for this
construct alone, the full complexity is only required to support particular uses
of one sub-construct, namely the “default” clause, which specifies the action
to be taken if communication is not currently possible.

A typical response when providing a formal semantics for a real-world lan-
guage, when faced with a few constructs with certain aspects that are compli-
cated, is to simply rule them out for formal use, with a statement to the effect
that if the language is to be used within a formal development framework, that
certain language features are not supported. For Handel-C, the operational se-
mantics published by the proposer [BW05] does not make any such restrictions.
However, it does require a designer reasoning about a program without these
features to use the full complex mathematical machinery, when for a specific
problem instance, a much simpler and easier formal model might suffice.



A key feature of the UTP framework [HH9S8] is that it has a mechanism
for linking different theories via a mathematical construct known as a Galois
connection. This provides one of the key tools for unifying different frameworks,
usually by showing how a system described in one framework can be viewed
formally as a refinement of one developed in the other. For instance, work on a
discrete-timed sequential process algebra can be linked formally to an un-timed
sequential process algebra theory via a galois-link that captures how the timing
information is lost when moving from the timed to the un-timed world [SH02].

This proposal is based on the observation that a denotational semantics for
Handel-C corresponds to a discretely timed synchronous process algebra, and
that there is a common theoretical framework independent of the fine detail
and complexity needed to support Handel-C at all levels. The proposal is to
develop a basic framework of discrete timed theories, which can then be para-
meterised by the amount of detail given about activity within a single discrete
time-slot. Formal relationships between these levels of detail should the lead to
corresponding Galois connections between the different theories, enabling them
to be mixed and used together as appropriate. The entire discrete-timed theory
framework will itself be linkable back to the un-timed process theory [WC02],
thus allowing it to act as a high-level specification formalism for development
of these systems. Another gain from the linkage between synchronous/timed
theories and the un-timed variant will be the ability to handle complex sys-
tems built from multiple clock domains. The Handel-C language itself produces
multiple-clock synchronous domains interconnected by asynchronous (un-timed)
interfaces.

While the original work done focussed on the semantics of Handel-C, and
the research proposal here takes its inspiration from that work, the intention is
to develop a theoretical framework to support a broad class of similar hardware
compilation systems. It is also intended that the theory will be accompanied by
some methodology, in particular supported by the fact that such a framework
will allow a designer to see immediately the cost in terms of ease of reasoning
to be paid when using certain language constructs.

The Theory in Detail: The Unifying Theories of Programming (UTP)
was expounded in a book of the same name [HH98], and is a framework designed
to support multiple theories of different programming paradigms, and the link-
ages between these. These are all expressed using a language of alphabetised
predicates, used to describe relations, typically between the before- and after-
states of a computation. In [HH98], we are presented with theories of imperative
programming languages, logic and functional languages, machine code, and re-
active system languages like ACP and CSP. Also described are multiple theories
of a single language capturing its semantics in different ways (axiomatic, deno-
tational, operational) as well as linkages between these alternatives that allow
their interrelationship to be explored. Also described is how features of one the-
ory (e.g. assignment to state in an imperative language) can be incorporated
into another theory (CSP).



A theory is written using alphabetised predicates, where the alphabet of a
predicate covers all its free variables, and characterises the observations of in-
terest regarding the computational systems being described. Typically there is
a specification/programming language associated with the theory, and alphabe-
tised predicates are used to give a semantics that language. As it is possible
to write predicates which assert things that are physically /computationally in-
feasible, a number of healthiness conditions are introduced to constrain the
predicates used to define the corresponding language constructs. The healthi-
ness conditions are expressed as idempotent predicate-transformers, which when
applied to a predicate return a healthy version, or leave it unchanged if already
healthy. The foundational work for a theory consists of determining the ap-
propriate observational variables and healthiness conditions, giving semantics
to the language constructs, and validating algebraic laws relating terms in the
language. This foundational work is often quite difficult, but its completion
gives great insight into the nature of the paradigm under study. The utility of
a theory comes from the resulting range of algebraic laws that can be used to
reason about specifications or programs written using that language.

A key feature of UTP is that directly supports refinement, the process of
converting a specification into an implementation. In UTP, refinement is simply
logical entailment: a program P satisfies specification S if the predicate for P
entails that for S, for any possible values of the observation variables. Like Z
and CSP, UTP views the process of verifiably transforming specifications into
corresponding implementations as the main réle that its formalism is intended
to support. Another important feature is that different theories can be linked
together via “linking predicates”, which under appropriate conditions form Ga-
lois connections between the two theories. These “Galois links” not only allow
formal cross-analysis of linked theories, but also allow notions of refinement to
bridge from one theory to another.

Since the publication of [HH98], there has been considerable interest in UTP
[UTP06], and in particular work has been done on using it as a framework to
build a formal theory called Circus that merges both Z and CSP, with support
for refinement. The Circus project is led by Professor Jim Woodcock at the
University of York, and has already had a number of successes in industrial
applications [OCW04,0CW05,CCO05] A major focus of the effort is also in
the area of developing tools to support Circus, ranging from parsers and type-
checkers to model-checkers and theorem proving support. More recent work by
others has looked at a timed-variant of Circus|SH02].

Motivation: The proposer has been collaborating with Prof. Wood-
cock, publishing mainly to date on the area of formal semantics for Handel-C
[BW03,BW05,Cor05,BW06]. However, recent work, currently being prepared
for publication, explores the idea of constructing a family of related UTP theo-
ries that talk about the introduction of time-slots at various levels of detail. It
is this work that motivates the ideas behind this research proposal, which will
marry the UTP ideas with the work done on Handel-C semantics.



By following this approach, we would expect to get theories that are very
Circus-like, and which can be linked via a Galois connection back to Circus. This
would increase the impact of this research as it would allow it to leverage off
existing Circus results. Many of the applications of Circus are in areas where
Handel-C is a candidate for implementing the systems concerned. In addition,
it would allow us to exploit the current work on Circus tool-support, as much
of this could be adapted to handle the new theories without anything like the
amount of effort that would be require to build tools ab initio.

Methodology: The research can be viewed as a collection of workpack-
ages: Foundations; Language; Refinement; Case-study; and Automation. We
shall give a brief description of each.

Foundations are concerned with the key infrastructure of each theory, namely
the choice of observations variables, and the required healthiness condi-
tions. A key aspect of this workpackage will be the identification of the
“Galois-links” between these theories.

Language While the target language, Handel-C, or similar, is already well-
defined, it will be necessary to give it an appropriate formal semantics
within the various theories developed as part of the foundations. The lan-
guage constructs that only require the simplest of semantic models, will be
given a semantics in all of the theories, where those in the more complex
theories will be appropriate embeddings of the simpler theories. The Ga-
lois connections between these theories will define that embedding. Those
language constructs of a more complex nature (like prialt, default) will
only have semantics defined in the theories rich enough to handle them.
Interestingly however, the Galois links will allow us to assess their effect
in the simpler theories. This would allow us to answer questions regarding
what can be proved about a program using complex constructs, if we limit
ourselves to a simple theory. To make the theories useable, we then need
to determine the relevant algebraic laws relating language constructs, and
validate these against the underlying theories.

Refinement As the process of refining specifications down to code is impor-
tant, we need to characterise the laws of refinement that capture the for-
mal relationship between descriptions of a system at different levels of
abstraction. Whilst the formal notion of refinement, logical entailment, is
standard throughout UTP, we need to know the details of how such entail-
ment links specification and program statements. This detail is necessary
if we are to be able to effectively apply the theory in practice.

Case-Study The primary focus on this research is on establishing the foun-
dations and laws associated with the corresponding theories. However,
to ensure the theory is useful (i.e good), we need to concentrate on laws
and properties that are actually needed when working with such a theory
on a real problem. The point of doing case-studies is not simply to show



that the theory is useful, but also to guide the emphasis and focus of the
theoretical work, particulary at the earlier stages when there are a lot of
choices to be made.

Automation Using formal techniques in practice involves having to do a large
number of often very small, similar and not very interesting proofs, mixed
with large complex involved and very detailed proofs. Both of these are
very hard to do by hand, because of their dullness, and or the need for
large amounts of book-keeping. It is generally recognised that industrial
application of formal techniques now mandates the use of tool support.
This proposal cannot realistically offer to develop both the theory and
comprehensive tool support—such tool support could be a realistic goal
of a subsequent proposal. However, it may be possible to get some limited
progress here by performing minor adaptations to the tools currently being
developed for Circus.

Collaboration: A key feature that led to the success of the proposer with
the work done to date for Handel-C was the alternation of his own work periods
with occasional collaborative research visits involving Professor Woodcock. It
is intended that this proposal would continue this pattern of collaboration, as
it has proved to be very effective.



Bibliography

[BWO03] Butterfield, A. and Woodcock, J., “A “Hardware Compiler” Semantics for
Handel-C”, in Hurley, T. (Ed.), Proceedings of the Second Irish Conference on the
Mathematical Foundations of Computer Science and Information Technology
(MFEFCSIT 2002), Electronic Notes in Theoretical Computer Science, Elsevier Vol. 74,
pp1-20, 2003.

[BWO05] Butterfield, A. and Woodcock, J., “prialt in Handel-C: an operational
semantics”, in International Journal on Software Tools for Technology Transfer,
Springer, Vol. 7, No. 3 pp184-203, June 2005.

[BWO06] Butterfield, A. and Woodcock, J., “A “Hardware Compiler” Semantics for
Handel-C”, in Seda, A.K. et al (Eds.), Proceedings of the Third Irish Conference on
the Mathematical Foundations of Computer Science and Information Technology
(MFCSIT 2004), Electronic Notes in Theoretical Computer Science, Elsevier Vol.
161, pp73-90, 2006.

[CCOO05] Cavalcanti A.L.C., Clayton P., and O’Halloran C., “Control Law Diagrams
in Circus” in J. Fitzgerald, I. J. Hayes, and A. Tarlecki, editors, FM 2005: Formal
Methods, volume 3582 of Lecture Notes in Computer Science, pages 253 - 268.
Springer-Verlag, 2005.

[Cor05] Corcoran B.J., Testing Formal Semantics:Handel-C , M.Sc (taught),
University of Dublin, 2005.

[HH98] Hoare, C.A.R. and He, J., Unifying Theories of Programming, Prentice Hall,
1998.

[OCWO04] Oliveira M.V.M., Cavalcanti A.L.C., and Woodcock J.C.P., “Refining
industrial scale systems in circus”, in lan East, Jeremy Martin, Peter Welch, David
Duce, and Mark Green, editors, Communicating Process Architectures, Concurrent
Systems Engineering Series, vol. 62, pp281-309, IOS Press, September 2004.

[OCWO05] Oliveira M.V.M., Cavalcanti A.L.C., and Woodcock J.C.P., “Formal
development of industrial-scale systems.” in Innovations in Systems and Software
Engineering, 1(2):125-146, 2005.

[SHO2] Sherif, A. and He, J., “Towards a Time Model for Circus” Formal Methods
and Software Engineering, 4th International Conference on Formal Engineering
Methods, ICFEM 2002, LNCS 2495, pp613-624, 2002.

[UTP06] Dunne S. and Stoddart B., editors, Unifying Theories of Programming:
First International Symposium, UTP 2006, Walworth Castle, County Durham, UK,
February 5-7, 2006, Revised Selected Papers, volume 4010 of Lecture Notes in
Computer Science, Springer-Verlag, 2006.

[WC02] Woodcock, J. and Cavalcanti, A., “The Semantics of Circus”, in ZB 2002:
Formal Specification and Development in Z and B, LNCS 2272, pp184-203, 2002.



