
U·(TP)2 User Manual

Andrew Butterfield

November 21, 2013



Contents

1 Introduction 2

1.1 What is U·(TP)2? . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Structure of This Document . . . . . . . . . . . . . . . . . . . . . 2

1.3 Syntax Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 Mathematical Syntax Summary . . . . . . . . . . . . . . . 3

1.3.2 Symbol Conversion Guide . . . . . . . . . . . . . . . . . . 5

1.3.3 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.4 Side Conditions . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.5 Language Specifications . . . . . . . . . . . . . . . . . . . 8

A Appendices 10

1



Chapter 1

Introduction

1.1 What is U·(TP)2?

U·(TP)2 is a theorem-proving assistant for Hoare and He’s Unifying Theories of
Programming (UTP) [HH98]. It was developed as a tool to support foundational
work in the UTP, that is, the development of UTP theories. A user-friendly
graphical user-interface (GUI) has been designed into the tool from the start.

1.2 Structure of This Document

This is the User Guide for U·(TP)2.
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1.3 Syntax Guide

1.3.1 Mathematical Syntax Summary

x ∈ Var (given) Obs. Variables
k ∈ Const (given) Constants
f ∈ FNames (given) Function Names
τ ∈ TVar (given) Type Variables
E ∈ ENames (given) Expression Metavariable Names
P ∈ PNames (given) Predicate Metavariable Names
x $,E $,P$ ∈ LNames (given) List Variables
` ∈ QVarsx ::= (x | x $)∗,
ε ∈ QVarsE ::= (E | E $)∗,
% ∈ QVarsP ::= (P | P$)∗, Binding Lists

t ∈ Type ::= ? Arbitrary Type
| ‘B’ Booleans
| ‘Z’ Integers
| τ Type Variable
| ‘P’ t Sets
| t+

‘×’
Products

| t ‘∗’ Sequences
| t ‘→’t Functions
| ‘Env’ Environments Name → Type
| ‘free’ Free Types (to be defined)
| ‘µ’ τ ‘•’ t Recursive Types

e ∈ Expr ::= k Constants
| x (Obs.) Variables
| f e Applications
| E Expr Metavariable
| ‘λ’ ` ‘•’ e Obs. Abstraction
| e‘[’e+, ‘/’x+

, ‘]’ Explicit Obs. Substitution
| e‘[’e+, ‘/’E+

, ‘]’ Explicit E-var. Substitution
| e‘[’p+

, ‘/’P+
, ‘]’ Explicit P-var. Substitution

| e‘=’e Equality
| ‘θ’ x [ ‘|’ p ] ‘•’ p Definite Description
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p ∈ Pred ::= ‘True’ | ‘False’ Constant Predicates
| e Atomic Predicate (Boolean-valued Expr.)
| e ‘:’ t Type Assertion
| ‘D’ e Definedness Assertion.
| ‘¬ ’p Negation
| pzq Composites z ∈ {∧,∨,⇒,≡,u,v}
| P Explicit Metavariable
| U` [ ‘|’ p ] ‘•’p Observation Quantifiers, U ∈ {∀,∃,∃!}
| U%‘•’p Predicate Quantifiers,U ∈ {∀,∃}
| Uε‘•’p Expression Quantifiers, U ∈ {∀,∃}
| ‘ ’[ p ‘]’ Observation Universal Closure
| ‘Λ’ ε‘•’p Expression Abstraction
| ‘Λ’ %‘•’p Predicate Abstraction
| p p+ Pred-Pred Application
| p e+ Pred-Expr Application
| p‘[’e+, /x

+
, ‘]’ Explicit Obs. Substitution

| p‘[’e+, /E
+
, ‘]’ Explicit Expr. Substitution

| p‘[’p+
, /P

+
, ‘]’ Explicit Pred. Substitution

| p ps Pred-PredSet Application
| p ‘∈’ ps Predicate Set membership

ps ∈ PredSet ::= S Set Name
| ‘{’ p∗, ‘}’ Enumeration
| ‘{’P+

, [ ‘|’ p ] ‘•’ p ‘}’ Comprehension
| ps ‘

⋃
’ ps Union
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1.3.2 Symbol Conversion Guide

The following table shows how various mathematical symbols are rendered using
the ASCII syntax:

Math. ASCII

Variables
x x

x ′ x’

xs x s

x $ x$

Obs,Mdl ,Scr O, M, S
Obs\x ,y O\x:y

Types
? ?

B B

Z Z

τ t

P P

× x
∗ *

→ ->

‘Env’ ENV

Expressions
λ \\

• @

/ // (Expr)
= =

θ the

Math. ASCII

Predicates
True TRUE

False FALSE
: |: :|

D DEFD

¬ ∼

∧ /\

∨ \/

⇒ =>

≡ ==

u |∼|

v |=

∀ forall

∃ exists

∃! exists1

[ [

] ]

Λ \! (Expr)
Λ !! (Pred)
∈ IN PredSet
{ {} PredSet
} }} PredSet
| |⋃

U

/ ///(Pred)
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1.3.3 Variables

Conceptually, variables have a root and decoration, and if list-variables, may
also have a list of ‘subtracted’ roots

(r , d , rs), v ∈ Var =̂= Root ×Decor × Root∗

The root is a simple name:

r ∈ Root =̂= Name

A decoration is either a pre-marking, a post-marking, or a subscript:

d ∈ Decor =̂= Pre | Post | PrePost | Subscript Name

We use the notation (r , d) when the subtracted-list is empty or irrelevant.

What has just been presented is the abstract form of a variable.

Current concrete rendering:

Abstract Concrete
(r ,Pre) r

(r ,Post) r’

(r ,PrePost) r?

(r ,Subscript s) r_s

We have defined a sub-class of names as matching observation list-variables,
namely those names with decor that starts with chrLIST.

We further classify as follows:

Reserved: Obs, Mdl , Scr

Generic: v , e, . . . (lowercase)
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1.3.4 Side Conditions

A table showing side-condition abstract, mathematical and concrete syntaxes:

SideCond Math ASCII
SCtrue True true

SCisCond PredM "Q" Q a condition CND Q

SCisCond ExprM "e" e un-dashed cnd e

SCnotFreeIn PredM ["x","y"] "Q" x , y /∈ Q Q ## x,y

SCnotFreeIn ExprM ["x","y"] "e" x , y /∈ e e # x,y

SCareTheFreeOf PredM ["x","y"] "Q" x , y = Q Q == x,y

SCareTheFreeOf ExprM ["x","y"] "E" x , y = e e = x,y

SCcoverTheFreeOf PredM ["x","y"] "Q" x , y ⊇ Q Q << x,y

SCcoverTheFreeOf ExprM ["x","y"] "e" x , y ⊇ e e < x,y

SCfresh PredM ["Q","R"] Q ,R fresh FRSH Q,R

SCfresh ExprM ["x","y"] x , y fresh frsh x,y

SCAnd [sc1,sc2] sc1 ∧ sc2 sc1 ; sc2
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1.3.5 Language Specifications

The textual form of the language specification is one that matches how the
construct would be written, as an interleaving of language elements (basic and
list) with tokens, which may be absent. The following character have special
roles:

Basic Elements letters V, T, E and P

List Element letter * or # immediately after a basic element.

Whitespace ignored/skipped

Anything else is interpreted as a token, even if it contains the above special char-
acters. The only error is if two tokens occur one after another, with everything
else being interpreted as a valid language specification.

For illustration, here are some specifications that correspond to well-known
language constructs:

Construct Specifier Example
Logical-And P*/\ P /\Q /\R

Logical-Or P*\/ P \/ Q \/ R

Pred. Forall Forall V,* @ P Forall P,Q @ P => Q

Assignment V := E x := y + z

Sim.–Assignment V#, := E#, x,y := y + z,y-1
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