
U·(TP)2 Reference Manual

Andrew Butterfield

November 21, 2013

Contents

1 Introduction 2

1.1 What is U·(TP)2? . 2

1.2 Structure of This Document . 2

2 The Logic of U·(TP)2 3

2.1 Overview . 3

2.2 Syntax . 3

2.2.1 Names . 4

2.2.2 Types (Sorts) . 6

2.2.3 Expressions (Terms) . 6

2.2.4 Predicates (Formulas) . 6

2.3 Substitution . 8

2.4 Free Variable Set Notation . 14

2.5 Axioms . 23

2.6 Inference . 25

2.7 Proof/Theorems . 25

2.8 Meta-Theorems . 26

2.9 Undefinedness . 26

3 Conventions 29

4 Proof and Model Theory 30

1

Chapter 1

Introduction

1.1 What is U·(TP)2?

U·(TP)2 is a theorem-proving assistant for Hoare and He’s Unifying Theories of
Programming (UTP) [HH98]. It was developed as a tool to support foundational
work in the UTP, that is, the development of UTP theories. A user-friendly
graphical user-interface (GUI) has been designed into the tool from the start.

1.2 Structure of This Document

This is the Reference Manual for U·(TP)2. It describes the logic and the naming
conventions that are used.

At present this document is a very rough draft, gathering together material
mainly from the more literate parts of source code documentation.

2

Chapter 2

The Logic of U·(TP)2

2.1 Overview

The logic of UTP is a variant of the equational logic espoused by David Gries[GS93],
with extensions as described below. In formal terms we take the work of
Tourlakis [Tou01], and adapt this appropriately.

2.2 Syntax

Particularly in the implementation, we use the terminology “Expression” and
“Predicate” where many logicians use “Term” and “Formula”. We do not have
a clean separation of the two, as we have expressions that define values with the
aid of predicates (e.g. set comprehensions, and unique values). Other features
to note are the presence of explicit substitutions in the object language—they
are not simply part of the meta-language defining inference rules—and the use
of explicit pattern-matching meta-variables in quantifier variable lists.

We use the following syntax notation, where ::= | ∗ + [] () ‘ ’ have special mean-
ing:

symbol meaning
::= is defined to be
| separates alternatives
x∗ zero or more x
x+ one or more x

x
(∗|+)
s (zero|one) or more x separated by s
[x] optional x

(. . .) grouping
‘[’ the symbol itself

Any other character/symbol denotes itself, and writing x ∈ NonT ::= . . . lets x

3

x ∈ Var (given) Obs. Variables
k ∈ Const (given) Constants
f ∈ FNames (given) Function Names
τ ∈ TVar (given) Type Variables
E ∈ ENames (given) Expression Metavariable Names
P ∈ PNames (given) Predicate Metavariable Names
x $,E $,P$ ∈ LNames (given) List Variables
` ∈ QVarsx ::= (x | x $)∗,
ε ∈ QVarsE ::= (E | E $)∗,
% ∈ QVarsP ::= (P | P$)∗, Binding Lists

Figure 2.1: U·(TP)2 Variables

stand for anything that satisfies the the definition of non-terminal NonT that
occurs on the righthand side of the ::=.

2.2.1 Names

We have a number of variable namespaces (Fig. 2.1):

Observation Variables correspond to term (or “ordinary” variables) in pred-
icate logic, and capture observations of the system behaviour being mod-
elled.

Constants We take all constants (Numeric etc) as “names” for their values.

Function Names are used in applications, as we do not yet support full higher
order function notation.

Type Variables are used to support a simple polymorphic type system, whose
main purpose is to prevent spurious matches.

Expression Names are names that denote arbitrary expressions (known as
term “schematic variables” in some circles).

Predicate Names are names that denote arbitrary predicates (also known as
formula “schematic variables”).

Variable-List Names are names that denote a list of variables, in contexts
where such lists make sense (e.g., quantifier and substitution variable
lists). These are distinguished from Observation Variables, Expression
and Predicate Names, is that they have a dollar postfix, e.g, x $,E $,P$.
The only exceptions are the names OBS , MDL and SCR which are taken
as Variable-list variables whose meaning is always a (sorted) list of known
observation variables (all, model and script respectively).

4

The key distinction between observation variables and metavariables is what
they represent:

Observations are variables that denote values in some kind of semantic do-
main, with some form of typing used to distinguish different parts of that
domain. The meaning of an expression with free observation variables has
to be defined w.r.t an environment mapping names to values.

ρ ∈ Env = Name Val

Metavariables denote expression or formula syntax. The meaning of an ex-
pression or predicate with free metavariables has to be defined w.r.t. an
meta-environment (interpretation) mapping names to expressions or pred-
icates.

Φ ∈ EInt = Name Expr

Ψ ∈ PInt = Name Pred

List Variables are variables that match lists of variables, where such lists make
sense.

A key difference between observations x , y and metavariables X ,Y is the out-
come of asking for free variables:

fv(x ⊕ y) = {x , y}
fv(X

⊕
Y) = fv.X ∪ fv.Y

The free variables of a metavariable are dependent on the the meta-environment
(interpretation) in place. The requirement to handle free-variables in this way
leads to the need to have an explicit notation to describe free-variable sets.

5

t ∈ Type ::= ? Arbitrary Type
| ‘B’ Booleans
| ‘Z’ Integers
| τ Type Variable
| ‘P’ t Sets
| t+

‘×’
Products

| t ‘∗’ Sequences
| t ‘→’t Functions
| ‘Env’ Environments Name → Type
| ‘free’ Free Types (to be defined)
| ‘µ’ τ ‘•’ t Recursive Types

Figure 2.2: U·(TP)2 Type Syntax

2.2.2 Types (Sorts)

We have the type syntax shown in Figure 2.2. We do not have naturals or
reals as basic types, although the former will probably be introduced shortly,
to support probabilistic reasoning. The Env type is a placeholder for name
environments, where the range type is often not expressible using the above
type language, because it is some form of universal type.

2.2.3 Expressions (Terms)

The core expression syntax (Fig. 2.3) has constants, variables (for both values
and expressions), application of (named) functions1 , and abstractions and sub-
stitutions over observation, expression and predicate variables. Also provided
are equality, and definite descriptions, which has predicate components (to be
defined). Not shown are the explicit support for binary operators, or booleans,
integers, sets, lists and maps. We note here, that unlike terms in [Tou01], our
expressions here have quantifiers, and may contain predicates (well-founded for-
mulas) as sub-components.

2.2.4 Predicates (Formulas)

The core logic is higher order, with quantification, abstraction and substitution
for variables, expressions and predicates. In particular we have predicates that
use predicate-sets (useful for recursion theory, in particular). We also have a
simple polymorphic type-system, and a predicate asserting that an expression
has a specified type—details to be added. This means that our logic is in fact
many-sorted.

1We use a definition table to connect function names to abstractions —we should really
do a proper higher-order expression model here, but it’s not a high priority right now.

6

e ∈ Expr ::= k Constants
| x (Obs.) Variables
| f e Applications
| E Expr Metavariable
| ‘λ’ ` ‘•’ e Obs. Abstraction
| e‘[’e+, ‘/’x+

, ‘]’ Explicit Obs. Substitution
| e‘[’e+, ‘/’E+

, ‘]’ Explicit E-var. Substitution
| e‘[’p+

, ‘/’P+
, ‘]’ Explicit P-var. Substitution

| e‘=’e Equality
| ‘θ’ x [‘|’ p] ‘•’ p Definite Description

Figure 2.3: U·(TP)2 Expression Syntax

p ∈ Pred ::= ‘True’ | ‘False’ Constant Predicates
| e Atomic Predicate (Boolean-valued Expr.)
| e ‘:’ t Type Assertion
| ‘D’ e Definedness Assertion.
| ‘¬ ’p Negation
| pzq Composites z ∈ {∧,∨,⇒,≡,u,v}
| P Explicit Metavariable
| U` [‘|’ p] ‘•’p Observation Quantifiers, U ∈ {∀,∃,∃!}
| U%‘•’p Predicate Quantifiers,U ∈ {∀,∃}
| Uε‘•’p Expression Quantifiers, U ∈ {∀,∃}
| ‘ ’[p ‘]’ Observation Universal Closure
| ‘Λ’ ε‘•’p Expression Abstraction
| ‘Λ’ %‘•’p Predicate Abstraction
| p p+ Pred-Pred Application
| p e+ Pred-Expr Application
| p‘[’e+, /x

+
, ‘]’ Explicit Obs. Substitution

| p‘[’e+, /E
+
, ‘]’ Explicit Expr. Substitution

| p‘[’p+
, /P

+
, ‘]’ Explicit Pred. Substitution

| p ps Pred-PredSet Application
| p ‘∈’ ps Predicate Set membership

ps ∈ PredSet ::= S Set Name
| ‘{’ p∗, ‘}’ Enumeration
| ‘{’P+

, [‘|’ p] ‘•’ p ‘}’ Comprehension
| ps ‘

⋃
’ ps Union

Figure 2.4: U·(TP)2 Predicates (and Sets)

7

2.3 Substitution

The meaning of A[x := t] in Tourlakis is not given explicitly, but is discussed,
particularly with regard to the side-condition designed to avoid variable capture
(t substitutable in x (in A)). We shall define P [x1, . . . , xn := e1, . . . , en] as meta-
notation describing the simultaneous syntactical substitution of each ei for all
free occurrences of the corresponding xi in P , with α-renaming being used to
avoid name-capture. We will write this in shorthand as [−→x := −→e].

So we have explicit substitutions in the object language (written [e/x]), and
syntactical-substitutions used to define axiom schemas and inference rules (writ-
ten [x := e]). We use the notation [−→x := −→e] \ −→y to denote a substitution with
all entries (xi , ei) removed where xi is a member of −→y . We also have a notion
of substitution composition, denoted by juxtaposition.

There is also another complication, given that we can abstract over different
classes of variables. Consider the following example (with X used as a predicate
meta-variable, to make it stand out):

((ΛX • Q ∨ X)R)[e/x]

If we evaluation this by reducing the predicate application first we obtain:

((ΛX • Q ∨ X)R)[e/x]

≡ “ Predicate β-reduction ”

(Q ∨ R)[e/x]

≡ “ Defn. of observation substitution ”

Q [e/x] ∨ R[e/x]

Now let’s do the substitution first:

((ΛX • Q ∨ X)R)[e/x]

≡ “ Defn.of observation substitution ”

((ΛX • Q ∨ X)[e/x])(R[e/x])

The question now concerns how we evaluate

(ΛX • Q ∨ X)[e/x].

If we say that the quantifier applies to predicate variables, but not to observation
variables, so it can be ignored, then we obtain

ΛX • Q [e/x] ∨ X [e/x]

If we do this and then β-reduce, we obtain

Q [e/x] ∨ (R[e/x])[e/x]

8

k [−→x := −→e] =̂= k

x [−→x := −→e] =̂=

{
ei , i exists, s.t.: x = xi
x , x /∈ −→x

(f e)[−→x := −→e] =̂= f (e[−→x := −→e])

E [−→x := −→e] =̂=

{
E [−→e /−→x], E not Λ-bound higher up
E , E is Λ-bound higher up

(λ−→y ,−→q$ • e)[−→x := −→e] =̂= λ−→y ,−→q$ • (e[−→x := −→e] \ −→y)

(Λ
−→
E • e)[−→x := −→e] =̂= Λ

−→
E • (e[−→x := −→e])

(Λ
−→
P • e)[−→x := −→e] =̂= Λ

−→
P • (e[−→x := −→e])

(e[
−→
f /−→y])[−→x := −→e] =̂= e([

−→
f /−→y][−→e /−→x])

(e[−→e /
−→
E])[−→x := −→e] =̂= need to do inner subst first

(e[−→p /
−→
P])[−→x := −→e] =̂= need to do inner subst first

(e = e)[−→x := −→e] =̂= e[−→x := −→e] = e[−→x := −→e]

(θx | P • Q)[−→x := −→e] =̂= θx | P [−→x := −→e] \ x • Q [−→x := −→e] \ x

Figure 2.5: Observation substitution for Expressions (modulo α-renaming to
avoid variable capture)

This is not the correct outcome, as substitutions are not idempotent (consider
e = x + 1 in this example).

So we see that the rule for substitution here is context dependent — we can-
not apply an observation substitution to any Λ-bound predicate (or expression)
meta-variable. This generalises to whenever we substitute for one type of vari-
able (obs/expr/pred) under a lambda binding a different kind. If the variables
are ∀ or ∃-bound, then the substitution is safe.

In Figure 2.5 we show the basic definition of syntactical substitution of expres-
sions for observations, in expressions, without details of how variable capture is
avoided. Following figures deal with predicates, and substitution for predicate
and expression meta-variables

9

True[−→x := −→e] =̂= True
False[−→x := −→e] =̂= False

e[−→x := −→e] =̂= see Figure 2.5
(e : t)[−→x := −→e] =̂= (e[−→x := −→e] : t)
(D e)[−→x := −→e] =̂= D (e[−→x := −→e])
(¬ p)[−→x := −→e] =̂= ¬ (p[−→x := −→e])

(pzq)[−→x := −→e] =̂= p[−→x := −→e]zq [−→x := −→e]

P [−→x := −→e] =̂=

{
P [−→e /−→x], P not Λ-bound higher up
P , P is Λ-bound higher up

(U−→y ,−→q$ | p • q)[−→x := −→e] =̂= U−→y ,−→q$ | (p[−→x := −→e] \ −→y) • (q [−→x := −→e] \ −→y))

(U
−→
P • p)[−→x := −→e] =̂= U

−→
P • (p[−→x := −→e])

(U
−→
E • p)[−→x := −→e] =̂= U

−→
E • (p[−→x := −→e])

[p][−→x := −→e] =̂= [p]

(Λ−→y ,−→q$ • p)[−→x := −→e] =̂= Λ−→y ,−→q$ • (p[−→x := −→e] \ −→y)

(Λ
−→
P • p)[−→x := −→e] =̂= Λ

−→
P • (p[−→x := −→e])

(p
−→
q$)[−→x := −→e] =̂= (p[−→x := −→e]

−→
q$[−→x := −→e])

(p
−→
f)[−→x := −→e] =̂= (p[−→x := −→e]

−→
f [−→x := −→e])

(p[
−→
f /−→y])[−→x := −→e] =̂= p([

−→
f /−→y][−→e /−→x])

(p[−→e /
−→
E])[−→x := −→e] =̂= need to do inner subst first

(p[−→p /
−→
P])[−→x := −→e] =̂= need to do inner subst first

(p S)[−→x := −→e] =̂= p[−→x := −→e]S [−→x := −→e]
(p ∈ S)[−→x := −→e] =̂= p[−→x := −→e] ∈ S [−→x := −→e]

S [−→x := −→e] =̂= S [−→e /−→x]
{−→p }[−→x := −→e] =̂= {−→p [−→x := −→e]}

{
−→
P | r • p}[−→x := −→e] =̂= {

−→
P | r [−→x := −→e] • p[−→x := −→e]}

(ps1
⋃
ps2)[−→x := −→e] =̂= ps1[−→x := −→e]

⋃
ps2[−→x := −→e]

Figure 2.6: Observation substitution for Predicates (modulo α-renaming to
avoid variable capture)

10

k [
−→
E := −→e] =̂= k

x [
−→
E := −→e] =̂= x

(f e)[
−→
E := −→e] =̂= f (e[

−→
E := −→e])

E [
−→
E := −→e] =̂=

{
ei , i exists, s.t.: E = Ei

E , E /∈
−→
E

(λ−→x ,−→q$ • e)[
−→
E := −→e] =̂= λ−→x ,−→q$ • (e[

−→
E := −→e])

(Λ
−→
F • e)[

−→
E := −→e] =̂= Λ

−→
F • (e[

−→
E := −→e] \

−→
F)

(Λ
−→
P • e)[

−→
E := −→e] =̂= Λ

−→
P • (e[

−→
E := −→e])

(e[−→e /−→x])[
−→
E := −→e] =̂= need to do inner subst first

(e[
−→
f
−→
F])[
−→
E := −→e] =̂= e([

−→
f /
−→
F][−→e /

−→
E])

(e[−→p /
−→
P])[
−→
E := −→e] =̂= need to do inner subst first

(e = e)[
−→
E := −→e] =̂= e[

−→
E := −→e] = e[

−→
E := −→e]

(θx | P • Q)[
−→
E := −→e] =̂= θx | P [

−→
E := −→e] • Q [

−→
E := −→e]

Figure 2.7: Expression substitution for Expressions (modulo α-renaming to
avoid variable capture)

k [
−→
P := −→p] =̂= k

x [
−→
P := −→p] =̂= x

(f e)[
−→
P := −→p] =̂= f (e[

−→
P := −→p])

E [
−→
P := −→p] =̂=

{
E [−→p /

−→
P], E not Λ-bound higher up

E , E is Λ-bound higher up

(λ−→x ,−→q$ • e)[
−→
P := −→p] =̂= λ−→x ,−→q$ • (e[

−→
P := −→p])

(Λ
−→
F • e)[

−→
P := −→p] =̂= Λ

−→
F • (e[

−→
P := −→p] \

−→
F)

(Λ
−→
P • e)[

−→
P := −→p] =̂= Λ

−→
P • (e[

−→
P := −→p])

(e[−→e /−→x])[
−→
P := −→p] =̂= need to do inner subst first

(e[−→e /
−→
E])[
−→
P := −→p] =̂= need to do inner subst first

(e[
−→
q$/
−→
Q])[
−→
P := −→p] =̂= e([

−→
q$/
−→
Q][−→p /

−→
P])

(e = e)[
−→
P := −→p] =̂= e[

−→
P := −→p] = e[

−→
P := −→p]

(θx | P • Q)[
−→
P := −→p] =̂= θx | P [

−→
P := −→p] • Q [

−→
P := −→p]

Figure 2.8: Predicate substitution for Expressions (modulo α-renaming to avoid
variable capture)

11

True[
−→
E := −→e] =̂= True

False[
−→
E := −→e] =̂= False

e[
−→
E := −→e] =̂= see Figure 2.7

(e : t)[
−→
E := −→e] =̂= (e[

−→
E := −→e] : t)

(D e)[
−→
E := −→e] =̂= D (e[

−→
E := −→e])

(¬ p)[
−→
E := −→e] =̂= ¬ (p[

−→
E := −→e])

(pzq)[
−→
E := −→e] =̂= p[

−→
E := −→e]zq [

−→
E := −→e]

P [
−→
E := −→e] =̂=

{
P [−→e /−→x], P not Λ-bound higher up
P , P is Λ-bound higher up

(U−→y ,−→q$ | p • q)[
−→
E := −→e] =̂= U−→y ,−→q$ | (p[

−→
E := −→e]) • (q [

−→
E := −→e]))

(U
−→
P • p)[

−→
E := −→e] =̂= U

−→
P • (p[

−→
E := −→e])

(U
−→
F • p)[

−→
E := −→e] =̂= U

−→
F • (p[

−→
E := −→e] \

−→
F)

[p][
−→
E := −→e] =̂= [p[

−→
E := −→e]]

(Λ−→y ,−→q$ • p)[
−→
E := −→e] =̂= Λ−→y ,−→q$ • (p[

−→
E := −→e])

(Λ
−→
P • p)[

−→
E := −→e] =̂= Λ

−→
P • (p[

−→
E := −→e])

(p
−→
q$)[
−→
E := −→e] =̂= (p[

−→
E := −→e]

−→
q$[
−→
E := −→e])

(p
−→
f)[
−→
E := −→e] =̂= (p[

−→
E := −→e]

−→
f [
−→
E := −→e])

(p[
−→
f /−→y])[

−→
E := −→e] =̂= need to do inner subst first

(p[−→e /
−→
E])[
−→
E := −→e] =̂= p([−→e /

−→
E][−→e /

−→
E]

(p[−→p /
−→
P])[
−→
E := −→e] =̂= need to do inner subst first

(p S)[
−→
E := −→e] =̂= p[

−→
E := −→e]S [

−→
E := −→e]

(p ∈ S)[
−→
E := −→e] =̂= p[

−→
E := −→e] ∈ S [

−→
E := −→e]

S [
−→
E := −→e] =̂= S [−→e /

−→
E]

{−→p }[
−→
E := −→e] =̂= {−→p [

−→
E := −→e]}

{
−→
P | r • p}[

−→
E := −→e] =̂= {

−→
P | r [

−→
E := −→e] • p[

−→
E := −→e]}

(ps1
⋃
ps2)[

−→
E := −→e] =̂= ps1[

−→
E := −→e]

⋃
ps2[
−→
E := −→e]

Figure 2.9: Expression substitution for Predicates (modulo α-renaming to avoid
variable capture)

12

True[
−→
P := −→p] =̂= True

False[
−→
P := −→p] =̂= False

e[
−→
P := −→p] =̂= see Figure 2.8

(e : t)[
−→
P := −→p] =̂= (e[

−→
P := −→p] : t)

(D e)[
−→
P := −→p] =̂= D (e[

−→
P := −→p])

(¬ p)[
−→
P := −→p] =̂= ¬ (p[

−→
P := −→p])

(pzq)[
−→
P := −→p] =̂= p[

−→
P := −→p]zq [

−→
P := −→p]

P [
−→
P := −→p] =̂=

 pi , P not bound higher
and exists i s.t.: P = Pi

P , otherwise

(U−→y ,−→q$ | p • q)[
−→
P := −→p] =̂= U−→y ,−→q$ | (p[

−→
P := −→p]) • (q [

−→
P := −→p]))

(U
−→
Q • p)[

−→
P := −→p] =̂= U

−→
Q • (p[

−→
P := −→p] \

−→
Q)

(U
−→
F • p)[

−→
P := −→p] =̂= U

−→
F • (p[

−→
P := −→p])

[p][
−→
P := −→p] =̂= [p[

−→
P := −→p]]

(Λ−→y ,−→q$ • p)[
−→
P := −→p] =̂= Λ−→y ,−→q$ • (p[

−→
P := −→p])

(Λ
−→
Q • p)[

−→
P := −→p] =̂= Λ

−→
P • (p[

−→
P := −→p] \

−→
Q)

(p
−→
q$)[
−→
P := −→p] =̂= (p[

−→
P := −→p]

−→
q$[
−→
P := −→p])

(p
−→
f)[
−→
P := −→p] =̂= (p[

−→
P := −→p]

−→
f [
−→
P := −→p])

(p[
−→
f /−→y])[

−→
P := −→p] =̂= need to do inner subst first

(p[−→e /
−→
E])[
−→
P := −→p] =̂= need to do inner subst first

(p[
−→
q$/
−→
Q])[
−→
P := −→p] =̂= (p([

−→
q$/
−→
Q][−→p /

−→
P])

(p S)[
−→
P := −→p] =̂= p[

−→
P := −→p]S [

−→
P := −→p]

(p ∈ S)[
−→
P := −→p] =̂= p[

−→
P := −→p] ∈ S [

−→
P := −→p]

S [
−→
P := −→p] =̂= S [−→p /

−→
P]

{−→p }[
−→
P := −→p] =̂= {−→p [

−→
P := −→p]}

{
−→
Q | r • p}[

−→
P := −→p] =̂= {

−→
P | r [

−→
P := −→p] \

−→
Q • p[

−→
P := −→p] \

−→
Q }

(ps1
⋃
ps2)[

−→
P := −→p] =̂= ps1[

−→
P := −→p]

⋃
ps2[
−→
P := −→p]

Figure 2.10: Predicate substitution for Predicates (modulo α-renaming to avoid
variable capture)

13

2.4 Free Variable Set Notation

In determining free observation variables we have to deal with the presence
of meta-variables denoting arbitrary predicates and expressions, as well as the
presence of explicit substitutions, and quantifier list-variables that can denote
lists of variables or expressions. This means that the free variables of a predicate
or expression are contingent on not just the meta/list-variables, but whether or
not certain observation variables are free/present in (any instantiation of) those
meta/list-variables.

We shall use the lambda calculus to illustrate the consequences of having explicit
substitution and quantifier-list matching in our logic.

We start with the untyped lamdba-calculus (L0) where we have an unbounded
set of variables (v ∈ V):

v ,w , x ∈ V Given.

e, f ∈ L0 ::= v | e e | λ v • e

with λ x1, x2, . . . , xn • e as syntactic sugar for λ x1 • λ x2 • . . . λ xn • e, itself
often shortened to λ−→x • e.

Notation aside: We shall assume that −→a is shorthand for a1, . . . , an , for n ≥ 0,
and ai will refer to the ith component, or indicate an iteration i ∈ 1 . . .n,
depending on context.

The free variables for L0 are defined in the usual way:

S0 = PV
fv, fv0 : L0 → S0

fv(v) =̂= {v}
fv(f e) =̂= fv(f) ∪ fv(e)

fv(λ v • e) =̂= fv(e) \ {v}

So is substitution:

[:=] : L0 → V × L0 → L0

v [x := e] =̂= e � x = v � v

(f e)[x := e] =̂= (f [x := e]) (e[x := e])

(λ v • f)[x := e] =̂=

 λ v • f , x = v
λ v • f [x := e], x 6= v ∧ v /∈ fv(e)
λw • f [v := w][x := e], x 6= v ∧ v ∈ fv(e) ∧ neww

This extends to simultaneous substitutions as follows (here −→x has no dupli-

14

cates):

[:=] : L0 → (V n × (L0)n)→ L0

e[〈〉 := 〈〉] =̂= e, the empty case

v [−→x := −→e] =̂= ei � v = xi � v , for some i

(f e)[−→x := −→e] =̂= (f [−→x := −→e]) (e[−→x := −→e])

(λ v • f)[−→x := −→e] =̂=

{
λw • f [v := w][−→x \ xi := −→e \ ei], v = xi
λw • f [v := w][−→x := −→e], v /∈ −→x neww

This then leads to key theorems regarding free variables and substitution:

fv(e[x := f]) = fv(e) \ {x} ∪ (fv(f) � x ∈ fv(e) � ∅) (2.1)

fv(e[−→x := −→e]) = fv(e) \ −→x ∪
⋃
i

{fv(ei) � xi ∈ fv(e) � ∅} (2.2)

The first is provable, with care, by induction on e (even the base-case is non-
trivial !).

We then extend our language to include explicit expression meta-variables (E ∈
M) and explicit simultaneous substitutions:

E ∈ M Given.

e, f ∈ L1 ::+ E | e[
−→
f /−→x]

Here it is understood that vectors
−→
f and −→x are of the same length and the

latter has no duplicates.

We now extend the notion of free variables, but note that we cannot “expand”
the application of fv to E . The effect of this is that we no longer can return a
set of variables, but must instead return an expression (s ∈ S1) denoting such
a set as a function of its explicit meta-variables:

s ∈ S1 ::= {−→v } | E | s \ s |
⋃
{−→s } | v ∈ s V s

The last construction is a conditional: for v ∈ s0 V s1, if the condition holds,
then it denotes s1, otherwise it denotes the empty set.

There are obvious injections L01 and S 01 that embed e0 : L0 and s0 : S0 into L1

and S1 respectively.

Given an environment (ρM) mapping E to values from L0, we can then map
both L1 to L0 and S1 to S0 as follows (where we drop M in most cases as it is

15

obvious from context):

ρM : M → L0

L10 : (M → L0)→ L1 → L0

L10
ρ (v) =̂= v

L10
ρ (f e) =̂= (L10

ρ (f)) (L10
ρ (e))

L10
ρ (λ v • e) =̂= λ v • (L10

ρ (e))

L10
ρ (E) =̂= ρ(E)

L10
ρ (e[

−→
f /−→x]) =̂= (L10

ρ (e))[−→x :=
−→
f]

S 10 : (M → L0)→ S1 → S0

S 10
ρ ({−→v }) =̂= {−→v }
S 10
ρ (E) =̂= fv0(ρ(E))

S 10
ρ (s1 \ s2) =̂= S 10

ρ (s1) \ S 10
ρ (s2)

S 10
ρ (
⋃
{−→s }) =̂=

⋃
{
−−−−→
S 10
ρ (s)}

S 10
ρ (v ∈ s0 V s1) =̂= S 10

ρ (s1) � v ∈ S 10
ρ (s0) � ∅

We can extend fv to L1 as follows:

fv, fv1 : L1 → S1

fv(x) =̂= {x}
fv(e1 e2) =̂=

⋃
(fve1, fve2)

fv(λ x • e) =̂= (fve) \ {x}
fv(E) =̂= E

fv(e[
−→
f /−→x]) =̂= fv(e) \ {−→x } ∪

⋃
i

{xi ∈ fv(e)V fv(fi)}

For a substitution, we see that the presence of the free variables of a replacement
expression (ei) is contingent on the presence of the corresponding target variable
(xi) in the free variables of the base expression (e). If the base expression is a
meta-variable, then we get the following instantiation of the last law:

fv(E)[e1, . . . , en/x1, . . . , xn] = E \ {x1, . . . , xn} ∪
⋃
{xi ∈ E •V ei}

We cannot either perform the set difference operation, nor evaluate any of the
conditionals. In effect, in order to give an accurate description of the free
variables of this language we need to return a (variable-set valued) expression
that describes how the resulting set of variables is contingent upon the (yet to
be determined) free variables of the meta-variables. This is the motivation for
the V construct in S1.

16

We now find that we can construct the following diagram relating the Li and
Si :

L1 S1

L0 S0

fv1

L10
ρ S10

ρ

fv0

L01 S01

From this we can immediately suggest a few lemmas/theorems:

L10
ρ (L01(e0)) = e0, for all ρ (2.3)

S 10
ρ (S 01(s0)) = s0, for all ρ (2.4)

fv1(L01(e0)) = S 01(fv0(e0)) (2.5)

S 10
ρ (fv1(e1)) = fv0(L10

ρ (e1)), for all ρ (2.6)

Proofs of these are by induction over the leftmost ei in each case, and are best
done in the order given above. The following is an easy consequence of the
above:

S 10
ρ (fv1(L01(e0)))

= S 10
ρ (S 01(fv0(e0)))

= fv0(e0)

At this point we need to extend the language further to have explicit quantifier
meta-variables that stand for lists of ordinary variables or corresponding lists of
expressions:

q$, r$ ∈ Q Given.

We then extend our language again (where
−→
q$, like −→x , has no duplicates):

e, f ∈ L2 ::+ λ−→v ,−→q$ • e | e[
−→
f ,
−→
r$/−→x ,−→q$]

As before, there is an obvious injection L12 : L1 → L2, as well as L02 : L0 → L2,
and the syntactic sugar λ−→x • e is now a proper part of L2. In effect the L2

extensions subsume the lambda and substitution constructs of L1.

The q$ and r$ are intended to denote lists (possibly empty) of ordinary vari-

ables (−→v) and expressions (
−→
f) respectively. To this end we introduce two new

17

environments:

ρV : Q → V ∗

ρE : Q → L∗1

We can use these to define the conversion

L21
(ρV ,ρE) : L2 → L1,

and coupled with ρM , we can then get

L20
(ρV ,ρE ,ρM) : L2 → L0.

In the sequel we shall often use ρ to denote one of the above when it is obvious
from context, or to denote the entire tuple-parameter of a conversion: i.e. L20

ρ .

We can now define the conversion:

L21 : (Q → V ∗)× (Q → L∗1)→ L2 → L1

L21
ρ (v) =̂= v

L21
ρ (f e) =̂= (L21

ρ (f)) (L21
ρ (e))

L21
ρ (E) =̂= E

L21
ρ (λ−→v ,−→q$ • e) =̂= λ−→v _

−−−−→
ρV (q$) • (L21

ρ (e))

L21
ρ (e[

−→
f ,
−→
r$/−→x ,−→q$]) =̂= (L21

ρ (e))[
−−−−→
L21(f) _

−−−−→
ρE (r$)/−→x _

−−−−→
ρV (q$)]

Inbuilt here, are assumptions about the lengths of various lists matching up in

[
−→
f ,
−→
r$/−→x ,−→q$]:

len
−→
f = len−→x

len
−→
r$ = len

−→
q$

len(ρE (r$i)) = len(ρV (q$i))

We now need to extend the variable set language to cope with the Q extensions
(again we have S2 subsuming one S1 component, and adding a new one:

s ∈ S2 ::+ {−→v ,−→q$} | q$ ∈ s VV r$

Here we introduce the VV symbol, similar to V, but note that the contents and
meaning are different: q$ will denote a list of variables (−→v), and r$ will denote
a list of sets (−→s), of the same length. The overall value will be merging all si
where vi is in s. Again,the embedding S 12 : S1 → S2 should be obvious.

18

Now, the opposite conversion:

S 21 : (Q → V ∗)× (Q → L∗1)→ S2 → S1

S 21
ρ ({−→v ,−→q$}) =̂= {−→v _

−−−−→
ρV (q$)}

S 21
ρ (E) =̂= E

S 21
ρ (s1 \ s2) =̂= S 21

ρ (s1) \ S 21
ρ (s2)

S 21
ρ (
⋃
{−→s }) =̂=

⋃
{
−−−−→
S 21
ρ (s)}

S 21
ρ (v ∈ s0 V s1) =̂= v ∈ S 21

ρ (s0)V S 21
ρ (s1)

S 21
ρ (q$ ∈ s VV r$) =̂=

⋃
i

{ρV (q$)i ∈ S 21
ρ (s)V fv1(ρE (r$)i)}

We are now in a position to define free variables over L2:

fv, fv2 : L2 → S2

fv(x) =̂= {x}
fv(e1 e2) =̂=

⋃
(fve1, fve2)

fv(λ−→x ,−→q$ • e) =̂= (fve) \ {−→x ,−→q$}
fv(E) =̂= E

fv(e[
−→
f ,
−→
r$/−→x ,−→q$]) =̂= fv(e) \ {−→x ,−→q$}

∪
⋃
i

{xi ∈ fv(e)V fv(fi)}

∪
⋃
j

{q$j ∈ fv(e)VV r$j}

Once more, we have a commuting square:

L2 S2

L1 S1

fv2

L21
ρ S21

ρ

fv1

L12 S12

19

and corresponding theorems:

L21
ρ (L12(e1)) = e1, for all ρ (2.7)

S 21
ρ (S 12(s1)) = s1, for all ρ (2.8)

fv2(L12(e1)) = S 12(fv1(e1)) (2.9)

S 21
ρ (fv2(e2)) = fv1(L21

ρ (e2)), for all ρ (2.10)

At this point we consider normal forms for free-variable set expressions, which
require three further language extensions: we extend membership to include
conjunction, and introduce a shorthand for the empty conjunction (true). We
also allow explicit subtractions on the rhs of VV:

m ∈ Member ::= v ∈ s | q$ ∈ s | q$ ∈ r$ Element Membership
|

∧
(m1, . . . ,mn) Conjunction

> =̂=
∧

()

s ∈ S3 ::+ m VV r$ \ {−→v ,−→q$}

Note that we also allow a membership predicate of the form q$ ∈ s to appear
in V, with a different semantics to the same thing in VV:

S 21
ρ (q$ ∈ s1 V s2) =̂=

⋃
i

{ρV (q$)i ∈ S 21
ρ (s1)V s2}

In addition we allow q$ ∈ r$ to appear in VV, where we break the need for
corresponding indices of q$ and r$1 to match, but retain it between q$i and
(r$2)i :

S 21
ρ (q$ ∈ r$1 VV r$2) =̂=

⋃
i

{ρV (q$)i ∈ fv1(ρE (r$1))V fv1(ρE (r$2)i)}

We also introduce a form of conjunction for membership predicates in V and
the notion of a naked Q variable r$ denoting a list of expressions:

s ∈ S3 ::+ m V s | r$

Embedding S 23 : S2 → S3 is obvious, whilst the conversion in the opposite
direction is less so:

S 32 : S3 → S2

S 32(
∧

()V s) =̂= s

S 32(
∧

(m1, . . . ,mn)V s) =̂= m1 V (m2 V . . . (mn V s) . . .)

S 32(r$) =̂= q$ ∈ {}$q VV r$

So, we can use fv2 to get the desired free-variable set for any instance of L2, as
a member of S2, and then embed into S3 for normalisation and reasoning.

20

At this point it is worth writing out S3 explicitly (as S), and fine-tuning the
syntax of membership:

s ∈ S ::= {−→v ,−→q$}
| E

| s \ s
|

⋃
{−→s }

| m V s

| q$ ∈ s VV r$ \ {−→v ,−→q$}
| r$

m ∈ Mmbr ::= v ∈ s | q$ ∈ s |
∧

(m1, . . . ,mn)

It is worth stressing how the constructs r$, V and VV should be interpreted:

• As a standalone, r$ denotes the union of the free-variables of the list of
expressions given by ρE .

[[r$]] =
⋃
i

{fv(ρE (r$)i)}

• The construct (v | q$) ∈ s V t equals t if all of v or q$ is contained in s.
If either s or t is an instance of r$ then it is viewed as per the previous
bullet-point.

[[v ∈ s V t]] = [[t]] � v ∈ [[s]] � ∅
[[q$ ∈ s V t]] = [[t]] � q$ ⊆ [[s]] � ∅

• The construct q$ ∈ s VV r$ \ {−→v ,−→q$} is well-formed only if len ρV (q$) =
len ρE (r$), and basically determines its result on a component-wise exam-
ination of the elements of q$.

[[q$ ∈ s VV r$ \ {−→v ,−→q$}]] =

len q$⋃
i=1

{fv(ρE (r$)i) � ρV (q$)i ∈ [[s]] � ∅} \ {−→v ,−→q$}

=

len q$⋃
i=1

{ρV (q$)i ∈ s V fv(ρE (r$)i)} \ {−→v ,−→q$}

If s is an instance of r$ then we use the interpretation in the first bullet
point. The case v ∈ s VV r$ is only valid if len ρE (r$) = 1.

In effect V is a global conditional, while VV works pointwise on corresponding
members of q$ and r$.

Note that if q$ and r$ have length one, then q$ ∈ s V r$ and q$ ∈ s VV r$ are
the same.

21

A conditional expression m V s is upfront if s does not itself contain any
conditionals, noting that m VV r$ are always up-front by construction. A set-
expression is atomic if it has one of the following forms (a is v or q$):

{a1, . . . , an} E \ {a1, . . . , an}, n ≥ 0 r$ \ {a1, . . . , an}, n ≥ 0

We define our normal form to be a union of upfront conditional set-expressions
whose set components are atomic. We convert to normal-form by repeatedly
applying the following equivalences left-to-right, designed to bring union and
conditional to the top

m1 V (m2 V s) =
∧

(m1,m2)V s

(m V s) \ {ai} = m V (s \ {ai})
m V

⋃
(si) =

⋃
(m V si)

m V {} = {}
q$ ∈ (v ∈ s0 V s1)VV r$ = v ∈ s0 V (q$ ∈ s1 VV r$)

q$1 ∈ (q$2 ∈ s2 VV r$2)VV r$1 =
∧

(q$1 ∈ r$2, q$2 ∈ s2)VV r$1∧
(mi , a ∈ (m V s1))V s2 =

∧
(mi , a ∈ s1,m)V s2∧

(mi , a ∈ {ai}, a ∈ {aj})V s3 =
∧

(mi , a ∈ ({ai} ∩ {aj}),m)V s3∧
(mi , a ∈ {})V s = {}

a ∈ N \ {ai} = a ∈ N , a /∈ {ai}
= a ∈ {}, a ∈ {ai}∧

(mi , a ∈
⋃

(si))V s =
⋃

(
∧

(mi , a ∈ si)V s)⋃
(si) \ {ai} =

⋃
(si \ {ai})

(s \ {ai}) \ {aj} = s \ {ai , aj}

s =
⋃

(>V s)

We assume that nested unions and conjunctions are flattened on-the-fly.

22

((P ≡ Q) ≡ R) ≡ (P ≡ (Q ≡ R)) xAx-≡-assocq
P ≡ Q ≡ Q ≡ P xAx-≡-symmq
true ≡ Q ≡ Q xAx-≡-idq
false ≡ ¬true xAx-false-defq
¬(P ≡ Q) ≡ ¬P ≡ Q xAx-¬-≡-distrq
P ∨Q ≡ Q ∨ P xAx-∨-symmq
(P ∨Q) ∨ R ≡ P ∨ (Q ∨ R) xAx-∨-assocq
P ∨ P ≡ P xAx-∨-idemq
P ∨ (Q ≡ R) ≡ P ∨Q ≡ P ∨ R xAx-∨-≡-distrq
P ∨ ¬P xAx-Excl-Mdlq
P ∧Q ≡ P ≡ Q ≡ P ∨Q xAx-Golden-Ruleq
P ⇒ Q ≡ P ∨Q ≡ Q xAx-⇒-defq

Figure 2.11: U·(TP)2 Propositional Axioms

2.5 Axioms

We take our inspiration from [Tou01]:

Ax1. All propositional axioms from [GS93].

Ax2. A ∨ (∀ x • B) ≡ (∀ x • A ∨ B), x /∈ A

Ax3. (∀ x • A)⇒ A[x := t] (t substitutable in x (in A))

Ax4. x = x

Ax5. (Liebniz) x = t ⇒ (A ≡ A[x := t])
(t substitutable in x (in A))

The meaning of A[x := t] in Tourlakis is not given explicitly, but is discussed,
particularly with regard to the side-condition designed to avoid variable capture
(t substitutable in x (in A)). We shall define A[x := t] as meta-notation de-
scribing the substitution of t for all free x in A, with α-renaming being used to
avoid name-capture (so the side-conditions on Ax3 and 5 above can be dropped).
Our take on the propositional axioms is shown in Figure 2.11. The remaining
axioms are shown in Figure 2.12. The substitution axioms (xAx-XXX-Substq)
are experimental. The reflexivity axiom, and that for θ are in fact schemas, indexed
by all possible types (sorts), as we have a many-sorted logic.

Also worth noting are the β-reduction axioms, e.g.

(λ x , x$ • e)f = (λ, x$ • e)[f /x] .

The lhs can match a lambda-expression with only one variable ((λ x • e)f) which
results in the rhs being (λ ; • e)[f /x], which is just e[f /x]. So, to maintain consistency,
we should be able to match a rhs of the form e[f /x] and then view it as a zero-argument
lambda abstraction, and succeed, returning the lhs as (λ x • e)f .

23

p ∨ (∀ x $, y$ • q) xAx-∨-∀ x -scopeq
≡ (∀ x $ • p ∨ (∀ y$ • q)), x $ /∈ p
p ∨ (∀E $,F $ • q) xAx-∨-∀E -scopeq
≡ (∀E $ • p ∨ (∀F $ • q)), E $ /∈ p
p ∨ (∀P$,Q$ • q) xAx-∨-∀P-scopeq
≡ (∀P$ • p ∨ (∀Q$ • q)), P$ /∈ p

(∀ x $ • p ∧ q) ≡ (∀ x $ • p) ∧ (∀ x $ • q) xAx-∀ x -distrq
(∀E $ • p ∧ q) ≡ (∀E $ • p) ∧ (∀E $ • q) xAx-∀E -distrq
(∀P$ • p ∧ q) ≡ (∀P$ • p) ∧ (∀P$ • q) xAx-∀P-distrq

(∀ x , x $ • p)⇒ (∀ x $ • p[e/x]) xAx-∀ x -instq
(∀E ,E $ • p)⇒ (∀E $ • p[e/E]) xAx-∀E -instq
(∀P ,P$ • q)⇒ (∀P$ • q [r/P]) xAx-∀P-instq

(∃ x $ • p) ≡ ¬ (∀ x $ • ¬ p) xAx-∃ x -defq
(∃E $ • p) ≡ ¬ (∀E $ • ¬ p) xAx-∃E -defq
(∃P$ • p) ≡ ¬ (∀P$ • ¬ p) xAx-∃P-defq
∃!x $ • p xAx-∃!x -defq
≡ (∃ x $ • p) ∧ ∃ y$ • p[y$/, x $]⇒ y$ = x $

e = e xAx-=-reflq
(e = θx • p) xAx-θ-Defq
≡ p[e/x] ∧ (∀ y • p[y/x]⇒ y = e), x /∈ e

(λ x , x $ • e)f = (λ, x $ • e)[f /x] xAx-β-OReduceq
(ΛE ,E $ • q)e ≡ (Λ,E $ • q)[e/E] xAx-β-EReduceq
(ΛP ,P$ • q)r ≡ (Λ,P$ • q)[r/P] xAx-β-PReduceq

(
∧n

i=1 xi = ei)⇒ (p ≡ p[−→e /−→x]), xi distinct, xAx-Leibnizq
xi distinct

p[−→e /−→x] ≡ p[−→x := −→e] xAx-OSubstq

p[−→e /
−→
E] ≡ p[

−→
E := −→e] xAx-ESubstq

p[−→q /
−→
P] ≡ p[

−→
P := −→q] xAx-PSubstq

true[e$/x $] ≡ true xAx-true-OSubstq
true[e$/E $] ≡ true xAx-true-ESubstq
true[q$/P$] ≡ true xAx-true-PSubstq
false[e$/x $] ≡ false xAx-false-OSubstq
false[e$/E $] ≡ false xAx-false-ESubstq
false[q$/P$] ≡ false xAx-false-PSubstq

Figure 2.12: U·(TP)2 Non-propositional Axioms

24

P

P [Q := R]
−−−−−−−−−− (Substitution)

P ≡ Q

R[S := P] ≡ R[S := Q]
−−−−−−−−−−−−−−−−−−−−−− (Leibniz)

P ,P ≡ Q

Q
−−−−−−−−− (Equanimity)

Figure 2.13: U·(TP)2 Inference Rules

2.6 Inference

From [Tou01]:

Inf1. (Substitution) (no capture)

Inf2. (Leibniz)
A ≡ B

C [p := A] ≡ C [p := B]
−−−−−−−−−−−−−−−−−−−−−−

Inf3. (Equanimity)
A,A ≡ B

B
−−−−−−−−

Inf4. (Transitivity)
A ≡ B ,B ≡ C

A ≡ C
−−−−−−−−−−−−−−

We note that Inf4 is derivable from Inf2 and Inf3, so we treat it as derivable. Our
inference rules are shown in Figure 2.13.

2.7 Proof/Theorems

We adopt the definitions from [Tou01] with minor changes in notation:

The set of Γ-theorems, ThmΓ, is the ⊆-smallest subset of Pred that satisfies:

Th1 ThmΓ contains as subset the closure under (Substitution) of all the propositional
axioms (Fig. 2.11) and all the instances of the axiom schemata for the non-
propositional part (Fig. 2.12)—the so-called logical axioms.

Th2 Γ ⊆ ThmΓ—the non-logical axioms.

Th3 ThmΓ is closed under (Leibniz) and (Equanimity).

We write p ∈ ThmΓ as Γ ` p, and use ` p to denote ∅ ` p.

A finite sequence p1, . . . , pn of Pred is a Γ-proof iff every pi , for i = 1, . . . ,n is one of

Pr1 A logical axiom

Pr2 A member of Γ

Pr3 The result of either (Leibniz) or (Equanimity) applied to some pj , with j < i .

25

2.8 Meta-Theorems

We shall need to identify the derived rules that are embodied, either in the matcher
or in the provided proof strategies, as these form part of the prover “core” (e.g. the
deduction theorem and the Assume strategy, or the all the derived variants of xAX-
∨-∀-scopeq, which are implemented by completeMatch, in module Manipulation).
Some of these rules are presented in Figure 2.14. Post’s Tautology Theorem requires
more background. Of considerable importance is the Herbrand Deduction Theorem
and its variants, shown in Figure 2.15. The Flexible Deduction rule is implemented,
as suggested in [Tou01], not by doing the substitution, but by making −→x behave like
constants, by marking them as “known”, to use the parlance in module Matching.

2.9 Undefinedness

We have yet to make a firm decision how to handle undefinedness, apart from noting
that the technical details of how this is done have implications for the validity of the
reflexivity of equals, and of the Deduction Theorem, among others.

Type matching can only return type-bindings, so it is simpler than the others.

For the formal presentation we assume the following mathematical type syntax:

ρ, τ ∈ Type ::= B — Boolean

| Z — Integer

| t — Type variable

| ? — Arbitrary Type

| P τ — Set Type Constructor

| τ∗ — List Type Constructor

| τ × τ — Product Type Constructor

| τ → τ — Function Type Constructor

| !s — Error Type

26

P ≡ Q ,Q ≡ R

P ≡ R
−−−−−−−−−−−−−− (Transitivity)

Γ ` p iff Γ ` p ≡ True (Truth-is-True)

` (∀−→x ,−→q$ • True) ≡ True (Always-True)
` (∀E $ • True) ≡ True
` (∀P$ • True) ≡ True

Γ ` p iff Γ ` ∀−→x ,−→q$ • p (∀ Intro/Elim)
Γ ` p iff Γ ` ∀E $ • p
Γ ` p iff Γ ` ∀P$ • p
p ` ∀−→x ,−→q$ • p (Generalization)
p ` ∀E $ • p p ` ∀P$ • p
p ` p[−→x := −→e] (Corr. Generalization)

p ` p[E $:= −→e] p ` p[P$:=
−→
q$]

` p ⇒ (∀−→x ,−→y ,−→q$ • r) (Universal Consequent 1)

≡ (∀−→x • p ⇒ ∀−→y ,−→q$ • r), −→x /∈ p
` p ⇒ (∀E $,E $ • r)
≡ (∀E $ • p ⇒ ∀E $ • r), E $ /∈ p
` p ⇒ (∀P$,Q$ • r)
≡ (∀P$ • p ⇒ ∀Q$ • r), P$ /∈ p

` p ≡ ∀−→x • p, −→x /∈ p (Corr. Univ. Conseq. 1)
` p ≡ ∀E $ • p, E $ /∈ p ` p ≡ ∀P$ • p, P$ /∈ p

Γ ` p ⇒ q iff Γ ` p ⇒ ∀−→x • q , −→x /∈ p (Universal Consequent 2)
Γ ` p ⇒ q iff Γ ` p ⇒ ∀E $ • q , E $ /∈ p
Γ ` p ⇒ q iff Γ ` p ⇒ ∀P$ • q , P$ /∈ p

Γ ` q ⇒ p iff Γ ` (∃−→x • q)⇒ p, −→x /∈ p (Corr. Univ.l Conseq. 2)
Γ ` q ⇒ p iff Γ ` (∃E $ • q)⇒ p, E $ /∈ p
Γ ` q ⇒ p iff Γ ` (∃P$ • q)⇒ p, P$ /∈ p

` (∀−→x • p) ≡ (∀−→z • p[−→x := −→z]), −→z fresh (α-Renaming)
` (∀E $ • p) ≡ (∀F $ • p[E $:= F $]), F $ fresh
` (∀P$ • p) ≡ (∀Q$ • p[P$:= Q$]), Q$ fresh

Figure 2.14: U·(TP)2 Derived Rules

27

Γ, p ` q then Γ ` p ⇒ q , p closed (Deduction Theorem)
Γ ` p ⇒ q then Γ, p ` q (Deduc. Converse)

Γ, p[−→x :=
−→
k] ` q [−→x :=

−→
k] then Γ ` p ⇒ q , (Flexible Deduction)

−→x = fv p,
−→
k constants.

Figure 2.15: U·(TP)2 Deduction Theorem

We can define inference rules for matching:

xTM-Boolq
B ‡ B | θ

xTM-Intq
Z ‡ Z | θ

xTM-Varq
t ‡ τ | {t 7→τ}

xTM-Arbq
? ‡ τ | θ

xTM-Setq
ρ ‡ τ | β
Pρ ‡ Pτ | β

xTM-Listq
ρ ‡ τ | β
ρ∗ ‡ τ∗ | β

xTM-Prodq
ρ1 ‡ τ1 | β1 ρ2 ‡ τ2 | β2

ρ1 × ρ2 ‡ τ1 × τ2 | β1] β2

xTM-Funq
ρ1 ‡ τ1 | β1 ρ2 ‡ τ2 | β2

ρ1 → ρ2 ‡ τ1 → τ2 | β1] β2

The following rules are controversial (a form of reverse matching):

xTM-VarRq
ρ ‡ t | {t 7→ρ}

xTM-ArbRq
ρ ‡? | θ

The rules are intended to check law matches for type-compatibility.

28

Chapter 3

Conventions

29

Chapter 4

Proof and Model Theory

I guess this’ll have to be done at some point—sigh!

30

Bibliography

[GS93] David Gries and Fred B. Schneider. A Logical Approach to Discrete Math.
Texts and Monographs in Computer Science. Berlin: Springer Verlag, 1993.

[HH98] C. A. R. Hoare and Jifeng He. Unifying Theories of Programming. Prentice-
Hall, 1998.

[Tou01] George Tourlakis. On the soundness and completeness of equational predicate
logics. J. Log. Comput., 11(4):623–653, 2001.

31

