
U·(TP)2 Hacker’s Guide

Andrew Butterfield

November 21, 2013

Contents

1 Introduction 2

1.1 What is U·(TP)2? . 2

1.2 Structure of This Document . 2

1.3 Gotchas . 2

2 Program Structure 3

2.1 Overview . 3

2.2 Directory Structure . 3

2.3 Literate File Structure . 4

2.3.1 U·(TP)2 Source Example 6

2.4 U·(TP)2 Distribution Structure 6

2.4.1 README.txt . 7

2.4.2 COPYING.txt . 8

2.4.3 INSTALL.txt . 9

2.4.4 MANIFEST.txt . 10

3 Odds and Ends 11

3.1 Parser Implementation . 11

3.1.1 Type/Expression/Predicate Parser Grammar 11

3.2 Mac OS X ScreenShot Renaming 14

1

Chapter 1

Introduction

1.1 What is U·(TP)2?

U·(TP)2 is a theorem-proving assistant for Hoare and He’s Unifying Theories of
Programming (UTP) [HH98]. It was developed as a tool to support foundational
work in the UTP, that is, the development of UTP theories. A user-friendly
graphical user-interface (GUI) has been designed into the tool from the start.

1.2 Structure of This Document

This is the Hacker’s Guide for U·(TP)2. It gives an overview of how the program
and documentation are written and organised.

At present this document is a very rough draft.

1.3 Gotchas

This at the moment is a unstructured list of things we feel you really ought to
know before you start hacking.

• The datatypes Expr and Pred in src/Datatypes.lhs have “focus” vari-
ants used in proofs. These no longer use a “knot-tying” style (see src/Focus.lhs).
So this gotcha in earlier versions of this guide is no longer an issue.

2

Chapter 2

Program Structure

2.1 Overview

The sources for U·(TP)2 comprise a very large collection of LATEX sources, and
Haskell Literate Scripts, which are themselves also valid LATEX.

The directory/folder structure has been designed to support ease of develop-
ment for the main development environment, namely WinEdt/MikTeX/ghci on
Windows (currently Windows 8).

2.2 Directory Structure

The top-level contains all the LATEX master documents, currently including:

UTP2-MAIN.tex U·(TP)2 sources and documentation

UTP2-Hacking-MAIN.tex This document

UTP2-Reference-MAIN.tex Reference manual

UTP2-User-Manual-MAIN.tex User Guide.

Almost all other files present at this level should be considered as junk, even if
tracked by Mercurial. This will be tidied up at some future date.

3

Subdirectories are organised as follows:

src
Haskell source files, as well as MS-DOS batch files (.bat) for building under
Windows.

doc
Mainly LATEX files giving documentation of various forms, as well as text
files to do with installation. It has a couple of sub-directories to manage
certain types of documentation:

formal mainly formal definitions of aspects of the logic

images images (obviously!)

papers sources for conference/journal papers about U·(TP)2

styles LATEX style files (currently ignored).

screenshots screen shots of the tool in action, arranged in topic sub-
directories

batch
Created by someone from a unix background, to hold .bat files.
(Deprecated, unused, will probably disappear).

licence Licensing files.

orphans unwanted and unloved — also likely to vanish.

resource mainly sound and help files.
The help file (with the long unpronounceable name) has been subsumed
into the relevant code, and is no longer required.

test
test stuff, currently unused, but we will probably flesh this out at some
stage.

thlib
This is where we build U·(TP)2 theories to drive and test the development,
and most of which will become part of a standard theory library release.

www
Stuff for the (release) website.

2.3 Literate File Structure

All the Haskell source files are literate scripts (.lhs extension) that are them-
selves valid LATEX files, in which the Haskell source is enclosed in \begin{code}

. . . \end{code} environments. The code environment is defined in the style file
doc/saoithin.sty.

4

We do not use “bird-tracks” or lhs2tex, nor do we use Hackage/Haddock in
any way.

5

An example of some .lhs source is below:

\subsection{\UTP2 Source Example}

\begin{code}

module Example where

import Utilities

\end{code}

\subsubsection{Intro}

We can have a suitably mathematical comment:

$\sigma \circ \sigma = \mathsf{id}$

and then some code:

\begin{code}

sigma = negate

\end{code}

When typeset, this results in:

2.3.1 U·(TP)2 Source Example

module Example where

import Utilities

Intro

We can have a suitably mathematical comment: σ ◦σ = id and then some code:

sigma = negate

2.4 U·(TP)2 Distribution Structure

At present Unix and Mac OS X users have to build from source, and at present
we do not have proper makefiles or install scripts.

For windows users we package up a binary release.

Below are listing of all the relevant installation text files.

6

2.4.1 README.txt

UTP2 is a Theorem Proving Assistant for Unifying Theories of

Programming

Copyright (C) Andrew Butterfield 2007-2012

School of Computer Science and Statistics,

Trinity College, University of Dublin,

Ireland.

See COPYING.txt for licence and warranty information.

7

2.4.2 COPYING.txt

This work is released under GPL version 2, see GPL2.txt for

details of the licence and warranty

It incorporates material from Mark Utting’s jaza animator,

licensed under GPL2.

It also uses the Parsec library distributed with Haskell,

see PARSEC-LICENCE.txt for details, and the relevant warranty.

It also uses the wxHaskell library distributed with Haskell,

see WXWINDOWS-LICENCE.txt for details, and the relevant warranty.

The software includes sounds from freesound.org, all

distributed under the Creative Commons Sampling Plus 1.0

license, viewable at

http://creativecommons.org/licenses/sampling+/1.0/

Saoithin-note.wav: derived from Chip116.wav by HardPCM

Saoithin-alert.wav: derived from Chip073 by HardPCM

Saoithin-cheer.wav: derived from dramatic_drum_roll.wav by ingsey101

Saoithin-scream.wav: derived from crash.wav by sageturtle

8

2.4.3 INSTALL.txt

INSTALLATION INSTRUCTIONS:

Binary install for Windows

1. Unpack ZIP archive to where you want application to live.

2. Run executable - it should set-up required directories and

files.

LaTeX packages required to render code + documentation:

saoithin (included)

amssymb,amsmath,verbatim,tikz,graphicx

(not included, but should be in any standard distribution)

mathpartir

(not included, available from http://pauillac.inria.fr/~remy/latex/)

9

2.4.4 MANIFEST.txt

Windows Manifest

UTP2.exe

saoithin.sty

wxc-msw2.8.10-0.11.1.2.dll

README.txt

INSTALL.txt

MANIFEST.txt

COPYING.txt

WXWINDOWS-LICENCE.txt

GPL2.txt

PARSEC-LICENCE.txt

jaza-COPYING.txt

Saoithin-alert.wav

Saoithin-note.wav

Saoithin-cheer.wav

Saoithin-scream.wav

UTP2-Reference-DRAFT.pdf

UTP2-User-Manual-DRAFT.pdf

10

Chapter 3

Odds and Ends

3.1 Parser Implementation

3.1.1 Type/Expression/Predicate Parser Grammar

LXCHARACTERS

visible = all visible (ASCII) characters

white = all invisible (ASCII) characters

alpha = {‘a’ . . . ‘z’, ‘A’ . . . ‘Z’}
digit = {‘0’ . . . ‘9’}
sym = visible \ (alpha ∪ digit)

LXTOKENS

Tok = Name | Ident | Num | Symbol

Name = alpha AlfDig∗

AlfDig = alpha | digit

Ident = Name IdPost | (‘O’ | ‘M’ | ‘S’)[LstSuffix]

IdPost = Decor | ‘$’[LstSuffix]

Decor = ε | ‘’’ | ‘ ’AlfDig∗ | ‘?’

LstSuffix = Decor [‘\’Roots]

Roots = (Name[‘$’], ‘:’)+

Num = [‘-’]digit+[‘.’digit+]

Symbol = ‘‘’ | (sym \ ‘‘’)+

White = ‘‘’ | (sym \ ‘‘’)+

11

SNWORDS

⊕ ∈ Binop ⊃ {‘/\’, ‘+’, ‘<=’, . . .}
n ∈ Name ⊃ {‘a’, ‘ab’, ‘a1’, . . .}

v ∈ Variable ⊃ {‘y’’, ‘z$’, ‘O$\x:y’, . . .}
c ∈ Constant ⊃ {‘true’, ‘false’, ‘∼’, ‘0’, ‘1’, ‘2’, . . .}

Q ∈ Binder ::= ‘\’ | ‘the’ | ‘forall’ | ‘exists’ | ‘exists1’

| ‘Forall’ | ‘Exists’ | ‘\!’ | ‘!!’

TEPSYNTAX

pe ∈ PredExpr ::= tm [‘<|’ pe ‘|>’ tm]

tm ∈ Term ::= f [⊕ tm] (with precedences)

f ∈ Factor ::= b+ | Q qs [‘|’ pe]‘@’ pe

b ∈ Base ::= c | n | v | se | le | de | he | ` | ‘|:’ T ‘:|’

se ∈ SExpr ::= ‘{’(pe∗
, ‘}’ | ‘{’qs [‘|’ pe] [‘@’ pe] ‘}’ | ‘{’me∗

, ‘}’
he ∈ HExpr ::= ‘{{’pe∗

, ‘}}’ | ‘{{’v∗ [‘|’ pe] [‘@’ pe] ‘}}’
le ∈ LExpr ::= ‘[’pe∗

, ‘]’ | ‘[’sb‘]’

de ∈ DExpr ::= ‘[[’pe‘]]’ | ‘(’pe+
, ‘)’

` ∈ Lang ::= ‘‘’user-specified‘‘’

T ∈ Type ::= see elsewhere

qs ∈ QVars ::= (n | v)∗,

me ∈ MElem ::= pe‘|->’pe

sb ∈ Subs ::= e∗
, (‘//’ | ‘///’) qs, n > 1

12

TEPLSYNTAX

pe ∈ PredExpr ::= tm [‘<|’ pe ‘|>’ tm]

tm ∈ Term ::= f [⊕ tm] (with precedences)

f ∈ Factor ::= b [f]

b ∈ Base ::= c | n | v | ‘[[’ pe ‘]]’ | ‘(’ pe+
, ‘)’

| ‘{’ se | ‘[’ le | ‘{{’ he

| Q qs [‘|’ pe] ‘@’ pe

| ‘|:’ te ‘:|’

| `
se ∈ SExpr ::= ‘}’ | pe sec | q [‘|’ pe] [‘@’ pe] ‘}’

sec ∈ SExprCont ::= ‘}’ | ‘,’ pe+
, ‘}’ | ‘|->’ pe mec

mec ∈ MExprCont ::= ‘}’ | ‘,’ pe ‘|->’ pe mec

le ∈ LExpr ::= pe∗
, lec

lec ∈ LExprCont ::= ‘]’ | ‘//’ qs ‘]’ | ‘///’ qs ‘]’

qs ∈ QVars ::= (n | v)∗,

he ∈ HExpr ::= ‘}}’ | pe hec | v∗ [‘|’ pe] [‘@’ pe] ‘}}’
hec ∈ HExprCont ::= ‘}}’ | ‘,’ pe+

, ‘}}’
` ∈ Lang ::= ‘‘’user-specified‘‘’

13

3.2 Mac OS X ScreenShot Renaming

This is standalone code, intended for use on Mac OS X to rename screenshots
from that platform.

module OSXRename where

import Data.Char

import System.IO

import System.Directory

import System.FilePath.Posix

what = putStrLn "doit :: IO ()"

doit = ssRenameFiles isOSXNewScreenShot

isOSXNewScreenShot path

= takeExtension path == ".png" && take 11 path == "Screen Shot"

ssRenameFiles :: (FilePath -> Bool) -> IO ()

ssRenameFiles newShot

= do paths <- getDirectoryContents "."

putStrLn "\nBEFORE:"

putStrLn $ unlines paths

putStr "Starting Number ? (negative to abort) : "

txt <- getLine

let firstNo = (read txt) :: Int

if firstNo < 0

then putStrLn "No files renamed"

else do putStr "Screenshot Series Title (filename characters only) : "

title <- getLine

createDirectoryIfMissing True title

mapM_ (doRename title) $ zip [firstNo..] $ filter newShot paths

putStrLn ("Files renamed")

paths’ <- getDirectoryContents ("./"++title)

putStrLn "\nAFTER:"

putStrLn $ unlines paths’

doRename :: String -> (Int, FilePath) -> IO ()

doRename title (n,oldpath) = renameFile oldpath (title++"/"++title++display 4 n++".png")

display w n = replicate (w - length s) ’0’ ++ s where s = show n

14

Bibliography

[HH98] C. A. R. Hoare and Jifeng He. Unifying Theories of Programming.
Prentice-Hall, 1998.

15

