The Logic of U-(TP)? "

Andrew Butterfield!

Lero@TCD, Trinity College Dublin, {butrfeld}@tcd.ie

Abstract. U-(TP)2 is a theorem prover developed to support the Uni-
fying Theories of Programming (UTP) framework. Its primary design
goal was to support the higher-order logic, alphabets, equational rea-
soning and “programs as predicates” style that is prevalent in much of
the UTP literature, from the seminal work by Hoare & He onwards.
In this paper we focus on the underlying logic of the prover, empha-
sising those aspects that are tailored to support the style of proof so
often used for UTP foundational work. These aspects include support
for alphabets, type-inferencing, explicit substitution notation, and ex-
plicit meta-notation for general variable-binding lists in quantifiers. The
need for these features is illustrated by a running example that develops
a theory of UTP designs. We finish with a discussion of issues regard-
ing the soundness of the proof tool, and linkages to existing “industrial
strength” provers such as Isabelle, PVS or CoQ.

1 Introduction

Unifying Theories of Programming (UTP) [HH98|, is a framework that uses
alphabetised predicates to define language semantics in a relational calculus
style, in a way that facilitates the unification of otherwise disjoint semantic
theories, either by merging them, or using special linking predicates that form
a Galois connection. The framework is designed to cover the spectrum from
abstract specifications all the way down to near-machine level descriptions, and
as a consequence the notion of refinement plays a key role.

Typically the development of a UTP theory involves determining the key ob-
servational variables, so fixing the alphabet, then defining healthiness conditions
to characterise the predicates that describe feasible behaviour, introducing the
language under study as a signature, and giving meaning to that signature using
healthy predicates. Algebraic laws of the language can then be developed.

In [Butl0] we gave an overview of the Unifying Theories of Programming
Theorem Prover (U-(TP)?) that we are developing to support such theory devel-
opment work!. The prover is an interactive tool, with a graphical user-interface,
designed to make it easy to define a UTP theory and to experiment and per-
form the key foundational proofs. The motivation for developing this tool, rather

" This research was supported by grants 07-RFP-CMSF186 and 08-RFP-CMS1277
from Science Foundation Ireland, as well as partial support from Lero, the Irish
Software Engineering Research Centre

! In that paper it was called SAOITHIN, but the name has since changed to U-(TP)?

than using an existing one has been discussed in some detail in [But10]. We do
not repeat it here in the introduction, but this paper effectively gives a techni-
cal underpinning to that motivation. In this paper we describe the logic behind
U-(TP)?, starting from Ist-order equational logic [Tou01], and gradually ex-
posing the extensions required to facilitate the kind of reasoning we require for
foundational work. In effect this paper explores the proof infrastructure needed
to reason about a theory of a simple imperative language (While), built upon
a theory of “Designs”, itself layered on top of a generic UTP base theory. We
start at the bottom looking at the logic and work up until we can see what is
needed for the While language.

This paper assumes that the reader is familiar with the basic ideas behind
UTP, and does not give an introduction to the subject. A good introduction is
the key textbook written by C.A.R. Hoare and He Jifeng [HH98], which is free
to download from unifyingtheories.org.

In the rest of this paper, we use the term “user” to refer to a UTP practitioner
involved in the development of new UTP theories, and not a software developer
who might want to employ a formal method whose underlying semantics derive
from UTP.

1.1 Structure of this paper

Section 2 talks about theories, and gives a visual outline of much of this paper
in Figure 1. Section 3 introduces the logic of U-(TP)?, and Section 4 gives us an
introduction to definitions common to most theories. In Section 5, and Section
6, we describe how Theorys can be layered up to present a UTP Theory of
Designs, as well as a theory for a simple While programming language built as
an extension on top of Designs. Section 7 and Section 8 discuss issues to do with
the trustworthiness and usefulness of U-(TP)?, and finally, Section 9 concludes.
A collection of relevant rules can be found in Appendix A.

2 Theories

A UTP theory is a coherent collection of the following items: an alphabet defining
the observations that can be made; a set of healthiness conditions that charac-
terise predicates that describe realistic/feasible systems; a signature that defines
the abstract syntax of the language being defined; definitions of the language
constructs as healthy predicates; and laws that relate the behaviours of the vari-
ous language components. In U-(TP)? we use the term “Theory” to refer to such
collections, along with various other pieces of ancillary information, as well as
subsets of a full theory. The ancillary information includes components to sup-
port language parsing, local and temporary definitions, as well as proof support
in the form of conjectures, theorems and laws. In effect a UTP theory may be
constructed in U-(TP)? as a layering of Theory “slices”, each looking at a small
part of the whole.

As an example, consider Figure 1. Here we see theory slices organised as an

csp

UTP

Base

-

00

Fig. 1. A Hierarchy of Theorys

acyclic directed graph, where each slice inherits material from those below it.
At the bottom we have the _ROOT Theory (slice), which is hardwired in?, and
simply contains just the axioms of the underlying logic. On top of this a full
set of laws of predicate calculus are built (by positing conjectures and proving
them), as well as useful theories about equality, and various datatypes, such
as numbers, sets and sequences. In U-(TP)? these are presented as a layer of
Theory slices, but here we simply imagine them all encapsulated into the Base
Theory, that sits on top of _ROOT. On top of this we construct a slice (UTP) that
presents the language constructs that are common to most UTP theories, e.g.
sequential composition, and non-deterministic choice. We then branch: a theory
of Designs is implemented by building a Design Theory slice on top of UTP, and
hence incorporating Base and _ROOT. Similarly, we can define, independently of
Design, a Reactive Theory slice over UTP. It is this ability to re-use common
material that motivates the splitting of UTP theories into U-(TP)? Theory
slices. Figure 1 also shows how further slices allow us to build a theory of a
simple imperative language (While) on top of Design, as well as fusing Design
and Reactive to get CSP [Ros97]. A similar fusing of While with CSP gives
Circus[OCWO09).

In the sequel we shall no longer distinguish between “proper” UTP theories
and U-(TP)?s Theory slices, simply referring to them all as “theories”. We do
not give details of the contents of a theory here, but instead elucidate these
details as we go through the paper.

2 _ROOT is the only thing hardwired—all other slices and their hierarchy can be custom-
built to suit the user.

3 Logic

The logic of U-(TP)? is an adaptation of the first-order equational logic de-
scribed by Tourlakis [Tou01], that fully formalises the logic of Dijkstra, Gries
and Schneider [GS93].

3.1 U-(TP)? Logic Syntax

We define our logic syntax over a collection of given sets characterising different
name-spaces:

z,y,z € Var () Obs. Variables

k € Const (given) Constants

f,9,h € Name (given) (Function) Names
(given)
(given)

given
given

E,F,G € EName Expression Metavariable Names
P, Q,R € PName Predicate Metavariable Names

Variables, constants and function names are as one would expect in a logic
with associated equational theories, but we also have explicit meta-variables for
expressions and predicates, in the object logic, as many UTP laws are expressed
using such.

Expressions and Predicates are defined by mutual induction, because both
may contain instances of the other. Expressions denote values in the “world
of discourse” (observations) and are typed. Expressions whose type is boolean
(¢ € Expr) form the class of atomic predicates:

c,e € Expr o=k |z Expressions
| fe Applications
| Azee Obs. Abstraction
| AE e e E-var. Abstraction
| APece P-var. Abstraction
| {z|pee} Comprehension
| E Explicit Metavariable

Predicates are defined much as expected:

P, q, 7 € Pred ::= True | False Constant Predicates

| e Atomic Predicate (Boolean-valued Expr.)
| = p Negation

| pHg Composites, " € {A,V,=, =}

| P Explicit Metavariable

| ¥zep 1st-order Quantifiers, ¥ € {V, 3, 3!}

| ¥Pep higher-order Quantifiers, ¥ € {V, 3}

| ¥Eep higher-order Quantifiers, ¥ € {V,3}

|

[p] Universal Closure (over observations)

The axioms of the logic are shown in Appendix A (A.1, A.3). The axioms are
stored in the hardwired _ROOT theory, in the laws component of the theory, which
maps law-names to laws, where a law is a predicate and a side-condition. Side-
conditions are a conjunction of zero or more basic conditions, which typically
capture relationships between given variables and the free variables (fv) of given
predicates.

Theory = record
laws : Name ~~ Law
...end
Law = Pred x Side
Side =z ¢ tv.P | {z,y,...} =fv.P|{z,y,...} Dfv.P|...

Here the notation A ~~ B denotes a partial finite function from A to B, and so
is effectively a table using a key of type A to lookup a value of type B.

The inference rules (A.2) are implemented, in the main, by a pattern match-
ing mechanism that takes a current proof goal and sees which laws can apply,
and a process that allows the user to select and apply the desired one, storing
the changed goal in a list that is assumed to be chained together by logical
equivalence. The basic structural match has a judgement I' H P T | 8 that
asserts that, given matching environment I', test predicate T matches pattern
predicate P, with resulting bindings 8. Bindings map variables to well-formed
expressions or predicates, as appropriate. If we ignore I" for now, then a repre-
sentative collection of structural matching rules are:

I'tztel|{z— e} <KMATCH-VAR>>
' Pt T B B1 = B2
Fl—Pl/\PgiTl/\TQ‘BlL‘HBQ

PiQ| B zs fys | B2 B =B
Vzse PiVyse P |1 W5

<KMATCH-A>>

2
< MATCH-Y>

The = predicate asserts that two bindings do not map the same variable to
different things. The W operator merges two bindings, provided they satisfy =.
An attempted match of T against P fails if no rules apply, or an attempt is
made to apply W to two bindings that do not satisfy ==.

In order to facilitate proof, the theory has two components, one for conjec-
tures, which can be viewed as aspirant laws (posited, hopefully true, but not yet

proven), and theorems, which are conjectures with proofs:

Theory = record.. ..
congs : Name ~~ Law
thms : Name ~~ Proof
..end
Proof = record
goal : Pred
sc: Side
done : B

..end

The workflow is as follows: conjectures can be entered by the user and accu-
mulated in conjs. A proof can then be started by selecting a conjecture, which
creates a corresponding entry in thms, with goal, sc set to match the conjectured
law, and the done flag set to false. More than one proof can be active at any
one time. A proof is carried out using all the laws accessible from the theory.
Once a proof is complete, the done flag is set true, the corresponding conjecture
is deleted, and, usually, a corresponding entry is made into laws.

The mechanism as described so far is adequate for proving all and any con-
jectures based on propositional logic. However it needs extensions to cater for
non-propositional logic, and the datatype theories. We will address the non-
propositional extensions in the next section on generic UTP. Here we discuss
briefly some practical issues with datatype theories. We can define a theory of
natural number arithmetic using Peano axioms, for example—the tool supports
the creation of a new named empty theory, and the addition of appropriate
axiomsby the user into the laws table. Operations on natural numbers can be
defined axiomatically by adding further laws as required. From this it is possible
to prove a range of theorems about natural number operations, e.g. m +0 = m.
A similar exercise can be done for sets, and sequences, resulting in laws like
SU@ =S8 and s ~ () = s. The problem is that we do not just match against
whole laws, but can also match against just the lefthand or righthand sides of
an equality or equivalence—so the righthand sides of all three laws above will
match an arbitrary expression e, offering e+0, eU{) and e ~ () as replacements.
To prevent such spurious matches, we introduce a type system for expressions,
and a type-inference engine, that uses context information to deduce the types
of expressions like e, and serves to reduce spurious matches to a considerable
degree. A theory contains tables to support this feature:

Theory = record. ..
type : Name ~~ Type
..end

t€ Type :=B|Z|7|Pt]...

The Names in type are typically names of variables or functions.

4 UTP

Some key concepts are common to most UTP theories, namely sequential compo-
sition (3), non-deterministic choice (M), refinement (C) and conditional (< ¢ ©>).
Importantly, in most theories these all have the same definition:

P35 @Q = 3 0bs,, e P[Obs,,/0bs'] A Q[Obs,,/Obs|
PAQ=PVQ
PCQ=[Q=7r]

PdcrQ =cANPV-cAQ

I

The definitions for M, C and < ¢ > are unproblematical, and are easily handled
by the existing machinery, with one key extension. The definition of § not only
makes use of explicit substitution notation, but also raises the question of how to
interpret Obs,,, Obs’ and Obs. Clearly they stand for the obervational variables
of a UTP theory along with appropriate decorations, but how do we support
this? In particular, how can we arrange matters so that we only define g once, in
such a way that it can be used by many different theories? We will first address
the key extension alluded to above, and then return to the problem of sequential
composition.

4.1 Defining your own language in U-(TP)?

A key aspect of a UTP theory is the signature that captures the abstract syntax
of the language being defined. This means that U-(TP)? needs to support user-
defined languages. This is achieved by having a table-driven parser for entering
predicates, and providing a facility for the user to add new entries to the relevant
tables:

Theory = record. ..
precs : Name ~» Precedence
lang : Name ~~ LangSpec

..end

The precs table maps the name of an infix operator to information about its pars-
ing precedence and its associativity. The lang table maps a language construct
name to a language specification (LangSpec) that describes the concrete syntac-
tical structure of that construct. A language specification is a mix of keywords
denoting syntactical components like variables (V) , expressions (E) , predicates
(P), or various lists of such, interspersed with concrete syntax symbols. We won’t
give a full definition here but present some examples to give the idea:

— Refinement: we specify this as “P |= P”, which states that |= is an infix
operator between two predicates. When this is entered into the lang table, a
corresponding entry is automatically created in the precs table with default

values (mid-range precedence, non-associative) which can then be edited by
the user to suit. Also entered is a dummy definition for the construct into
the laws table, which itself then needs to be edited.

— Assignment: specified as “V := E”, stating that := is an infix operator in-
between a variable and expression, resulting in a predicate.

In general defining a language construct (resulting in a predicate) involves adding
entries to the lang and laws tables, and possibly also to the types and precs ta-
bles, depending on the precise nature of the construct. Infix expression operators
do not have lang entries but require laws, precs and types entries.

When we talk about developing a theory of Designs (Section 5), we shall give
a worked-out example of a language definition.

4.2 The problem with g

The definition of sequential composition,
P3@Q = 30bs,, e P[Obs,,/Obs'| A Q[Obs,,/Obs]

says in effect that for each observation, z, say, in Obs, we replace any free
occurrence of z’ in p by z,, and any free occurrence of z in ¢ by Obs,,, and
use existential quantification to hide z,,. In effect the rule above is really a
rule-schema, characterising an infinite number of rules, one for each possible
alphabet represented by Obs. However, we don’t want to repeatedly instantiate
this rule and reason about its consequences for each specific alphabet we use. In
fact, we want to use the definition in cases where only part of the alphabet is
known (Designs again, Section 5). We would prefer to be able to do proofs with
the definition as given above, only instantiating Obs where necessary, and then
perhaps only partially. In fact, we want to support the following proof (of the
associativity of g) which does not require any instantation of Obs:

P; (Q; R)
= 3 Obs;, @ P[Obs;,/ Obs'] A (Q; R)[Obsyn/ Obs]
= 3 Obs,, ® P[Obs,,/ Obs'] A (3 Obs,, @ Q[Obs,,/ Obs'] A R[Obs,,/ Obs])[Obsy, [Obs]
= 3 Obs,y, Obs,, ® P[Obs,,/Obs'] A Q[Obs,, / Obs'][Obs,, / Obs] A R[Obs,, / Obs][Obs,y, / Obs]
= 3 Obsy,, Obs,, ® P[Obs,,/ 0bs'|[Obs,, / Obs'] A Q[Obs,, Obsm/Obs/, Obs] A\ R[Obs,, / Obs]
= 3 Obs,, & (3 Obs,;, ® P[Obs,,/Obs'|[Obs,, /] Obs'] A Q[Obs,,/ Obs][Obs,, / Obs'])

A R[Obs,/Obs|

= 3 Obs,, ® (3 Obs,, ® P[Obsy,/ Obs'] A Q[Obsy,/ Obs])[Obsy, / Obs'] A R[Obs,/ Obs]
= 3 Obs, e (P; Q)[Obs,/O0bs'] A R[Obs,/Obs]
=(P; Q); R
In effect we want to reason within our logic about “schematic” variables like
Obs and treat the substitution notation as part of the object logic, rather than
meta-notation describing the behaviour of an inference rule.

To achieve this we have to add another linguistic innovation to the logic. A
common shorthand in most presentations of logic is to view Vz,y,z e p (say)

as a shorthand for Vo e Vy e V2 e p. Our innovation is not only to add the
former as a full part of the logic syntax, but also a further extension. We want to
be able to have quantifier variables (e.g. Obs) that represent lists of “ordinary”
quantifier variables. We do this by splitting the list into two parts, separated
by a semi-colon, with those in the first part being ordinary, whilst those in the
second part denote lists of variables. The revised syntax of V is now:

Vai,...,Tm ;281,...,28, ® P m>0n>0m+n>1

Other observation (1st-order) quantifiers are modified similarly. The z; and zs;
above are “quantifier variables”, and will be disambiguated were necessary by
referring to the z; (before the ; sysmbol) as “single variables” and the zs; (after
; as “list variables”). A list where m = 0 is referred to as an “ordinary list”. The
meaning of a quantifier variable list of the form xy, ..., xy, ;zs1,. .., sy, is that it
matches an ordinary list of the form yi,..., Y+, £ > 0 where each z; binds to
one y;, each xs; binds to zero or more y;, and every y; is bound exactly once. In
principle the bindings associated with a variable like zs; are non-deterministic,
albeit they must be consistent with bindings derived from the match as a whole,
i.e. the wider context in which that variable occurs. In practice, heuristics are
used in the implementation to select a binding that is hopefully as “good” as
possible.

As our proof above largely depended on properties of (explicit) substitution,
we have to add it into our logic as well. So we revise our syntax for predicates:

p,q,T € Pred == ...
| ¥qusep 1st-order Quantifiers, ¥ € {V,3,3!}
| ple/z] Explicit Obs. Substitution
| ple/FE] Explicit E-var. Substitution
| plp/P] Explicit P-var. Substitution
qus € @QVars Quantifier Variable lists
U= Tl T (X813 XSy M >0,n>0m+n>1

Explicit substitutions are also added to expressions as well. Laws regarding
explicit substitutions also need to be developed, e.g.

ple/=llf/yl = ple,f/z,y], z#y,y¢fve

but we do not list these here.
This extension allows us to introduce axioms like:

(Vz;xs e p) = (Vizs e ple/z]) K AX-Y Z-INST>>

rather than relying on a simple single quantifier axiom and the usual conventions
regarding the V z, y, z shorthand. In essence what we have done is to formalise
and automate this convention.

To support the definition of § we need one further step. The list variable Obs
does not stand for an arbitrary list of single variables, but is instead intended to
stand for precisely those un-dashed variables that are present in the alphabet of

the current theory, even if that alphabet has not been fully described. Similarly,
Obs’ stands for all the dashed variables, and Obs,, denotes the decoration of
all the Obs variables. In effect we designate certain list variables (like Obs) as
having a special meaning.

The basic matcher described in Section 3, has to be enhanced to perform
appropriate matching where non-ordinary quantifier lists are present. To make
this work, we need to extend theories to have a table that records the theory
alphabet:

Theory = record . ..
obs : Name ~~ Type

..end

The obs table needs to become part of the matching context I', and we introduce
rules for matching quantifier lists:

I't;0bs 1;00bs | €

Obs(I') ={o1,...,0n}
'k ;0bst{o1,...,0n} | {0bs — {01,...,0n}}

The first rule allows Obs to match itself, and so we can do proofs that do not

require it to be expanded to an ordinary list. Note also that in this case an

empty binding (¢) is returned. Other matching rules not shown here, take care

of decorations, ensuring that Obs matches z, y, z, if appropriate, but not z’, y’, z’.
We can now define sequential composition in our revised logic as:

P35 Q = 3;0bs,, P[Obs,,/0bs'] A Q[Obs,,/Obs]

and produce a proof as shown earlier. There is an additional extension required
to the logic to do this, but we shall motivate and introduce it in the section on
Designs (Section 5).

5 Designs

The UTP theory of Designs [HH98, Chp 3] introduces two boolean observation
variables (ok, ok’) to model program start and termination, and new notation
P+ @ to represent a predicate with pre and post-conditions:

ok, ok’ : B
PFQ = okANP=ok'AQ, ok, ok’ ¢ fv.P Ufv.Q
A key feature to note is that in this theory we do not specify the entire alphabet,

but only stipulate that whatever it is, it must contain ok and ok’. In this light we
see an even stronger need for special list-variables like Obs as already introduced.

We can already capture this with our theories as described so far:

obs(ok) =B

obs(ok’) =B

lang(F)=PF P

prec() = (n, NonAssoc), n is desired precedence
laws(F—DEF) = (P + Q = ok AN P = ok’ A Q, ok, ok’ ¢ fv.P Ufv.Q)

Here we see some side-conditions that assert that neither P nor @) should men-
tion either ok or ok’. These are important side-conditions, without which we
do not obtain the desired behaviours (algebraic laws) for designs. However, in
proving properties of designs in UTP, we find that the side-conditions play a
more active role than encountered in more traditional presentations of logic. In
many logics, side-conditions about free variables are syntactic in nature and can
always be checked/discharged when applying a rule to a predicate in the logic.
In particular, when applying a rule like the one above, both P and @ will have
been instantiated to concrete predicates, and so it will be easy to establish the
truthfulness of these side-conditions. However in a UTP proof about the prop-
erties of designs, we work with explicit meta-variables P and @ for which it is
not possible to compute side-condition rules at rule-application time.

Instead, we have to add a post processing stage to law matching. Assuming
that a target predicate match involving a law has succeeded returning a binding,
We use that binding to translate any side-condition with the law to a correspond-
ing one in the target world. We then need to show that the translated law-side
condition is a consequence of any side-conditions associated with the conjecture
goal.

In effect, in addition to a syntax for side-conditions, we have to implement
a side-condition inference engine that can deduce when one side-condition im-
plies another. Let psc denote the translated pattern side-condition, and tsc de-
note the side-condition associated with the conjecture being proven. We have to
demonstrate that tsc = psc. As side-conditions are a conjunction of a few basic
primitive side-conditions, we simply take both tsc and tsc A psc, reduce both to
a canonical normal form, and check for equality.

To illustrate all of this, here is a proof that R+ S = RF R A S, given that
ok, ok’ ¢ fv.R U fv.S. Here we deliberately state our conjecture using different
meta-variables to those used to define designs, to show the translation aspect at
work. Our proof strategy will be to take the lefthand side and transform it into
the righthand side?.

The first step proceeds when a match of R F S succeeds against pattern
P F @ returning the binding [P — R, @ — S]. However, we need to discharge
the side-condition ok, ok’ ¢ fv.P U fv.Q. We use the bindings to translate this
to ok, ok’ ¢ fv.R U fv.S. This then has to be implied by our conjecture side-
condition, which in this case is identical to the law condition, so we can deduce

3 The strategy in play is noted in the Proof record.

that it holds. The proof then proceeds as follows:

RES

= “ as just discussed above ”
ok NR= ok’ NS

= ok=(R=ok'AS)

ok = (R= RAok'AS)

ok NR= ok' N\SAR

= “ see below ”
RERAS

The last step up is similar to the first, as the matching of righthand sides suc-
ceeds, and the bindings and translation are the same. This raises a new and
important issue to do with observational variables. The variables ok and ok’
mentioned above are not arbitrary, but denote specific observations, and so it is
important for UTP that they only match themselves in laws, unlike general vari-
ables that can match arbitrary expressions (including other variables). This leads
to the need to indicate that certain variables in patterns stand for themselves.
Such variables are described as being “known”. All 0bs variables are known, and
there is also a facility for a user to give names to constants and expressions,
and so those names would also be considered “known”. We will not give further
details here.

The structural matching rule for variable patterns needs to be modified, using
the context I" to check if a variable is known, here written as z € I":

zel

IFzix

z ¢l
I'tziv|{z— v}

z¢l
I'tziel|{z— e}

Note that when a known variable matches against itself, no binding entry is
produced.

At this point, given the hierarchy of Figure 1, we have a theory called Design,
which has access to the laws of logic, equality, arithmetic and sets, as well as the
definitions and associated laws of g, M, =, <1 ¢ > and F, as well as the known
observation variables ok and ok’. In particular, we stress that by being linked
in the hierarchy shown, the Design theory inherits all the material defined in
UTP, and all its ancestors. This is quite abstract at this point, so now we move
to ground it all a little more.

5.1 Healthiness Conditions

A key feature of UTP is the use of healthiness conditions, expressed typically
as monotonic idempotent predicate transformers. To support this in U-(TP)?
we need to extend the predicate syntax to include notation for functions over
predicates, and the application of those to predicates, and appropriate axioma-
tisation:

D,q,T € Pred =:= ...
| AP e p, Predicate Abstraction
| »(q), Predicate Application
(AP e p)(r) = p[r/P]

It is at this point that we definitely leave lst-order logic behind and move up
towards 2nd- and higher-orders of logic. At this point it is useful to have a
facility to give names to frequently used constructs like healthiness conditions
or common predicate fragments, such as the predicates called II, B and J used
in the definition of the Reactive theory [HH98, Chp. 8]. In effect we want to give
definitions like the following (not necessarily from the theory of Designs):

Hl1 = AP e ok = P
J = (ok = ok') A wait = wait A tr' = tr A ref’ = ref
We achieve this by adding in tables into a theory that allow us to write such
definitions, and modifying the matching algorithm to treat all names in those
tables as “known”:
Theory = record. ..
preds : Name ~~ Pred
exprs : Name ~~ Expr
..end

So, for example, in this theory of Designs we have preds(H1) = AP e ok = P.
The rest of the U-(TP)? machinery can then be used to reason about and use

these healthiness conditions in the normal way, so for example, H1(g) can be
converted into ok = ¢, and vice-versa.

6 Programs

To get concrete, we are now going to define the semantics for a simple imperative
programming language (a.k.a. While), as a UTP Design. To keep things simple
for now, we assume the language has exactly three program variables: x, y, and
z (we look at the issue of many variables below in Section 6.1).

u, w € While ::= Skip do nothing
| vi=e Assignment, v € {z,y,2},fv.e C{z,y, 2}
ugw Sequential Composition

|
| w<ecr>w Conditional, fv.c C {z,y, 2}
| cow While-loop, fv.c C {z,y, z}

The alphabet of this theory now contains z, y, z, z’, ¥, 2’ in addition to ok, ok’
inherited from the Design theory. Also inherited are the definitions of § and
< ¢ >, where now Obs can bind to ok, z,y, z, ok’, z’,y’, 2/ in pattern matching.
We can use the language specification facility to introduce the syntax to U(TP)?,
so in While.lang we have:

Skip — Skip
=V = E
whl — E *x P

6.1 The U-(TP)? semantics of Skip and z := e

We start to define the semantics of Skip, and we could immediately write:
Skip = TrueFz' =z ANy =yAnz ==z

While correct, we may worry about what happens if the number of variables
increases, or if we want to have some dynamism regarding the number and names
of program variables. While we discuss another possible approach to program
variables later, for now let’s see what we can do to improve things. We could try
to use special list variable Obs, to get

Skip =7 True - Obs’ = Obs

but this is not satisfactory, as Obs (Obs’) includes ok (ok’) and these cannot
occur in the design predicates, as per the side-condition used in the Design
theory.

The solution here is realise that in many UTP theories we actually have
two classes of observations: those associated with the values of variables in the
program text under consideration (here z, y and z), and those that capture
overall program properties, independent of any program variable (here ok and
ok’, denoting termination). We shall refer to the former as script variables and
the latter as model variables, and add in two new special list-variables called Scr
and Mdl to match against the two classes. So in this theory, Scr can match z, y, z,
while Mdl matches ok. Also Obs can now match Scr, Mdl, or combinations such
as Scr, ok. This requires us to modify the obs table in a theory slightly as we
must now record observation class, as well as its type:

Theory = record...
obs : Name ~~ Type x OClass

...end
OClass ::= Model | Script

So, for example, in theory Design we have obs(ok) = (B, Model), while in theory
While we have obs(z) = (t, Script), where ¢ is some type. We can now define
the semantics of Skip as:

Skip = True & Ser’ = Ser

This definition will now work in a range of theories, provided the observations
are classified appropriately. However it does also require a further extension of
the law matching algorithm. This has to be modified to allow a pattern like
Scr’ = Ser, given bindings Scr — z,y, z and Scr’ — z’,1’, 2/, to match against
a predicate fragment like ' = z A 3y’ = y A 2’ = z. This feature is quite easily
implemented as part of the structural matcher.

We now turn our attention to the definition of assignment. The following is
not satisfactory:

z:=e =7 Truet 2’ = e A Ser’ = Ser

First, as z is known, this rule will only match assignments whose variable is z,
so we would need a different definition for each program variable—mnot a good
idea! Secondly, Scr’ = Ser will match 2/ = 2 A ¢y = y A 2/ = 2 as already
described, and so we can match 2’ = e A 2’ = x which reduces to z = e, and
then probably False. We could try to make the matching of Scr’ = Scr against
¥ =x ANy =y Az =z “context sensitive”, only matching an equality if both
sides do not appear “elsewhere”, but it is currently very unclear if this is at all
feasible. Instead, we extend the list-variable notation to allow modifiers, so we
can write the following satisfactory definition for assignment:

vi=e = Truet v =e A (Ser’ \ v') = (Ser\ v)

The law/pattern variable v is not known, so it will match any of z, y or z, and
even ok. However as ok cannot appear in the predicates in a design, any matching
of v to ok will lead to a proof that eventually freezes up because the side-
condition defining - won’t be satisfiable. Imagine we are matching the righthand
side of the above definition with ' = f A 2’ = z A 2z’ = 2. The matching
algorithm will attempt match 3’ against v’, returning a binding v’ — y’. This
binding gives us enough information to be able to match (Ser’ \ v’) = (Ser \ v)
against ' =1 A 2/ = 2.
A further complication arises when we try to prove laws such as:

(v:=egv:=f)=(v:=fle/v])
(w:=esv:=f)=(v:=fle/ulgu:=¢), v¢fve

We will not elaborate on details here, but we find the need to use special list
variables like Scr and Scr’ in substitutions, so the matching algorithm needs to
handle those cases as well.

6.2 Merging program variables

Another way to handle program variables is to group them together into an
environment, a mapping from variable names to values:

p € Env = Var ~ Val

We can then introduce Model variables called state and state’. This simplifies the
alphabet handling, as it is now fixed, and we can model variable declarations
with map extensions. In effect we have no script variables, just model ones,
with the consequence that the theory of the alphabet is now independent of the
program script. The added complexity now emerges in the type system, because
Val needs to include all types in Type, and the definition of assignment now
requires an eval function of type Fnv — Ezpr ~» Val (here ® denotes map
override):

v:=-e = True state’ = state ® {v — eval(state)(e)}

U-(TP)? can support either style of program variable handling, although the
environment-based approach requires a theory of finite maps, and laws defining
eval for every expression construct, with an added complication of having to
handle explicit expression syntaz in laws. However, the provision of such an eval
function is not quite as onerous as it sounds as laws providing the meaning of
all expression constructs are required in any case.

We are not going to elaborate too much on how to give a semantics to the
while-loop construct here, apart from noting that it requires a fixpoint construct
in the logic syntax, and an appropriate axiomatisation of fixpoint theory. Then
the loop can be defined as the least fixed point of the appropriate functional.

p,q,r € Pred ::= ...
| wP e F(P) Fixpoint Operator
c®w = pWe(wg W) cr> Skip

7 Soundness

Is U-(TP)? sound? For now, the simple answer is no, due mainly to two reasons.

Firstly, users can add their own laws (axioms), and this always leads to the
risk of defining a theory that is inconsistent. As we consider the typical user
to be a UTP practitioner with experience in logic and axiomatics, developing
foundational theories, we feel it is reasonable to expect such (power) users to
be able to use their judgement to avoid such pitfalls. Having said that, it will
probably make sense in future versions of the tool to support users at different
levels of experience, with the more advanced and dangerous features disabled
for novices.

Secondly, the underlying proof engine is very complex, reflecting the com-
plexity of the logic required. At present we are not in a position to guarantee
soundness of every action that can be invoked. However, in mitigation, we do
point out that the outcome of each basic proof step is highly visible in the tool’s
GUL It is clear that eventually we will have to pay serious attention to ensur-
ing the prover is sound (modulo any inconsistencies introduced via user-defined
axioms). We envisage two possible approaches:

1. Identifying a very small core from which the whole logic can be developed
conservatively, and producing a small piece of prover kernel code that can
then be verified. This is the LCF approach adopted for prover systems like
HOL[NPWO02] and Coq|[The08].

2. Developing an encoding of the U-(TP)? logic into the logic of a system
with a verified kernel, such as HOL or CoQ), and using those systems to do
automated proof checks, possibly even for each proof step as it is done.

8 Exploitation

Assuming that we have addressed the soundness of the implementation of U-
(TP)?, and have used it to develop a nice theory of an interesting language,
how useful will the results be if we try to apply them to a real problem? In
principle, we could use U-(TP)? to prove properties of a program written in
the language described by our theory. In fact some work has already been done
exploring a feature that allows us to take a predicate-transformer theory (e.g.
weakest precondition, as per [HH98, Chp. 2, p66]), and a program, and auto-
matically generate proof obligations. However, U-(TP)? is an interactive proof
assistant, designed to support UTP theory development, rather than theory use.
In practise, there is no way that U-(TP)? can realistically compete with exist-
ing industrial-strength tools that can both generate and discharge such proof
obligations with a high degree of efficiency.

However what does seem to be feasible, is to develop a facility whereby a
UTP theory, once complete, can be translated and exported as a theory useable
by just such industrial-strength provers. We are currently exploring building
such a theorem-prover link to HOL, as recent work has looked at encoding UTP
in ProofPower/HOL[OCWO06, ZC08], or Isabelle/HOL [FGW10, FGW12]. We
hope to be able to make use of these results to build such a U-(TP)?to-HOL
bridge.

9 Conclusions

We can, in effect, summarise the paper by giving a requirements list summaris-
ing all the special logic features we desire for U-(TP)?: predicate and expres-
sion meta-variables; user language definitions; quantifier list variables, with spe-
cials to identify alphabets; explicit substitutions; “semantic” side-conditions; and
predicate transformers.

All the above could be implemented using Isabelle, or CoQ, or PVS, or pretty
much any higher-order theorem prover. However any algorithm can, in principle,
be written in the pure lambda calculus, or expressed as a Turing machine, but
this does not make it feasible, desirable or practical to use those notations.
Similarly we feel that encoding our requirements into one of the above higher-
order systems, at least to the extent that it would be visible to the user, is not the
way to meet our requirement for machine-assisted support for UTP foundational
reasoning.

The resulting logic is quite large, and space limitations have prevented us
from giving a complete description here. More details can be found in a draft of
the U-(TP)? Reference Manual [But12).

References

[But10] Andrew Butterfield. Saoithin: A theorem prover for utp. In Shenchao Qin,
editor, Unifying Theories of Programming, Third International Symposium,
UTP 2010, Shanghai, China, November, 2010., volume 6445 of LNCS, pages
137-156, Shanghai, China, November 2010. Springer.

[But12] Andrew Butterfield. U - (TP)® reference manual (draft, on-
going). Technical report, School of Computer Science and
Statistics, Trinity College Dublin, July 2012. available from

https://www.scss.tcd.ie/Andrew.Butterfield/Saoithin/.

[FGW10] Abderrahmane Feliachi, Marie-Claude Gaudel, and Burkhart Wolff. Unify-
ing theories in isabelle/HOL. In Shengchao Qin, editor, Unifying Theories of
Programming - Third International Symposium, UTP 2010, Shanghai, China,
November 15-16, 2010. Proceedings, volume 6445 of Lecture Notes in Com-
puter Science, pages 188—206. Springer, 2010.

[FGW12] Abderrahmane Feliachi, Marie-Claude Gaudel, and Burkhart Wolff. Is-
abelle/circus: A process specification and verification environment. In Rajeev
Joshi, Peter Miiller 0002, and Andreas Podelski, editors, Verified Software:
Theories, Tools, Experiments - 4th International Conference, VSTTE 2012,
Philadelphia, PA, USA, January 28-29, 2012. Proceedings, volume 7152 of
Lecture Notes in Computer Science, pages 243—-260. Springer, 2012.

[GS93] David Gries and Fred B. Schneider. A Logical Approach to Discrete Math.
Texts and Monographs in Computer Science. Berlin: Springer Verlag, 1993.

[HH98] C. A. R. Hoare and Jifeng He. Unifying Theories of Programming. Prentice-
Hall, 1998.

[NPWO02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL -
A Proof Assistant for Higher-Order Logic, volume 2283 of Lecture Notes in
Computer Science. Springer, 2002.

[OCW06] Marcel Oliveira, Ana Cavalcanti, and Jim Woodcock. Unifying theories in
proofpower-Z. In Steve Dunne and Bill Stoddart, editors, Unifying Theories of
Programming, First International Symposium, UTP 2006, Walworth Castle,
County Durham, UK, February 5-7, 2006, Revised Selected Papers, volume
4010 of Lecture Notes in Computer Science, pages 123-140. Springer, 2006.

[OCW09] Marcel Oliveira, Ana Cavalcanti, and Jim Woodcock. A UTP semantics for
circus. Formal Asp. Comput, 21(1-2):3-32, 2009.

[Ros97] A.W. Roscoe. The Theory and Practise of Concurrency. Prentice-Hall (Pear-
son), 1997. revised to 2000 and lightly revised to 2005.

[The08] The Coq Development Team. The coq proof assistant, reference manual,
version 8.2. Technical report, INRIA, Roquencourt, France, 2008.

[Tou01] George Tourlakis. On the soundness and completeness of equational predicate
logics. J. Log. Comput., 11(4):623-653, 2001.

[ZC08] Frank Zeyda and Ana Cavalcanti. Encoding circus programs in ProofPower-
Z. In Andrew Butterfield, editor, Unifying Theories of Programming, Sec-
ond International Symposium, UTP 2008, Trinity College, Dublin, Ireland,
September 8-10, 2008, Revised Selected Papers, volume 5713 of Lecture Notes
in Computer Science, pages 218-237. Springer, 2008.

A Rules

A.1 Propositional Axioms

false = —true
~(P=Q)=-P=Q
PVvQ@Q=QVP

(PVQ)VR=PV(QVR)

PVvP=P

PVv(Q=R)=PVQ@Q=PVR

Pv-P

PANQ=P=Q=PVQ

P=Q=PVvQ@=Q

Inference Rules

P
PlQ := R]
P=qQ
R[S:=P]=R
P,P=Q

(P=(Q =R)) <AX-=-ASSOC>

<KAX-=-SYMM>>

<K AX-=-1D>>

< AX-false-DEF>
<K AX-—-=-DISTR>>
K AX-V-SYMM>>

K AX-V-ASSOC>
<K AX-V-IDEM>>

<K AX-V-=-DISTR>
< Ax-ExXcL-MbpL>
< AX-GOLDEN-RULE>
<K< AX-=-DEF>

(Substitution)

(Leibniz)

(Equanimity)

A.3 Non-propositional Axioms

pV (Vizs,ys q)

=WasepV (Viyseq)), zsé¢p
pV (V;Es, Fs e q)

=(V;EsepV (ViFsegq)), Es¢p
pV (ViPs, Qs e q)

=(V;PsepV (V;Qseq)), Psé&p

(Vizs e p A q) = (Vias e p) A (Vsas @ q)
(ViEsep Aqg)=(ViEsep) A (V;Eseq)
(V;PsepAgq)=(V;Psep)A(V;Pseq)

(Vz;as @ p) = (Vsas @ ple/z])
(VE;Es ep)= (V;Es eple/FE])
(VP;Psep)= (V:Psep[q/P])

(Fsas @ p) =~ (Vszs @ 7 p)
(3;8s @ p) == (V:Es @ = p)
(3;Psep)=—(V;Pse—p)
iaxsep

= (Jzs e p) A Jys e plys/ ; xs] = ys = xs

Az zsee)f =(Nzsee)[f/z]
(AE;Es e q)e = (A;Es e q)[e/E]
(AP ;Ps e q)r = (A;Ps e q)[r/P]

(Nizy zi = ei) = (p = ple/x]),
x; distinct

plz = e] = ple/z]
ple/Es]| = p[Es := €]
plg/Ps] = p[Ps := q]
true[e/z] = true
true[e/Es| = true

1=
truelq/Ps] = true
false[e/x] = false
falsele/Es] = false
false[q/Ps] = false

z; distinct,

< AX-V-Y 2-SCOPE>>
< AX-V-Y E-SCOPE>

< AX-V-Y P-SCOPE>>

< AX-V 2-DISTR>>
< AX-V E-DISTR>>
< AX-V P-DISTR>>

<K AX-V 2-INST>>
< AX-V E-INST>>
< AX-V P-INST>>

< AX-J 2-DEF>
< AX-d E-DEF>
< AX-3 P-DEF>
< AXx-3z-DEF>

< AX-=-REFL>
< AX-0-DEF>

< AX-5-OREDUCE>
< AX-B-EREDUCE>
< AX-B-PREDUCE>

< AX-LEIBNIZ>>

< AX-OSuUBST>
< AX-ESuBST>
< AX-PSUBST>
< AX-true-OSUBST>
< AX-true-ESUBST>>
<K AX-true-PSUBST>>
< AX-false-OSUBST>
<K AX-false-ESUBST>
<K AX-false-PSUBST>>

