What I did last Summer

Andrew Butterfield
Trinity College, University of Dublin
Friday Get-Together
November 30th 2007
TCD

Introduction

- Context
- Developing Theories as part of UTP (Unifying Theories of Programming)
- Predicates relating pre- and post-observations
- Notion of Healthy Predicates (realistic, feasible, desirable, practical)
- Interestin so-called "Reactive Systems" (concurrent/event-driven)
- Issue
- Long tedious proofs
- Logic needs to be 2nd-order (at least)
- Specific handling of undefinedness

Reactive Systems

To model reactive systems (a.k.a. "processes") we need to track four observations:

ok	$:$	\mathbb{B}	- process is stable (not diverging)
wait	$:$	\mathbb{B}	- process is waiting for an event, and has not terminated
tr	$:$	Event*	- event history
$r e f$	$:$	\mathbb{P} Event	- events being refused

We define predicates that relate the before-state (ok, wait, tr, ref) to the after-state (ok ${ }^{\prime}$, wait ${ }^{\prime}, t r^{\prime}, r e f^{\prime}$) of a process (Relational Semantic Model).

The language used to describe processes is very CSP-like.

Examples

- A process that performs event a and then terminates ($a \rightarrow$ SKIP)

$$
o k^{\prime} \wedge \neg \text { wait }^{\prime} \wedge t r^{\prime}=t r \frown\langle a\rangle
$$

- A process that performs a and then behaves like process $P(a \rightarrow P)$

$$
\left(o k^{\prime} \wedge \neg \text { wait }^{\prime} \wedge t r^{\prime}=\operatorname{tr} \frown\langle a\rangle\right) \stackrel{ }{9} P
$$

(We use P to signify the process, and its predicate ("programs are predicates" - Hehner))

- The definition of sequential composition:

$$
\begin{aligned}
& P_{9} Q \widehat{=} \quad \exists o k_{0}, \text { wait }_{0}, t r_{0}, r e f_{0} \bullet \\
& P\left[o k_{0}, \text { wait }_{0}, \text { tr }_{0}, r e f_{0} / o k^{\prime}, \text { wait }^{\prime}, \text { tr }^{\prime}, r e f^{\prime}\right] \\
& \wedge \\
& Q\left[o k_{0}, \text { wait }_{0}, t r_{0}, r e f_{0} / o k, \text { wait, tr, ref }\right]
\end{aligned}
$$

(Relational Composition)

Bad Examples

Unfortunately we can also write predicates that are not sensible:

- Messing with time (unrealistic, infeasible):

$$
\begin{aligned}
& \text { tr }=\operatorname{tr}^{\prime} \frown\left\langle a_{1}, \ldots, a_{n}\right\rangle \\
& \text { wait } \wedge \neg \text { wait }^{\prime}
\end{aligned}
$$

- Arbitrary knowledge of/restrictions on past history (infeasible, impractical):

$$
\text { if } \begin{aligned}
\operatorname{tr} & =\left\langle a_{1}, \ldots, a_{n}\right\rangle \text { then } P \text { else } Q \\
\operatorname{tr} & =\langle a, b, c\rangle \wedge \operatorname{tr}^{\prime}=\langle a, b, c, d, e\rangle
\end{aligned}
$$

- Specifying Bad Things (undesirable)

$$
\neg o k^{\prime}
$$

We use a mechanism called Healthiness Conditions to filter these out.

Introducing Healthiness

- We want to prevent nonsense like: $t r=t r^{\prime} \frown \ldots$
- It seems reasonable that a healthy predicate entails $t r \leq t r^{\prime}$ (prefix)

$$
\text { Healthy } P \Rightarrow t r \leq t r^{\prime}
$$

- Plan: use a predicate-function (transformer!) mkH to make a predicate "H-healthy".
- Predicate function is idempotent: $\mathbf{m k H} \circ \mathbf{m k H}=\mathbf{m k H}$
- Healthy predicates are fixed-points of the predicate-function: isH $(P) \widehat{=} \equiv \mathbf{m k H}(P)$
- In UTP, it is usual to refer to both mkH and isH as simply \mathbf{H}.

Introducing R1

- We say a predicate is Reactive-1 (R1) Healthy if the trace is only extended:
- Looking at what is required:

$$
\begin{gathered}
\text { isR1 }(P) \\
\equiv \quad \text { "key property we want " } \\
P \Rightarrow t r \leq t r^{\prime} \\
\equiv \quad \text { "propositional calculus " } \\
P \equiv P \wedge t r \leq t r^{\prime}
\end{gathered}
$$

- Introducing R1:

$$
\begin{aligned}
G R O W & \widehat{=} t r \leq t r^{\prime} \\
\mathbf{m k R 1}(P) & \widehat{=} P \wedge G R O W \\
\mathbf{i s R 1}(P) & \widehat{=} P \equiv \mathbf{m k R 1}(P)
\end{aligned}
$$

R1 is idempotent

```
    R1(R1(P))
    \equiv "defn. R1, twice "
    (P\wedgeGROW)}\wedgeGRO
\equiv"^-assoc, -idem."
    P^GROW
    \equiv "defn R1, backwards "
    R1(P)
```


More Healthiness

- A Process is R2-healthy if it's behaviour does not depend on tr (past event history)

$$
\mathbf{R 2}(P) \widehat{=} \exists s \bullet P\left[s, s^{\frown}\left(\operatorname{tr}^{\prime}-\operatorname{tr}\right) / \operatorname{tr}, \operatorname{tr}^{\prime}\right]
$$

- A Process is R3-healthy if it specifies that nothing changes if it hasn't started (provided the previous process is not diverging).

$$
\begin{array}{rlr}
D I V & \widehat{=} \neg o k \wedge G R O W & \text { - divergence } \\
\text { STET } & \widehat{=} \text { wait }=\text { wait } \wedge t r^{\prime}=\operatorname{tr} \wedge r e f^{\prime}=r e f & \text { - no change } \\
I I & \widehat{=} D I V \vee o k^{\prime} \wedge S T E T & \\
\text { R3 }(P) & \widehat{=} I \| \text { wait } \triangleright P &
\end{array}
$$

- A process is Reactive-Healthy if it is R1-, R2- and R3-healthy

$$
\mathbf{R} \widehat{=} \mathbf{R} \mathbf{3} \circ \mathbf{R} \mathbf{2} \circ \mathbf{R} \mathbf{1}
$$

Commuting Healthiness

- Why did we compose in the order we did ?

$$
\begin{array}{rlrl}
\mathbf{R} & & =\mathbf{R} 3 \circ \mathbf{R} \mathbf{2} \circ \mathbf{R} \mathbf{1} \\
& =? & \mathbf{R} \mathbf{2} \circ \mathbf{R} \mathbf{3} \circ \mathbf{R} \mathbf{1} \\
& =? & \mathbf{R} \mathbf{2} \circ \mathbf{R} \mathbf{1} \circ \mathbf{R} \mathbf{3} \\
& =? & \mathbf{R} \mathbf{1} \circ \mathbf{R} \mathbf{2} \circ \mathbf{R} \mathbf{3} \\
& =? & \mathbf{R} \mathbf{1} \circ \mathbf{R} \mathbf{3} \circ \mathbf{R} \mathbf{2} \\
& =? & \mathbf{R} 3 \circ \mathbf{R} \mathbf{1} \circ \mathbf{R} \mathbf{2}
\end{array}
$$

- It is (very) useful to have healthiness conditions that commute:

$$
\mathbf{R 1} \circ \mathbf{R 2}=\mathbf{R} \mathbf{2} \circ \mathbf{R} \mathbf{1} \quad \mathbf{R 1} \circ \mathbf{R} 3=\mathbf{R} 3 \circ \mathbf{R} \mathbf{1} \quad \mathbf{R} 3 \circ \mathbf{R} \mathbf{2}=\mathbf{R} \mathbf{2} \circ \mathbf{R} 3
$$

Ideally these will be theorems.

Undefinedness

Undefinedness plays a role in these healthiness, conditions, particularly with R2.

$$
\exists s \bullet P\left[s, s^{\frown}\left(t r^{\prime}-\operatorname{tr}\right) / t r, t r^{\prime}\right]
$$

What happens if $t r \not \leq t r^{\prime} ?$
We attempt to prove that

$$
\mathbf{R} \mathbf{1} \circ \mathbf{R} \mathbf{2}=\mathbf{R} \mathbf{2} \circ \mathbf{R} \mathbf{1}
$$

Proof that R1 and R2 commute

```
    R2(R1(P))
\equiv " defn. R1"
    R2(P\wedgetr}\leqtr'
\equiv "defn. R2 "
    \existss\bullet(P\wedgetr\leqtr')[s,s`(tr' - tr)/tr,tr']
\equiv " apply substitution "
    \existss\bulletP[s,s`(tr' - tr )/tr,tr']^s\leqs` (tr' - tr)
\equiv "??? is s \leqs }\frown(t\mp@subsup{t}{}{\prime}-tr)\equiv\mathrm{ true ?"
    ????
```


Proof that R1 and R2 don't commute

$$
\begin{aligned}
& \mathbf{R 2 (R 1 (P))} \\
& \equiv \quad \text { "defn. R1" } \\
& \mathbf{R 2}\left(P \wedge t r \leq t r^{\prime}\right) \\
& \equiv \quad \text { "defn. R2" } \\
& \exists s \bullet\left(P \wedge t r \leq t r^{\prime}\right)\left[s, s^{\frown}\left(t r^{\prime}-t r\right) / t r, t r^{\prime}\right] \\
& \equiv \quad \text { "apply substitution " } \\
& \exists s \bullet P\left[s, s^{\frown}\left(t r^{\prime}-t r\right) / t r, t r^{\prime}\right] \wedge s \leq s \frown\left(t r^{\prime}-t r\right) \\
& \equiv \quad " s \leq s^{\frown \equiv \text { true" }} \\
& \exists s \bullet P\left[s, s^{\frown}\left(t r^{\prime}-t r\right) / t r, t r^{\prime}\right] \\
& \equiv \quad \text { "defn. R2" } \\
& \mathbf{R 2}(P) \quad!!!!
\end{aligned}
$$

Proof that R1 and R2 do commute

$$
\begin{aligned}
& \text { R2(R1 }(P)) \\
& \equiv \quad \text { "defn. R1" } \\
& \mathbf{R 2}\left(P \wedge t r \leq t r^{\prime}\right) \\
& \equiv \quad \text { "defn. R2" } \\
& \exists s \bullet\left(P \wedge t r \leq t r^{\prime}\right)\left[s, s^{\frown}\left(t r^{\prime}-t r\right) / t r, t r^{\prime}\right] \\
& \equiv \quad \text { "apply substitution " } \\
& \exists s \bullet P\left[s, s^{\frown}\left(t r^{\prime}-t r\right) / t r, t r^{\prime}\right] \wedge s \leq s^{\frown}\left(t r^{\prime}-t r\right) \\
& \equiv \quad " s \leq s \frown\left(t r^{\prime}-t r\right) \equiv t r \leq t r^{\prime}{ }^{\prime} \\
& \exists\left(s \bullet P\left[s, s \frown\left(t r^{\prime}-t r\right) / t r, t r^{\prime}\right] \wedge t r \leq t r^{\prime}\right) \\
& \equiv \text { "shrink scope" } \\
& \exists\left(s \bullet P\left[s, s \frown\left(t r^{\prime}-t r\right) / t r, t r^{\prime}\right]\right) \wedge t r \leq t r^{\prime} \\
& \equiv \quad \text { "defn. R2, R1" } \\
& \mathbf{R 1 (R 2 (P))}
\end{aligned}
$$

The Choice of Logic Does Matter !

- If we want R1 and R2 to commute, we must use a specific logic variant
- Semi-Classical Logic
- Predicates are two-valued
- Expression can be undefined, but this does not leak up to the Predicate level.
- As used in Z
- We have predicate-functions, and recursion requires us to quantify over predicates, so logic needs to be 2nd-order.

The Truth regarding $s \leq s^{\frown}\left(t r^{\prime}-t r\right)$

- In semi-classical logic, we require all terms/sub-terms to be defined (\mathcal{D}) :

$$
s \leq\left(s^{\frown t}\right) \equiv \mathcal{D}(s) \wedge \mathcal{D}(t)
$$

Variables are always defined (we only quantify over defined values), to we can deduce:

$$
\begin{aligned}
s \leq s^{\frown}\left(t r^{\prime}-t r\right) & \equiv \mathcal{D}(s) \wedge \mathcal{D}\left(t r^{\prime}-t r\right) \\
& \equiv t r \leq t r^{\prime}
\end{aligned}
$$

- Other logics (three-valued, or based on a notion of computation) may capture the notion that we don't need to know the value of t in order to show the truth of the above.

$$
s \leq s^{\frown} \equiv \text { true }
$$

Why not use an existing higher-order prover?

- PVS
- total functions, so need to model undefinedness explicitly
- Isabelle/HOL
- unclear how to embed own logic (possible, I know, but unclear what is involved)
- has explicit embedding of own logic into ML-like metalanguage
- CoQ
- Curry-Howard Isomorphism is cool, but ...
- also has a Totality Requirement
- Need to jump through "direct-sum" hoops to do simple proofs

Also, I prefer to see steps of a proof, rather than a list of tactics, as the final transcript

Introducing Saothín

- Proof Assistant (2nd-Order, semi-classical)
- Implemented in Haskell
- uses wxHaskell for GUI
- runs on Windows (98, XP, Vista)
- should run on Linux, Mac OS X
- See www. cs.tcd.ie/Andrew.Butterfield/Saothin/

Doing Formal Methods

Thesis:
" To do formal methods, one should implement a theorem prover "

Antithesis:

"you have not proved anything with your theorem prover until you have proved the theorem prover correct!"

Discuss.

Thank you for your kind attention

$$
\left(o k^{\prime}, \neg \text { wait }^{\prime}, \text { thirsty }^{\prime}\right)
$$

