
Friday Formal Get-Together What I did last summer 1

What I did last Summer

Andrew Butterfield

Trinity College, University of Dublin

Friday Get-Together

November 30th 2007

TCD

P∨¬ P R1◦R2=R2◦R1



Friday Formal Get-Together What I did last summer 2

Introduction

• Context

– Developing Theories as part of UTP (Unifying Theories of Programming)

– Predicates relating pre- and post-observations

– Notion of Healthy Predicates (realistic, feasible, desirable, practical)

– Interestin so-called “Reactive Systems” (concurrent/event-driven)

• Issue

– Long tedious proofs

– Logic needs to be 2nd-order (at least)

– Specific handling of undefinedness

P∨¬ P R1◦R2=R2◦R1



Friday Formal Get-Together What I did last summer 3

Reactive Systems

To model reactive systems (a.k.a. “processes”) we need to track four observations:

ok : B — process is stable (not diverging)

wait : B — process is waiting for an event, and has not terminated

tr : Event∗ — event history

ref : P Event — events being refused

We define predicates that relate the before-state (ok, wait, tr , ref ) to the after-state

(ok ′, wait ′, tr ′, ref ′) of a process (Relational Semantic Model).

The language used to describe processes is very CSP-like.

P∨¬ P R1◦R2=R2◦R1



Friday Formal Get-Together What I did last summer 4

Examples

• A process that performs event a and then terminates (a → SKIP)

ok ′ ∧ ¬ wait ′ ∧ tr ′ = tr a 〈a〉

• A process that performs a and then behaves like process P (a → P)

(ok ′ ∧ ¬ wait ′ ∧ tr ′ = tr a 〈a〉) o
9 P

(We use P to signify the process, and its predicate (“programs are predicates” - Hehner))

• The definition of sequential composition:

P o
9 Q =̂ ∃ ok0, wait0, tr0, ref0 •

P[ok0, wait0, tr0, ref0/ok ′, wait ′, tr ′, ref ′]

∧
Q[ok0, wait0, tr0, ref0/ok, wait, tr , ref ]

(Relational Composition)

P∨¬ P R1◦R2=R2◦R1



Friday Formal Get-Together What I did last summer 5

Bad Examples

Unfortunately we can also write predicates that are not sensible:

• Messing with time (unrealistic, infeasible):

tr = tr ′ a 〈a1, . . . , an〉
wait ∧ ¬ wait ′

• Arbitrary knowledge of/restrictions on past history (infeasible, impractical):

if tr = 〈a1, . . . , an〉 then P else Q

tr = 〈a, b, c〉 ∧ tr ′ = 〈a, b, c, d, e〉

• Specifying Bad Things (undesirable)

¬ ok ′

We use a mechanism called Healthiness Conditions to filter these out.

P∨¬ P R1◦R2=R2◦R1



Friday Formal Get-Together What I did last summer 6

Introducing Healthiness

• We want to prevent nonsense like: tr = tr ′ a . . .

• It seems reasonable that a healthy predicate entails tr ≤ tr ′ (prefix)

Healthy P ⇒ tr ≤ tr ′

• Plan: use a predicate-function (transformer!) mkH to make a predicate “H-healthy”.

– Predicate function is idempotent: mkH ◦ mkH = mkH

– Healthy predicates are fixed-points of the predicate-function: isH(P) =̂ P ≡ mkH(P)

• In UTP, it is usual to refer to both mkH and isH as simply H.

P∨¬ P R1◦R2=R2◦R1



Friday Formal Get-Together What I did last summer 7

Introducing R1

• We say a predicate is Reactive-1 (R1) Healthy if the trace is only extended:

• Looking at what is required:

isR1(P)

≡ “ key property we want ”

P ⇒ tr ≤ tr ′

≡ “ propositional calculus ”

P ≡ P ∧ tr ≤ tr ′

• Introducing R1:

GROW =̂ tr ≤ tr ′

mkR1(P) =̂ P ∧ GROW

isR1(P) =̂ P ≡ mkR1(P)

P∨¬ P R1◦R2=R2◦R1



Friday Formal Get-Together What I did last summer 8

R1 is idempotent

R1(R1(P))

≡ “ defn. R1, twice ”

(P ∧ GROW) ∧ GROW

≡ “ ∧-assoc, -idem. ”

P ∧ GROW

≡ “ defn R1, backwards ”

R1(P)

P∨¬ P R1◦R2=R2◦R1



Friday Formal Get-Together What I did last summer 9

More Healthiness

• A Process is R2-healthy if it’s behaviour does not depend on tr (past event history)

R2(P) =̂ ∃ s • P[s, s a (tr ′ − tr)/tr , tr ′]

• A Process is R3-healthy if it specifies that nothing changes if it hasn’t started (provided the

previous process is not diverging).

DIV =̂ ¬ ok ∧ GROW — divergence

STET =̂ wait ′ = wait ∧ tr ′ = tr ∧ ref ′ = ref — no change

II =̂ DIV ∨ ok ′ ∧ STET

R3(P) =̂ II C wait B P

• A process is Reactive-Healthy if it is R1-, R2- and R3-healthy

R =̂ R3 ◦ R2 ◦ R1

P∨¬ P R1◦R2=R2◦R1



Friday Formal Get-Together What I did last summer 10

Commuting Healthiness

• Why did we compose in the order we did ?

R =̂ R3 ◦ R2 ◦ R1

=? R2 ◦ R3 ◦ R1

=? R2 ◦ R1 ◦ R3

=? R1 ◦ R2 ◦ R3

=? R1 ◦ R3 ◦ R2

=? R3 ◦ R1 ◦ R2

• It is (very) useful to have healthiness conditions that commute:

R1 ◦ R2 = R2 ◦ R1 R1 ◦ R3 = R3 ◦ R1 R3 ◦ R2 = R2 ◦ R3

Ideally these will be theorems.

P∨¬ P R1◦R2=R2◦R1



Friday Formal Get-Together What I did last summer 11

Undefinedness

Undefinedness plays a role in these healthiness, conditions, particularly with R2.

∃ s • P[s, s a (tr ′ − tr)/tr , tr ′]

What happens if tr 6≤ tr ′ ?

We attempt to prove that

R1 ◦ R2 = R2 ◦ R1

P∨¬ P R1◦R2=R2◦R1



Friday Formal Get-Together What I did last summer 12

Proof that R1 and R2 commute

R2(R1(P))

≡ “ defn. R1 ”

R2(P ∧ tr ≤ tr ′)

≡ “ defn. R2 ”

∃ s • (P ∧ tr ≤ tr ′)[s, s a (tr ′ − tr)/tr , tr ′]

≡ “ apply substitution ”

∃ s • P[s, s a (tr ′ − tr)/tr , tr ′] ∧ s ≤ s a (tr ′ − tr)

≡ “ ??? is s ≤ s a (tr ′ − tr) ≡ true ? ”

????

P∨¬ P R1◦R2=R2◦R1



Friday Formal Get-Together What I did last summer 13

Proof that R1 and R2 don’t commute

R2(R1(P))

≡ “ defn. R1 ”

R2(P ∧ tr ≤ tr ′)

≡ “ defn. R2 ”

∃ s • (P ∧ tr ≤ tr ′)[s, s a (tr ′ − tr)/tr , tr ′]

≡ “ apply substitution ”

∃ s • P[s, s a (tr ′ − tr)/tr , tr ′] ∧ s ≤ s a (tr ′ − tr)

≡ “ s ≤ s a ≡ true ”

∃ s • P[s, s a (tr ′ − tr)/tr , tr ′]

≡ “ defn. R2 ”

R2(P) !!!!

P∨¬ P R1◦R2=R2◦R1



Friday Formal Get-Together What I did last summer 14

Proof that R1 and R2 do commute

R2(R1(P))

≡ “ defn. R1 ”

R2(P ∧ tr ≤ tr ′)

≡ “ defn. R2 ”

∃ s • (P ∧ tr ≤ tr ′)[s, s a (tr ′ − tr)/tr , tr ′]

≡ “ apply substitution ”

∃ s • P[s, s a (tr ′ − tr)/tr , tr ′] ∧ s ≤ s a (tr ′ − tr)

≡ “ s ≤ s a (tr ′ − tr) ≡ tr ≤ tr ′ ”

∃(s • P[s, s a (tr ′ − tr)/tr , tr ′] ∧ tr ≤ tr ′)

≡ “ shrink scope ”

∃(s • P[s, s a (tr ′ − tr)/tr , tr ′]) ∧ tr ≤ tr ′

≡ “ defn. R2, R1 ”

R1(R2(P))
P∨¬ P R1◦R2=R2◦R1



Friday Formal Get-Together What I did last summer 15

The Choice of Logic Does Matter !

• If we want R1 and R2 to commute, we must use a specific logic variant

• Semi-Classical Logic

– Predicates are two-valued

– Expression can be undefined, but this does not leak up to the Predicate level.

– As used in Z

• We have predicate-functions, and recursion requires us to quantify over predicates, so logic

needs to be 2nd-order.

P∨¬ P R1◦R2=R2◦R1



Friday Formal Get-Together What I did last summer 16

The Truth regarding s ≤ s a (tr ′ − tr)

• In semi-classical logic, we require all terms/sub-terms to be defined (D):

s ≤ (s a t) ≡ D(s) ∧ D(t)

Variables are always defined (we only quantify over defined values), to we can deduce:

s ≤ s a (tr ′ − tr) ≡ D(s) ∧ D(tr ′ − tr)

≡ tr ≤ tr ′

• Other logics (three-valued, or based on a notion of computation) may capture the notion that we

don’t need to know the value of t in order to show the truth of the above.

s ≤ s a ≡ true

P∨¬ P R1◦R2=R2◦R1



Friday Formal Get-Together What I did last summer 17

Why not use an existing higher-order prover?

• PVS

– total functions, so need to model undefinedness explicitly

• Isabelle/HOL

– unclear how to embed own logic (possible, I know, but unclear what is involved)

– has explicit embedding of own logic into ML-like metalanguage

• CoQ

– Curry-Howard Isomorphism is cool, but . . .

– also has a Totality Requirement

– Need to jump through “direct-sum” hoops to do simple proofs

Also, I prefer to see steps of a proof, rather than a list of tactics, as the final transcript

P∨¬ P R1◦R2=R2◦R1



Friday Formal Get-Together What I did last summer 18

Introducing Saothı́n

• Proof Assistant (2nd-Order, semi-classical)

• Implemented in Haskell

– uses wxHaskell for GUI

– runs on Windows (98, XP, Vista)

– should run on Linux, Mac OS X

• See www.cs.tcd.ie/Andrew.Butterfield/Saothin/

P∨¬ P R1◦R2=R2◦R1



Friday Formal Get-Together What I did last summer 19

Doing Formal Methods

Thesis:

“ To do formal methods, one should implement a theorem prover ”

Antithesis:

“you have not proved anything with your theorem prover until you have proved the theorem

prover correct!”

Discuss.

P∨¬ P R1◦R2=R2◦R1



Friday Formal Get-Together What I did last summer 20

Thank you for your kind attention

(ok ′,¬ wait ′, thirsty ′)

P∨¬ P R1◦R2=R2◦R1


