
Notes on “Algebra of Programming”

Glenn Strong
Department of Computer Science

Trinity College, Dublin
Dublin
Ireland

Glenn.Strong@cs.tcd.ie

December 15, 1999

1 Background

In the book “Algebra of Programming”[3] it is asserted that:

〈sum, length〉 = ([zeros, pluss])

In the notation of Bird and de Moor, to be discussed later, each side of this
equation describes the computationally expensive portion of a function to calculate
the average (mean) of a list of natural numbers, under suitable definitions of sum,
length, etc. The equation denotes the equivalence of two forms of this function, an
efficient version and an inefficient version.

Each side indicates a function to produce a pair of numbers, such that when
the first is divided by the second will be the average of the list. In functional
programming terms there are three functions whose types are:

sum :: [Int] -> Int
length :: [Int] -> Int
sumlen :: [Int] -> (Int,Int)

The sumlen function corresponds to the ([zeros, pluss]) form, and represents a func-
tion which will only traverse its argument once. Assuming the existence of some
function div which divides pairs

div (a,b) = a/b

then the average of a list is

average = div (sum,length)

or, using sumlen,

average = div sumlen

This second form is a more efficient implementation provided that sumlen is ex-
pressed in such a way that it only traverses its argument once. Bird and de Moor
claim that ([zeros, pluss]) (which is more fully explained in section 2) is such a form.

An attempt to prove this requires one to understand and use much of the mate-
rial from the preceding two chapters of the book. It provides, however, a valuable
insight into the techniques for program derivation offered by Bird/de Moor. In ad-
dition, deriving an implementation of this provides a useful link to “Introduction to
Functional Programming using Haskell”[1] in which the problem is also mentioned.

1



1.1 Notation

Chapter two of Bird/de Moor introduces the concepts and notation, based on Cat-
egory Theory[4], which will be required to understand the proof. This section
provides a brief introduction to the notation, and provides some of the laws. For
details, including proofs of properties, consult chapter 2 of Bird and de Moor. In
particular, many definitions and functors introduced in the book are omitted here
as they are not directly used in to the proof.

• The terminal object of a category is written 1, and has the property that for
all objects in the category there is a unique arrow from each object of the
category to it.

• A pair of arrows can be written 〈A,B〉. Pairs satisfy the following “fusion
law” for composition:

〈f, g〉 ·m = 〈f ·m, g ·m〉 (1)

The “cancellation laws” for these objects are:

outl · 〈f, g〉 = f (2)
outr · 〈f, g〉 = g (3)

These introduce a pair of functors, outl and outr which are used to manipulate
pairs.

• A product of two objects (A and B) is written A×B. If each pair of objects
in a category has a product, then × can be made into a bifunctor:

f × g = 〈f · outl, g · outr〉 (4)

• Coproducts are written A + B, and the unique arrow from A + B to C is
written [f, g]. The pronunciation “case f or g” is suggested. The so-called
“coproduct fusion law” is:

m · [h, k] = [m · h,m · k] (5)

The “exchange law” (the proof of which is left as an exercise in Bird/de Moor)
is

〈[f, g], [h, k]〉 = [〈f, h〉, 〈g, k〉] (6)

This law can be imagined as representing a pair of selections; naturally, it will
result in one of two pairs.1

• Type definitions are written in a style familiar to functional programmers.
The natural numbers, for instance, can be written:

Nat ::= zero|succ Nat

A declaration of this form introduces an initial algebra, α; in this case it is
[zero, succ], of a functor F. The functor F is defined here as:

FA = 1 +A

Fh = id1 + h

1In the interests of completeness the following proof of the exchange law should be sufficient:
= { By m · [a, b] = [m · a, m · b], (p. 42 in Bird de Moor) }

outl · [〈f, h〉, 〈g, k〉] = [f, g]
outr · [〈f, h〉, 〈g, k〉] = [h, k]

= { 〈outl, outr〉 = id, by definition of id }
〈[f, g], [h, k]〉 = id · [〈f, h〉, 〈g, k〉]

= { id ·m = m }
〈[f, g], [h, k]〉 = [〈f, h〉, 〈g, k〉]

2



(in Bird/de Moor a functor F maps both arrows to arrows and objects to
objects, hence the two equations).

• Catamorphisms are written:
([c, f ])

This is a shorthand for ([[c, f ]]) which drops the inner brackets. Catamor-
phisms can be used to represent iterative computational schemes. If h is some
catamorphism on Nat: h = ([c, f ]), then

h(0) = c

h(n+ 1) = f(n, h n)

See section 3

2 The List Average Problem

2.1 Definitions

A cons list over some type A is:

listr A ::= nil | cons (A, listr A)

which has an initial algebra [nil, cons] of the functor

F(A,B) = 1 + (A×B) (7)
Ff = id1 + (id× f) (8)

while the type of natural numbers is:

Nat ::= zero | Succ Nat

The function sum which returns the sum of a list of natural numbers is:

sum = ([zero, plus])

The function length which returns the number of elements in a list is:

length = ([zero, succ · outr ])

We can define a function average which returns the median of a list of natural
numbers:

average = div · 〈sum, length〉

For completeness, let us define plus and div (which will have to be total):

plus(a, b) = a + b

div(0 , 0 ) = 0
div(a, b) = a/b

3



2.2 The Banana Split Law

A naive implementation of this previous definition of average will result in a program
which traverses its argument twice. Let us introduce the “banana-split law” which
enables us to express any pair of catamorphisms as a single catamorphism.

〈([h]), ([k])〉 = ([〈h · F outl, k · F outr〉]) (9)

The proof of this equation is on page 56 of Bird/de Moor.
Bird and de Moor assert that this equation can be used to convert the previous

definition of average thus:

〈sum, length〉 = ([zeros, pluss])

where
zeros = 〈zero, zero〉

and
pluss(a, (b, n)) = (a+ b, n+ 1)

2.3 Proof

Bird and de Moor leave it to the reader to prove the equality of the two imple-
mentations of average. We will spend the remainder of this section proving this
equivalence. Throughout the proof page and section references in italics are ref-
erences to Bird and de Moor[3]. Note that a somewhat more abbreviated proof is
available in the supplementary material to Bird and de Moor[2]. This more detailed
exposition of the proof will hopefully serve to fully illustrate the process involved
in creating category theoretic proofs in the Bird and de Moor system.

〈sum, length〉

= { Definition of sum and length}

〈([zero, plus]), ([zero, succ · outr])〉

= { By the banana split law (eq. 9) (p. 56))}

([[zero, plus] · F outl, [zero, succ · outr] · F outr])

= { By the definition of F (eq. 7, eq. 8) (p.49) }

([[zero, plus] · (1 + (id× outl)), [zero, succ · outr] · (1 + (id× outr))])

= {By coproduct fusion, eq. 5 (p.42) }

([[zero · 1, plus · (id× outl)], [zero · 1, succ · outr · (id× outr)]])

= {zero is constant}

([[zero, plus · (id× outl)], [zero, succ · outr · (id× outr)]])

= {By definition of × (eq 4) (p. 40, eq. 2.7)}

([[zero, plus · (id× outl)], [zero, succ · outr · 〈id · outl, outr · outr〉]])

= {Defn. of outr (eq 3) (p. 41)}

([[zero, plus · (id× outl)], [zero, succ · outr · outr]])

4



= {Using the exchange law (eq. 6) (p. 45)}

([〈zero, zero〉, 〈plus · (id× outl), succ · outr · outr〉])

Now to obtain the original definition it is sufficient to define zeros as it is defined
above, and to formulate some pointwise function pluss:

〈plus · (id× outl), succ · outr · outr〉 (a, (b, n))

= { fusion law for pair (eq. 1)}

(plus((id× outl)(a, (b, n))), succ(outr(outr(a, (b, n)))))

= { (f × g)〈p, q〉 = 〈f p, g q〉 and defn of outr (eq.3)}

(plus(a, b), succ n)

= { defn. of plus and succ }
(a+ b, n+ 1)

So using this we have shown that

〈sum, length〉 = ([zeros, pluss])

3 Deriving an implementation

In order to derive an implementation we will first need to understand what a cata-
morphism is in listr . To recap,

listrA ::= nil|cons(A, listrA)

therefore

α = [nil, cons]
Fh = id+ (id× f)

if h is the catamorphism ([c, f ]), then what function is h?

h = ([c, f ])

= { By definition of catamorphisms (p. 46 ) }

h · α = [nil, cons] · Fh

= { By definition of F (eq. 8) }

h · α = [c, f ] · (id+ (id× h))

= { Fusion coproduct }
h · α = [c · id, f · (id× h)]

= { definition of (×) }

h · α = [c · id, f · 〈id · outl, h · outr〉]

= { Definition of id }
h · α = [c, f · 〈outl, h · outr〉]

5



= { Definition of α }

h · [nil, cons] = [c, f · 〈outl, h · outr〉

= { coproduct }
[h · nil, h · cons] = [c, f · 〈outl, h · outr〉]

= { Cancellation }

h · nil = c

h · cons = f · 〈outl, h · outr〉

= { Introduce pointwise expression }

h nil = c

h (cons (a, b)) = f · 〈outl, h · outr〉(a, b)

= { Simplify }

h nil = c (10)
h (cons (a, b)) = f (a, h b) (11)

This function is the foldr function familiar to functional programmers.

3.1 Sum

Using equations 10 and 11 we can derive a clear expression of the sum catamor-
phism:

sum = ([zero, plus])

= { Equations 10 and 11 }

sum nil = zero

sum (cons(a, b)) = plus(a, (sum b))

In a functional programming notation, nil is written [] and cons is an infix function
written (_:_). The symbol zero is written 0, and plus is an infix function written
_+_:

sum [] = 0
sum (a:b) = a+(sum b)

3.2 Length

length = ([zero, succ · outr])

= { Equations 10 and 11 }

length nil = zero

length (cons(a, b)) = succ · outr(a, average b)

= { Definition of outr }

length nil = zero

length (cons(a, b)) = succ(average b)

As before we can write this in the notation of functional programming languages.
The successor function, succ can be written as 1+:

length [] = 0
length (a:b) = 1+(length b)

6



3.3 Average

average = div · 〈sum, length〉

= { direct substitution }

average a = div(sum a, length a)

Which, when written in the style of a functional program gives us:

average a = div (sum a,length a)
where

sum [] = 0
sum (a:b) = a+(sum b)

length [] = 0
length (a:b) = 1+(length b)

Clearly this is unsatisfactory; there will be two traversals of the input list just as
discussed previously. Now compare the implementation we can derive from the
second version we produced:

average = div · 〈sum, length〉

= { Banana split law }

average = div · ([zeros, pluss])

= { Section 2.3 }

average = div · ([〈zero, zero〉, 〈plus · (id× outl), succ · outr · outr〉])

= { Setting h to be the catamorphism on the r.h.s }

average = div · h

We must now derive an implementation for the catamorphism h.

h = ([〈zero, zero〉, 〈plus · (id× outl), succ · outr · outr〉])

= { Equations 10 and 11 }

h nil = 〈zero, zero〉
h (cons(a, b)) = 〈plus · (id× outl), succ · outr · outr(a, h b)〉

=

h nil = 〈zero, zero〉
h (cons(a, b)) = 〈plus · (id× outl)(a, h b), succ · outr · outr(a, h b)〉

= { id, outl and outr }

h nil = 〈zero, zero〉
h (cons(a, b)) = 〈plus · (id a, outl(h b)), succ · outr(h b)〉

This too can be written in a functional style. The functors outl and outr can be
written fst and snd if we use the standard tuple notation to represent pairs (that
is, parentheses surround the elements and commas separate them).

7



h [] = (0,0)
h (a:b) = (a+(fst (h b)),1+(snd (h b)))

We can simplify this if we introduce the notational convenience of a where clause.
We might wish to state that within the second equation,

c = fst (h b)
d = snd (h b)

or, more succinctly

(c,d) = h b

We create such a local definition by using the word where on the right hand side of
the equation we wish the definition to be contained in.

h [] = (0,0)
h (a:b) = (a+c,1+d)

where (c,d) = h b

3.4 Completing the implementation

It only remains to provide an implementation for div.

div (0,0) = 0
div (a,b) = a/b

By substitution, the final implementation is (composition, f · g is written f.g in
Haskell [1]).

average = div . h
where h [] = (0,0)

h (a:b) = (a+c,1+d)
where (c,d) = h b

div (a,b) = a/b

References

[1] Richard Bird. Introduction to Functional Programming using Haskell. Prentice
Hall, 1998.

[2] Richard Bird and Oege de Moor. Untitled documents for “algebra of program-
ming”. http://www.comlab.ox.ac.uk/oucl/publications/books/algebra/
book.html.

[3] Richard Bird and Oege de Moor. Algebra of Programming. Prentice Hall, 1996.

[4] F. W. Lawvere and Stephen H. Schanuel. Conceptual Mathematics: a first
introduction to categories. Buffalo Workshop Press, Buffalo, NY, 1991.

8


