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1 Introduction

An often cited advantage of functional programming languages is that they
are supposed to be easier to reason about than imperative languages [BW88,
p1],[PJ87, p1],[Bd87, p23],[BJLM91, p17],[Hen87, pp6–7],[Dav92, p5] with the
property of referential transparency getting a prominent mention and the notion
of side-effect being deprecated all round. For a long time, a major disadvantage
of functional programming languages was their inability to adequately handle
features where side-effects are an intrinsic component, such as file or other I/O
operations [BJLM91, p139],[Gor94, p-xi]. However, two methodologies have
emerged in the last decade to combine the side-effect world of I/O with the ref-
erentially transparent world of functional programming, namely the uniqueness
type system of the programming language Clean [BS00] and the use of monads
in the Haskell language [Gor94][Bir98, Chp 10, pp326–359].
However, as a consequence of these developments, functional programs written
in these languages now look very like imperative programs — as evidenced by
sample programs appearing later in this paper. This immediately raises concerns
about the relative ease of reasoning about such programs, when compared to
similar programs done in an imperative style.
Question: Has the technical machinery necessary to handle I/O in pure
functional languages, led to a situation where correctness proofs have the same
difficulty as those found in imperative programs ?
Question: Can these same technical developments be applied to imperative
programs in order to make it easier to reason about them ?
In other words, have we ended up in a situation where there is little to choose
between functional and imperative languages when it comes to reasoning about
“real-world” programs that interact with the environment in an effective man-
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ner ?
A second issue concerns the relative ease of reasoning when using either of
the two technical alternatives, namely uniqueness typing and/or monads. The
uniqueness typing approach uses the type-system to ensure that the external
“world” is accessed in an single-threaded fashion, so that an underlying imple-
mentation can safely implement operations on the world using side-effects, while
still maintaining referential transparency. From the programmer’s perspective
nothing changes in the program, except that it must satisfy the type-checker.
The monadic approach uses an abstract datatype which enforces single-threaded
use of world resources, but which also requires the programmer to explicitly
make use of this datatype and its operations. In effect, the monad acts as a
wrapper around the potentially dangerous operations.
Question: Does the explicit monadic wrapper and its laws make the monadic
I/O program harder to reason about when compared to a similar uniquely typed
program ?

1.1 Methodology

The key aim of this work is to establish the effect the choice of paradigm has
on the ease of reasoning. In particular we wish to avoid differences introduced
by idiosyncrasies associated with real world instances of these paradigms. The
paradigms under study, and well-known real world instances are:

Imperative: explicit side-effects with sequencing and assignment (C [KR88]).

Uniquely-Typed: referentially transparent with side-effects guaranteed single-
threaded by a type-system dealing with uniqueness (Clean [PvE98]).

Monadic: referentially transparent with side-effects guaranteed single-threaded
by embedding them within monads (Haskell [PH+99]).

The C programming language and Unix operating system have led to a fairly
standardised set of I/O system calls, most of which are found with similar
names, signature and behaviour in the Clean I/O system. However, the Haskell
I/O system has some differences in both names and signatures with consequent
differences in behaviour. The Clean I/O system also has system calls which
have no counterpart in C, but which facilitate the use of the uniqueness type
system. In order to factor out these differences, we needed to work with modified
versions of each language to make the I/O system appear as uniform as possible.
The case study involved the following steps:

1. Choose the task to be performed by the program

2. Write and run real programs as a check

3. Develop a standardised I/O model

4. Rework the programming languages to make them uniform

5. Re-write the programs to conform to the reworked languages and I/O
model
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6. Develop formal denotational semantics for the languages

7. State property to be proved and attempt proofs.

8. Develop non-denotational semantics for the languages

9. State and prove properties

Task Choice

We wanted a small case-study to start, in order that we did not get swamped in
too much messy detail. The key requirement was that the program performed
some I/O and that the desired property would refer both to the external world
and to some property of the data involved. We chose a simple task which
involved opening a file with a fixed filename (“a”), reading an integer from
it, closing it, re-opening it, and writing the square of that integer back. The
property to be checked was: given the existence of such a file with at least one
integer, that that file would end up with only one integer value, being the square
of the original value.

Real Programs

Real programs were written in C, Clean and and Haskell, compiled and run. This
step was particularly important for the Clean program as a key issue (discussed
in more detail later) is that we can rely on the uniqueness typing to ensure
single-threaded use of the I/O functions. So we needed to use a real program
to be certain that we did have the required uniqueness typing. Similarly, with
Haskell, we ensured that the IO monad usage was correctly typed. The Haskell
program also made use of an auxiliary function definition so that it would have
the same overall structure as the other two programs.

I/O Model

As a common background to the three cases, we developed a uniform model
of file I/O to be used in all proofs. This model captures the notion of a “file-
system” and the behaviour of the required file manipulation functions.

Reworked Languages

The programming languages were re-designed to minimise the differences be-
tween them, apart form the paradigm difference under study. In particular, the
C-like language was assumed to have the same expression syntax and value space
as those available in the Clean- and and Haskell-like languages. The re-worked
languages were kept small, only covering the features needed for the case-study.
The re-working also ensured that the overall structure of each program would
not be changed, in order to avoid the risk of introducing type errors.
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Reworked Programs

The programs were then translated into their re-worked languages, which in the
main involved the renaming of the file operation functions, and some re-ordering
of arguments.

Denotational Semantics

Initially it was decided to develop a denotational semantics [Sch88] for the three
re-worked languages, largely because we were used to this approach and felt
happiest about getting the semantic model correct. Denotational semantics
were produced for the C-like and Clean-like languages, but not for the Haskell-
like language (this would be almost identical to that for the Clean-like language,
in any case).

Denotational Proofs

Proofs based on the denotational semantics were then attempted for the C-
like and Clean-like programs. However, these proofs rapidly became unwieldy,
largely due to the environment information being handed around. After a short
struggle it was decided to abandon these proofs in favour of more tractable
techniques. The partial proofs are shown in section 7. for reference. However,
some of the domains developed for the denotational semantics did prove very
useful in the later semantic models, so this effort was not entirely wasted.

non-Denotational Semantics

It was decided to develop semantics that would support proofs at the program
text level, with use being made of so-called “laws of programming” or source-
language transformation rules. For the C-like language we explored the use of
Hoare triples [HJ98] and weakest precondition [Mor94], and finally settled on
the Hoare triples as a proof methodology.
For the functional languages, we simply built a collection of re-write rules nec-
cessary to perform the proofs, rather than giving a complete set.
In all three cases, we integrated the I/O model with the semantics being devel-
oped. Interestingly, both the C-like and Haskell-like semantics required addi-
tional machinery to be introduced.

non-Denotational Proofs

For each paradigm, we stated in the property to be proved in the appropriate
manner. We then proceeded to do the proofs, ensuring that the proofs were com-
plete that all necessary lemmas were handled, and paying particular attention
to the pre-conditions of the operations.

2 The I/O Model

We develop an IO model to suit the case-study.
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2.1 The World and the File-System

We posit a ‘world’ where everything of interest happens:

W ∈ World =̂ FS × Events ×WWW × · · ·
Events =̂ . . .

WWW =̂ . . .

The world contains interesting sub-systems such as the file-system of the local
machine, GUI event queues, internet access, up to and including the World
Wide Web. We shall only be interested in the file system component (FS ).
The file system maps filenames to files:

Φ ∈ FS =̂ FName m→ File
n ∈ FName =̂ A?

f ∈ File =̂ FState × FData

The file includes the file’s data contents, as well as the file state. For present
purposes, we shall simply view the file data as being sequences of integers

δ ∈ FData =̂ Z?

We shall adopt the principle for this exercise, that a file can be opened many
times for reading, but only once for writing. Also it cannot simultaneously be
opened for both reading or writing. The file state ensures sensible patterns of
access, by maintaining information about files which are opened for reading or
writing, ensuring that only one writer exists at any point, and keeping track of
the number of readers.

Σ ∈ FState =̂ Closed

| Write

| Read N

Once a file is opened, we use a file status block, which tracks the state of the
open file.

f ∈ FStatus =̂ HWrite FName FData
| HRead FName FData FData

We split read data into two portions, that already read, and that remaining to
be read, in order to simulate the motion of a read-head. The read status:

HRead n δr δw

denotes a file where portion δr has been read (r), while section δw is still waiting
(w). We put the filename into the file status block, to facilitate the process of
file closing (it is a sort of back-link into the filesystem).
We need to define a file mode in order to be able to specify what kind of file
status is required:

m ∈ FMode =̂ {FRead,FWrite}
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2.2 The Operations

We now give definitions of all the operations. We shall adopt a standard frame-
work in order that the semantics definitions can be kept uniform. In general an
I/O operation takes some control or input data as a first argument, the world
(or a relevant portion) as a second argument, and returns a tuple consisting of
a result value and the modified world:

InputOutputOp : Val →World →Val ×World

Here we assume Val includes all possible program values. If there is no Val
input or result, we omit that component.
For file operations, we restrict ourselves to the file-system part of the world:

FileOp : Val → FS →Val × FS

2.2.1 The fopen Operation

The fopen operation takes a filename, file mode and file-system argument, and
returns a file-system and file status block:

fopen : FName × FMode → FS → FStatus × FS

The operation is defined if

• the mode is Write and the file does not exist, or

• the mode is Write, the file exists, but is not already open, or

• the mode is Read, the file exists, and is either closed or open for reading.

pre-fopen : FName × FMode → FS → B
pre-fopen(n,FWrite)Φ =̂ n ∈ dom Φ → π1Φ(n) = Closed , True

pre-fopen(n,FRead)Φ =̂ n ∈ dom Φ → π1Φ(n) 6= Write , False

The behaviour of the operation is as follows:

• If the mode is FWrite then, a file is created if not already present, it’s
contents are erased, state set to Write and a file status block is built and
returned.

• If the mode is FRead then the file status is set to Read if not already
so, and its reader count is adjusted. A file status block is then returned
with nothing read, and everything left to read.
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fopen(n,FWrite)Φ =̂ (h, Φ † {n 7→ f})
where

h = HWrite n Λ
f = (Write,Λ)

fopen(n,FRead)Φ =̂ (h, Φ † {n 7→ f})
where

h = HRead n Λ δ

f = (Read r, δ)
r = π1(Φ(n)) = Closed → 1 , π1(π1(Φ(n))) + 1
δ = π2(Φ(n))

2.2.2 The fclose Operation

The fclose operation takes a file status block, and file-system argument, and
returns a file-system:

fclose : FStatus → FS → FS

The operation is defined if

• the file is present in the filesystem, and

• the filesystem version is in the same mode

pre-fclose : FStatus → FS → B
pre-fclose (HWrite n ) Φ =̂ n ∈ dom Φ

∧ π1(Φ(n)) = Write

pre-fclose (HRead n ) Φ =̂ n ∈ dom Φ
∧ π1(Φ(n)) = Read

Note: no file should exist that does not satisfy this pre-condition, as long as
our system has only one filesystem and all files are generated by fopen and only
modifed by freadi or fwritei. We add the condition to stress this important
property.
The behaviour of the operation is as follows:

• If the file was open for writing, then the file-data becomes that of the
file-status block, and the file state becomes closed.

• If the file was open for reading, the status block is discarded and the count
in the file state is decremented. If the count reaches zero, then the state
becomes closed.
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fclose (HWrite n δ) Φ =̂ Φ † {n 7→ (Closed, δ)}
fclose (HRead n ) Φ =̂ Φ † {n 7→ (s, δ)}

where

((Read r), δ) = Φ(n)
s =̂ r = 1 → Closed , Read (r − 1)

2.2.3 The fwritei Operation

The fwritei operation takes a file status block, and integer arguments and returns
a modified file-status block:

fwritei : Z→ FStatus → FStatus

The operation is defined if

• the status block mode is HWrite.

pre-fwritei : Z→ FStatus → B
pre-fwritei[i](HWrite ) =̂ True

pre-fwritei[i](HRead ) =̂ False

The behaviour of the operation is as follows:

• The integer is appended to the file data sequence

fwritei[i](HWrite n δ) =̂ HWrite n (δ _ 〈i〉)

2.2.4 The freadi Operation

The freadi operation takes a file-status block, as input, and returns a modified
file-status block and integer as result

freadi : FStatus → Z× FStatus

The operation is defined if

• the status block is in FRead mode and,

• there is at least one more integer to be read.

pre-freadi : FStatus → B
pre-freadi(HWrite ) =̂ False

pre-freadi(HRead δ) =̂ δ 6= Λ

The behaviour of the operation is as follows:

• The head of the list of items still to be read is transferred to the tail of
the items already read list, and

• it is also returned as the outcome of the read.

freadi(HRead n δr (i : δw)) =̂ (i, (HRead n (δr
_ 〈i〉) δw))
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2.3 I/O Model Signature Summary

W ∈ World =̂ FS × Events ×WWW × · · ·
Events =̂ . . .

WWW =̂ . . .

Φ ∈ FS =̂ FName m→ File
n ∈ FName =̂ A?

f ∈ File =̂ FState × FData
δ ∈ FData =̂ Z?

Σ ∈ FState =̂ Closed

| Write

| Read N
f ∈ FStatus =̂ HWrite FName FData

| HRead FName FData FData
m ∈ FMode =̂ {FRead,FWrite}

fopen : FName × FMode → FS → FStatus × FS
fclose : FStatus → FS → FS

fwritei : Z→ FStatus → FStatus
freadi : FStatus → Z× FStatus

2.4 Connecting I/O Model to Abstracted Programs

We give the signatures of each I/O function, as they appear in the model, and
each programming language

Model fopen : FName × FMode → FS → FStatus × FS
C : FName × FMode → FStatus
Clean : FName → FMode → FS → (FStatus × FS )
Haskell : FName → FMode → IO FStatus
Model fclose : FStatus → FS → FS
C : FStatus → ()
Clean : FStatus → FS → FS
Haskell : FStatus → IO ()
Model fwritei : Z→ FStatus → FStatus
C : FStatus × Z→ ()
Clean : FStatus → Z→ FStatus
Haskell : FStatus → Z→ IO ()
Model freadi : FStatus → Z× FStatus
C : FStatus → Z
Clean : FStatus → (FStatus × Z)
Haskell : FStatus → IO Z
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3 Abstract Syntaxes

We present abstract syntax forms for all three programming languages, to fa-
cilitate the generation of semantics.

3.1 Common Syntax

Some parts of syntax like constant, variables and certain forms of expression
are common to all three languages, and are defined here.

3.1.1 Common Expressions

We start with constants and variables as given lexical entities:

Const ::= {∗,
fopen, fclose, fwritei, freadi,

FRead,FWrite,

. . .}
Var ::= typical identifier lexemes

A basic expression (BExpr) is a constant, variable, tuple of expressions or the
application of one expression to another:

BExpr ::= Const Const
| Var Var
| Tuple BExpr+

| App BExpr BExpr

3.1.2 Functional Language Expressions

For functional languages, we introduce patterns, and extend the expression syn-
tax.
Patterns (Patn) are basic expressions restricted to constant, variables and tu-
ples:

Patn ::= Const Const
| Var Var
| Tuple Patn+

We obtain functional expressions (FExpr) by adding in lambda abstractions and
let-expressions to basic expressions:

FExpr ::= Const Const
| Var Var
| Tuple FExpr+

| App FExpr FExpr
| Abs Var FExpr
| Let Patn FExpr FExpr
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3.2 C Abstract Syntax

3.2.1 C Statements

A C statement (CStmt)is either an assignment, or a procedure call:

CStmt ::= Asg Var BExpr
| Call BExpr BExpr

3.2.2 C Programs

A C program (CProg) is a sequence of C statements:

CProg ::= CStmt?

3.3 Clean Abstract Syntax

3.3.1 Clean Expressions

Clean has expressions (ClExpr) extended with the “hash-let” notation

ClExpr ::= Const Const
| Var Var
| Tuple ClExpr+

| App ClExpr ClExpr+

| Abs Var ClExpr
| Let Patn ClExpr ClExpr
| Hash ClHElem? ClExpr

3.3.2 Clean Hash Elements

The Clean “hash-let” construct is a list of hash elements (ClHElem), each being
a binding of a pattern to an expression:

ClHElem ::= Patn ClExpr

3.3.3 Clean Programs

A Clean program (ClProg) is basically an abstraction:

ClProg ::= Var × ClExpr

14



3.4 Haskell Abstract Syntax

3.4.1 Haskell Expressions

Haskell has expressions (HExpr) extended with monadic “do” notation

HExpr ::= Const Const
| Var Var
| Tuple HExpr+

| App HExpr HExpr
| Abs Var HExpr
| Let Patn HExpr HExpr
| Do MStmt?

3.4.2 Haskell Monadic Statements

The Haskell “do” syntax has components which look vaguely like imperative
statements. A Monadic Statement (MStmt) is either a monadic assignment
(binding) or monad function call expression (return?):

MStmt ::= Bind Var HExpr
| Retn HExpr

3.4.3 Haskell Programs

A Haskell Program (HProg) is basically an expression:

HProg ::= HExpr

Usually it is expected to be a “do” expression.

4 Real Programs

We present the real programs that actually ran here.

4.1 The real C program

#include <stdio.h>

int main()
{
FILE *f;
int x;

f = fopen("a","r");
if(!f){
perror("prog1");
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return 1;
}
fscanf(f,"%d",&x);
fclose(f);

f = fopen("a","w");
if(!f){
perror("prog1");
return 1;

}
fprintf(f,"%d",x*x);
fclose(f);
return 0;

}

4.2 The real Clean program

module prog1
import StdEnv

Start w # (_, f, w) = fopen "a" FReadText w
# (_,x,f) = freadi f
# (_,w) = fclose f w
# (_,f,w) = fopen "a" FWriteText w
# f = fwritei (x*x) f
# (_,w) = fclose f w
| otherwise = w

4.3 The real Haskell program

import IO

main = do
h <- openFile "a" ReadMode
s <- hGetContents h
x <- readIO s::IO Int
hClose h
h <- openFile "a" WriteMode
hPutStr h (show (x*x))
hClose h

5 Abstracted Programs

To simplify matters, and to ensure that we focus on differences inherent the
basic reasoning models behind each language, rather than specific details of
these particular languages, we have re-written the functions to have a uniform
appearance, using IO functions with the same names and overall structure.
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5.1 The IO abstraction

We present a table showing the abstracted IO operations and their equivalents
in the programming languages:
Abstract C Clean Haskell
fopen fopen fopen openFile/hGetContents
freadi fscanf freadi hGetContents/readIO
fclose fclose fclose hClose
fwritei fprintf fwritei hPutStr/show

Note: the Haskell function hGetContents is a form of lazy read, so it could be
associated with either open or reading the integer. We need a decision on this.
Decision: we shall not use hGetContents — instead we define a Haskell version
of freadi, using getChar and similar.

5.2 Concrete Programs using IO Abstraction

5.2.1 The abstracted C program

main()
{

f = fopen("a",FRead);
x = freadi(f);
fclose(f);
f = fopen("a",FWrite);
fwritei(f,x*x);
fclose(f);

}

We rename functions as appropriate, and discard variable declarations and the
error checking for now.

5.2.2 The abstracted Clean program

main w # (f,w) = fopen "a" FRead w
# (x,f) = freadi f
# w = fclose f w
# (f,w) = fopen "a" FWrite w
# f = fwritei (x*x) f
# w = fclose f w
= w

We remove return condition values, as well as discarding last conditional.
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5.2.3 The abstracted Haskell program

We use slightly different names here, mainly because it will make it easier to
distinguish the Haskell functions from the underlying I/O model functions.

main = do
h <- openFile "a" ReadMode
x <- hreadi h
hclose h
h <- openFile "a" WriteMode
hwritei h (x*x)
hclose h

hreadi :: Handle -> IO Int
hreadi h = do

s <- hGetWord h
readIO s::IO Int

hGetWord h = do
c <- hGetChar h
if (isSpace c)
then
return ""

else
do
cs <- hGetWord h
return (c:cs)

Note the use of an auxiliary definition, hreadi, which gives the semantics re-
quired by the IO model. We will use this definition from here on, and will
assume that hreadi has the obvious semantics.

5.3 Abstract Syntax Forms

We then transform the above examples into fully abstract syntax forms. These
will be the basis for denotational style proofs.

5.3.1 Abstract Syntax for C Program

Asg f
App (Const fopen)

Tuple Const “a”
Const FRead

Asg x
App (Const freadi)

Var f
Call (Const fclose) (Var f)
Asg f

App (Const fopen)
Tuple Const “a”
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Const FWrite
Call

App (Const fwritei)
Tuple Var f

App (Const *)
Tuple Var x

Var x
Call (Const fclose) (Var f)

5.3.2 Abstract Syntax for Clean Program

w
Hash (Tuple (Var f)

Var w )
App (Const fopen)

Const “a”
Const FRead
Var w

Tuple (Var x)
Var f

App (Const freadi)
Var f

Var w
App (Const fclose)

Var f
Var w

Tuple (Var f)
Var w

App (Const fopen)
Const “a”
Const FWrite
Var w

Var f
App (Const fwritei)

Var f
App (Const *)

Tuple Var x
Var x

Var w
App (Const fclose)

Var f
Var w

Var w
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5.3.3 Abstract Syntax for Haskell Program

Do (Bind f
App (Const fopen)

Const “a”
Const FRead )

Bind x
App (Const freadi)

Var f
Retn App (Const fclose)

Var f
Bind f

App (Const fopen)
Const “a”
Const FWrite

Retn App (Const fwritei)
Var f
App (Const *)

Tuple Var x
Var x

Retn App (Const fclose)
Var f

6 Denotational Semantics

We start by giving a denotation semantics to each language.
We assume as semantic domains those defined in the IO Model, as well as
additional value components.

6.1 Common Semantic Domains

6.1.1 Value Semantic Domain

We first define the I/O semantic domain (IO) include all the components of the
I/O domain model, up to and including the world!

IO =̂ World
+ FS
+ FStatus
+ . . .

We define the value semantic domain (Val) to be the disjoint union of integer,
I/O values, handles over a range of IO types, tuples of values, and (continuous,
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computable) functions over values:

Val =̂ Z
+ IO
+

∑
Handle T

+ Val?

+ [Val →Val ]

We assume a function (C) that maps all lexical constants to their values:

C : Const →Val
C[[0]] =̂ 0
C[[∗]] =̂ λ(n1, n2) · n1 ∗ n2

C[[fopen]] =̂ fopen

etc . . .

Depending on the paradigm, we may override the default values here with mod-
ified versions.

6.1.2 Environments

We shall define a local variable environment (LEnv) as a (finite) mapping from
variables to values:

` ∈ LEnv =̂ Var m→ Val

A program variable environment (PEnv) is a stack of local variable environ-
ments, represented by a non-null sequence.

ρ ∈ PEnv =̂ LEnv+

The stack form is used to handle nested scopes.
We extend map lookup to sequences of maps by looking up the maps in sequence
until a match is found, or all maps are exhausted. We extend map override to
map sequences, by stating that it acts on the first map.

6.1.3 Handles/References

For some of the paradigms, we will need to hand around handles or references
to information structures to allow side-effects to occur. We shall view a handle
as a natural number, and map this to the appropriate structures. Handles and
instances of the relevant structure are then allocated and freed as required. We
shall parameterise both handles and the handle mapping by the type (T ) of the
information structure:

h ∈ Handle T =̂ N
% ∈ HMap T =̂ N m→ T
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Given a new structure, and a handle map, we can allocate a new entry in the
structure and return a handle. The handle must not be one currently in use.
We adopt an easy way to guarantee this:

hAlloc : T →HMap T →Handle T ×HMap T

hAlloc[t]% =̂ (h, % t {h 7→ t})
where h = max(dom %) + 1

We can also free structures, although this is not really necessary for most se-
mantic purposes:

hFree : Handle T →HMap T →HMap T

hFree[h]% =̂ /−[h]%

6.1.4 Overall Environment

The overall environment (EnvX) for a paradigm X is a tuple containing at
least the world and a program variable environment, as well as some other
components, such as handle-maps, specific to the given paradigm:

ε ∈ EnvX =̂ World × PEnv × · · ·

The paradigms are C (C), K (Clean) and H (Haskell).

6.1.5 Denotation Functions

In all cases, the denotation of a program (P[[prog]]) will be a function from
World to World :

P[[prog]] : World →World
P[[prog]] W =̂ π1(Top[[top− stmt]]ε0)

Such a function will build an initial environment, call the denotation function
for the top-level structure, and strip out the final world value from the overall
result.

6.1.6 Note on Type-Correctness

In the sequel, it is assumed that all programs are type-correct, so that all func-
tions are applied to the correct argument type. A lot of the functions defined
here are total on type-correct programs, but partial on all possible programs.

6.2 C Denotational Semantics

6.2.1 C Program State

The state of a C program will consist of the world, and environment, and a file
status handle map:

EnvC =̂ World × PEnv ×HMap FStatus
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6.2.2 C Program Denotations

PC : CProg →World →World
PC [[σ]] W =̂ π1(SSC [[σ]](W, 〈θ〉, θ))

6.2.3 C Statement Denotations

SSC : CStmt? → EnvC → EnvC

SSC [[Λ]]ε =̂ ε

SSC [[s : σ]]ε =̂ (SSC [[σ]] ◦ SC [[s]])ε

SC : CStmt → EnvC → EnvC

SC [[Asg v e]](W, ρ, %) =̂ let (r, (W ′, ρ′, %′)) = EC [[e]](W, ρ, %)
in (W ′, ρ′ † {v 7→ r}, %′)

SC [[Call p a]]ε =̂ let (a′, ε′) = EC [[a]]ε
in π2(AppC [[p]](a′, ε′)

A procedure call is a function call where the result is discarded.

6.2.4 C Expression Denotations

EC : BExpr → EnvC →Val × EnvC

EC [[Const c]]ε =̂ (C[[c]], ε)
EC [[Var v]](W, ρ, %) =̂ (ρ(v), (W, ρ, %))

EC [[Tuple σ]]ε =̂ TupleC [[σ]](Λ, ε)
EC [[App f a]]ε =̂ let (a′, ε′) = EC [[a]]ε

in AppC [[f ]](a′, ε′)

Note that function application is strict — arguments are evaluated before the
function call is made.

TupleC : BExpr? →Val? × EnvC →Val × EnvC

TupleC [[Λ]](ν, ε) =̂ (rev ν, ε)
TupleC [[e : σ]](ν, ε) =̂ let (v, ε′) = EC [[e]]ε

in TupleC [[σ]](v : ν, ε′)

6.2.5 C Builtin I/O denotations

For applications, we currently assume that the function expression is a (builtin)
constant, which we handle on a case-by-case basis. We shall denote the world
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by (Φ, w), highlighting the file system component, and using w to denote the
rest.

AppC : BExpr →Val × EnvC →Val × EnvC

AppC [[Const fopen]](〈n, m〉, ((Φ, w), ρ, %))
=̂ let (f,Φ′) = fopen[n, m]Φ

in let (h, %′) = hAlloc[f ]%
in (h, ((Φ′, w), ρ, %′))

AppC [[Const fclose]](h, ((Φ, w), ρ, %))
=̂ let Φ′ = fclose[%(h)]Φ

in let %′ = hFree[h]%
in (!, ((Φ′, w), ρ, %′))

AppC [[Const fwritei]](〈h, i〉, ((Φ, w), ρ, %))
=̂ let f ′ = fwritei[i](%(h))

in let %′ = % † {h 7→ f ′}
in (!, ((Φ, w), ρ, %′))

AppC [[Const freadi]](h, ((Φ, w), ρ, %))
=̂ let (i, f ′) = freadi(%(h))

in let %′ = % † {h 7→ f ′}
in (i, ((Φ, w), ρ, %′))

Note that we pass and return handles rather than file status blocks.

6.3 Clean Denotational Semantics

6.3.1 Clean Program State

The state of a Clean program will consist of a local environment only !

EnvK =̂ LEnv

The world and it’s components will be identified by program variables, and so
will appear in the local environment.

6.3.2 Clean Program Denotations

A top level Clean program is the application of an abstraction to an argument,
that denotes the world, and which returns the world:

PK : ClProg →World →World
PK [[(v, e)]] W =̂ EK{v 7→ W}[[e]]
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6.3.3 Clean Expression Denotations

EK : EnvK → ClExpr →Val
EK`[[Const c]] =̂ CK [[c]]

EK`[[Var v]] =̂ `(v)
EK`[[Tuple σ]] =̂ (EK`)?

σ

EK`[[App f α]] =̂ (EK`[[f ]])((EK`)?[[α]])
EK`[[Abs v b]] =̂ λv′ · EK(` † {v 7→ v′})[[b]]

EK`[[Let p e b]] =̂ EK(` †MK`[[p, e]])[[b]]
EK`[[Hash Λ e′]] =̂ E`[[e′]]

EK`[[Hash (p, e) : $ e′]] =̂ EK(` †MK [[p]](EK`[[e]]))[[Hash $ e′]]

6.3.4 Clean Pattern Match

A clean pattern match simply binds pattern variables to values, returning the
binding as a local environment:

MK : Patn →Val → LEnv
MK [[Const c]] =̂ θ

MK [[Var x]] v =̂ {x 7→ v}
MK [[Tuple $)]] σ =̂ (t/ ◦ (MK)?)(zip($,σ))

We do not record if a match succeeds or fails at this point.

6.3.5 Clean Builtin Function Denotations

At present most Clean constants denote the functions directly. The only excep-
tion are fopen and fclose, which need a wrapper to select out the filesystem
component of the world:

CK =̂ C †
fopen 7→ λ(n, m) · λ(Φ, w) · (f, (Phi′, w))

where (f,Φ′) = fopen[n, m]Φ
fclose 7→ λ(f) · λ(Φ, w) · (Phi′, w)

where Φ′ = fclose[f ]Φ

6.4 Haskell Denotational Semantics

No denotational semantics were produced for the Haskell program as it was not
considered likely that any additional insight over that provided by the Clean
semantics would be gained.
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7 Denotational Proofs

7.1 The Property

We want to show that, given the existence of a file called a before the program
is run, containing at least one integer, that afterwards, the same file exists,
containing one integer, being the square of the prior value.
We denote the state of the world before the program is run as:

W = (Φ, w) "a" ∈ dom Φ ∧ Φ("a") = (Closed, J : ς)

We can capture the initial condition by writing the starting state as

W = (Φ t {"a" 7→ (Closed, J : ς)}, w)

We denote the state after the program has terminated as:

W ′ = (Φ′, w′) = P[[prog]]W

We want to show:
Φ′("a") = (Closed, 〈J2〉)

We shall label parts of the abstract syntax to make it easier to refer to the
components. We shall also use the concrete syntax as convenient abbreviations
of the abstract

7.2 Proof for C Program

7.2.1 C Program Labelled Syntax

Cprog =̂ 〈s1, s2, s3, s4, s5, s6〉

We shall use σi as shorthand for 〈si, . . . , s6〉, so cprog = σ1, and σi = si : σi+1,
for i < 6.

s1 =̂
Asg f

App (Const fopen)
Tuple Const “a”

Const FRead
= f = fopen ("a",Fread)
s2 =̂
Asg x

App (Const freadi)
Var f

= x = freadi(f)
s3 =̂
Call (Const fclose) (Var f)
= fclose(f)
s4 =̂
Asg f
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App (Const fopen)
Tuple Const “a”

Const FWrite
= f = fopen ("a",FWrite)
s5 =̂
Call

App (Const fwritei)
Tuple Var f

App (Const *)
Tuple Var x

Var x
= fwrite(f,x*x)
s6 =̂
Call (Const fclose) (Var f)
= f = fclose(f)

7.2.2 The Proof

PC [[Cprog]]W
= 〈defn. of Cprog〉

PC [[σ1]]W
= 〈defn. of PC〉

π1(SSC [[σ1]](W, 〈θ〉, θ))
= 〈defn. of σ1〉

π1(SSC [[s1 : σ2]](W, 〈θ〉, θ))
= 〈defn. of SSC , ◦〉

π1(SSC [[σ2]]((SC [[s1]])(W, 〈θ〉, θ)))

We now introduce a shorthand:

Si(x) =̂ π1(SSC [[σi]](x))

noting the following property

Si(x) = Si+1(SC [[si]](x))

(by defn.of SSC , ◦).
We continue:

π1(SSC [[σ2]]((SC [[s1]])(W, 〈θ〉, θ)))
= 〈shorthand i = 2〉

S2(SC [[s1]](W, 〈θ〉, θ))
= 〈shorthand s1〉

S2(SC [[f=fopen("a",FRead)]](W, 〈θ〉, θ))
= 〈defn. SC on Asg〉

S2(let (r, (W ′, ρ′, %′)) = EC [[fopen("a",FRead)]](W, 〈θ〉, θ)
in (W ′, ρ′ † {f 7→ r}, %′)

)
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We introduce the following shorthands (see also Lemma Cd.1)

Φ1 =̂ Φ † {”a” 7→ (Read 1, J : ς)}
f1 =̂ Hread ”a” Λ J : ς

ρ1 =̂ {f 7→ 1}
%1 =̂ {1 7→ f1}

We continue

S2(let (r, (W ′, ρ′, %′)) = EC [[fopen("a",FRead)]](W, 〈θ〉, θ)
in (W ′, ρ′ † {f 7→ r}, %′) )

= 〈Lemma Cd.1〉
S2(let (r, (W ′, ρ′, %′)) = (1, (((Φ1), w), 〈θ〉, %1)

in (W ′, ρ′ † {f 7→ r}, %′) )
= 〈Let clause〉

S2((Φ1, w), 〈θ〉 † {f 7→ 1}, %1)
= 〈override on PEnv , shorthand〉

S2((Φ1, w), 〈ρ1〉, %1)
= 〈Prop. of Si〉

S3(SC [[s2]]((Φ1, w), 〈ρ1〉, %1))
= 〈shorthand s2〉

S3(SC [[x=freadi(f)]]((Φ1, w), 〈ρ1〉, %1))
= 〈defn. SC on Asg〉

S3(let (r, (W ′, ρ′, %′)) = EC [[freadi(f)]]((Φ1, w), 〈ρ1〉, %1)
in (W ′, ρ′ † {x 7→ r}, %′) )

We introduce the following shorthands (see also Lemma Cd.3)

f2 =̂ Hread ”a” 〈j〉 ς

ρ2 =̂ {f 7→ 1, x 7→ J}
%2 =̂ {1 7→ f2}

We continue

S3(let (r, (W ′, ρ′, %′)) = EC [[freadi(f)]]((Φ1, w), 〈ρ1〉, %1)
in (W ′, ρ′ † {x 7→ r}, %′) )

= 〈Lemma Cd.3〉
S3(let (r, (W ′, ρ′, %′)) = (J, ((Φ1, w), 〈ρ1〉, %2))

in (W ′, ρ′ † {x 7→ r}, %′) )
= 〈let clause〉

S3((Φ1, w), 〈ρ1〉 † {x 7→ J}, %2 )
= 〈override defn., shorthand〉

S3((Φ1, w), 〈ρ2〉, %2 )
= 〈prop. of Si〉

S4(SC [[s3]]((Φ1, w), 〈ρ2〉, %2) )
= 〈shorthand s3〉

S4(SC [[fclose(f)]]((Φ1, w), 〈ρ2〉, %2) )
= 〈Defn. of SC on Call〉

S4(let (a′, ε′) = EC [[f]]((Φ1, w), 〈ρ2〉, %2)
in π2(AppC [[fclose]](a′, ε′)) )
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= 〈Defn. of EC on Var, shorthands〉
S4(let (a′, ε′) = (1, ((Φ1, w), 〈ρ2〉, %2))

in π2(AppC [[fclose]](a′, ε′)) )
= 〈let clause〉

S4(π2(AppC [[fclose]](1, ((Φ1, w), 〈ρ2〉, %2)) ))

We introduce the following shorthand (see also Lemma Cd.4)

Φ3 =̂ Φ † {”a” 7→ (Closed, J : ς)}

We continue

S4(π2(AppC [[fclose]](1, ((Φ1, w), 〈ρ2〉, %2)) ))
= 〈Lemma Cd.4〉

S4(π2(!, ((Φ3, w), 〈ρ2〉, θ)))
= 〈projection〉

S4((Φ3, w), 〈ρ2〉, θ)

7.2.3 Lemma Cd.1

EC [[fopen("a",FRead)]](W, 〈θ〉, θ)
= 〈defn. of EC on App〉

AppC [[fopen]](EC [[("a",FRead)]](W, 〈θ〉, θ))
= 〈defn. of EC ,C on Tuple,Const〉

AppC [[fopen]](〈”a”,FRead〉, (W, 〈θ〉, θ))
= 〈defn. of W〉

AppC [[fopen]](〈”a”,FRead〉, ((Φ t {”a” 7→ (Closed, J : ς)}, w), 〈θ〉, θ))
= 〈defn. of AppC on fopen〉

let (f,Φ′) = fopen[”a”,FRead](Φ t {”a” 7→ (Closed, J : ς)})
in let (h, %′) = hAlloc[f ]θ
in (h, ((Φ′, w), 〈θ〉, %′))

= 〈Lemma Cd.2〉
let (f,Φ′) = ((Hread ”a” Λ J : ς), (Φ † {”a” 7→ (Read 1, J : ς)}))
in let (h, %′) = hAlloc[f ]θ
in (h, ((Φ′, w), 〈θ〉, %′))

= 〈defn. of hAlloc,max〉
let (f,Φ′) = ((Hread ”a” Λ J : ς), (Φ † {”a” 7→ (Read 1, J : ς)}))
in let (h, %′) = (1, {1 7→ f})
in (h, ((Φ′, w), 〈θ〉, %′))

= 〈2nd let clause〉
let (f,Φ′) = ((Hread ”a” Λ J : ς), (Φ † {”a” 7→ (Read 1, J : ς)}))
in (1, ((Φ′, w), 〈θ〉, {1 7→ f}))

= 〈1st let clause〉
(1, ((Φ † {”a” 7→ (Read 1, J : ς)}), w), 〈θ〉, {1 7→ (Hread ”a” Λ J : ς)}))

= 〈shorthand〉
(1, (((Φ1), w), 〈θ〉, {1 7→ f1}))

7.2.4 Lemma Cd.2

fopen[”a”,FRead](Φ t {”a” 7→ (Closed, J : ς)})
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= 〈defn. of fopen〉
((Hread ”a”,Λ, δ), (Φ t {”a” 7→ (Closed, J : ς)} † {”a” 7→ (Read r, δ)}))
where δ = (π2(Φ t {”a” 7→ (Closed, J : ς)})(”a”))
and r = π1((Φ t {”a” 7→ (Closed, J : ς)})(”a”)) = Closed → 1 , . . .

= 〈map lookup properties〉
((Hread ”a”,Λ, δ), (Φ t {”a” 7→ (Closed, J : ς)} † {”a” 7→ (Read r, δ)}))
where δ = π2(Closed, J : ς)
and r = π1(Closed, J : ς) = Closed → 1 , . . .

= 〈projection, conditional〉
((Hread ”a”,Λ, δ), (Φ t {”a” 7→ (Closed, J : ς)} † {”a” 7→ (Read r, δ)}))
where δ = J : ς and r = 1

= 〈map property — override after extend〉
((Hread ”a”,Λ, δ), (Φ † {”a” 7→ (Read r, δ)}))
where δ = J : ς and r = 1

= 〈where clause〉
((Hread ”a” Λ J : ς), (Φ † {”a” 7→ (Read 1, J : ς)}))

7.2.5 Lemma Cd.3

EC [[freadi(f)]]((Φ1, w), 〈ρ1〉, %1)
= 〈defn. of EC on App〉

AppC [[freadi]](EC [[f]]((Φ1, w), 〈ρ1〉, %1)
= 〈defn. of EC on Var, shorthand 〉

AppC [[freadi]](1, ((Φ1, w), 〈ρ1〉, %1)
= 〈defn. of AppC on freadi〉

let (i, f ′) = freadi(%1(1))
in let %′ = %1 † {1 7→ f ′}
in (i, ((Φ1, w), 〈ρ1〉, %′)))

= 〈shorthands, map application〉
let (i, f ′) = freadi(Hread ”a” Λ J : ς)
in let %′ = %1 † {1 7→ f ′}
in (i, ((Φ1, w), 〈ρ1〉, %′)))

= 〈defn. freadi〉
let (i, f ′) = (J,Hread ”a” 〈j〉 ς)
in let %′ = %1 † {1 7→ f ′}
in (i, ((Φ1, w), 〈ρ1〉, %′)))

= 〈both let clauses〉
(J, ((Φ1, w), 〈ρ1〉, %1 † {1 7→ Hread ”a” 〈j〉 ς})))

= 〈defn. of override〉
(J, ((Φ1, w), 〈ρ1〉, {1 7→ Hread ”a” 〈j〉 ς})))

= 〈shorthands〉
(J, ((Φ1, w), 〈ρ1〉, %2))

7.2.6 Lemma Cd.4

AppC [[fclose]](1, ((Φ1, w), 〈ρ2〉, %2))
= 〈defn. of AppC on fclose〉

let Φ′ = fclose[%2(1)]Φ1
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in let %′ = hFree[1]%2

in (!, ((Φ′, w), 〈ρ2〉, %′))
= 〈map lookup〉

let Φ′ = fclose[Hread ”a” 〈j〉 ς]Φ1

in let %′ = hFree[1]%2

in (!, ((Φ′, w), 〈ρ2〉, %′))
= 〈defn. of fclose〉

let Φ′ = Φ1 † {”a” 7→ (s, δ)}
where ((Read r), δ) = Φ1(”a”)
and s = r = 1 → Closed , . . .

in let %′ = hFree[1]%2

in (!, ((Φ′, w), 〈ρ2〉, %′))
= 〈map lookup on Φ1〉

let Φ′ = Φ1 † {”a” 7→ (s, δ)}
where (Read r, δ) = (Read 1, J : ς)
and s = r = 1 → Closed , . . .

in let %′ = hFree[1]%2

in (!, ((Φ′, w), 〈ρ2〉, %′))
= 〈1st where clause〉

let Φ′ = Φ1 † {”a” 7→ (s, J : ς)}
where s = 1 = 1 → Closed , . . .

in let %′ = hFree[1]%2

in (!, ((Φ′, w), 〈ρ2〉, %′))
= 〈conditional〉

let Φ′ = Φ1 † {”a” 7→ (s, J : ς)}
where s = Closed

in let %′ = hFree[1]%2

in (!, ((Φ′, w), 〈ρ2〉, %′))
= 〈where-clause〉

let Φ′ = Φ1 † {”a” 7→ (Closed, J : ς)}
in let %′ = hFree[1]%2

in (!, ((Φ′, w), 〈ρ2〉, %′))
= 〈shorthands, defn of hFree〉

let Φ′ = Φ1 † {”a” 7→ (Closed, J : ς)}
in let %′ = θ
in (!, ((Φ′, w), 〈ρ2〉, %′))

= 〈override, shorthands〉
let Φ′ = Φ † {”a” 7→ (Closed, J : ς)}
in let %′ = θ
in (!, ((Φ′, w), 〈ρ2〉, %′))

= 〈let clauses〉
(!, ((Φ † {”a” 7→ (Closed, J : ς)}, w), 〈ρ2〉, θ))

= 〈shorthands〉
(!, ((Φ3, w), 〈ρ2〉, θ))
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7.3 Proof for Clean Program

7.3.1 Clean Program Labelled Syntax

The program is a 6-pronged hash-let:

Kprog =̂ (w,Hash 〈h1, h2, h3, h4, h5, h6〉 w)

We adopt ζi as shorthand for 〈hi, . . . , h6〉
The annotated,labelled syntax is:

w
Hash
h1 =

(Tuple (Var f)
Var w )

App (Const fopen)
Const “a”
Const FRead
Var w

= # (f,w) = fopen "a" Fread w
h2 =

Tuple (Var x)
Var f

App (Const freadi)
Var f

= # (x,f) = freadi f
h3 =

Var w
App (Const fclose)

Var f
Var w

= # w = fclose f w
h4 =

Tuple (Var f)
Var w

App (Const fopen)
Const “a”
Const FWrite
Var w

= # (f,w) = fopen "a" Fwrite w
h5 =

Var f
App (Const fwritei)

Var f
App (Const *)

Tuple Var x
Var x

= # f = fwritei f (x*x)
h6 =

Var w
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App (Const fclose)
Var f
Var w

= # f = fclose f w
Var w

7.3.2 The Proof

PK [[Kprog]]W
= 〈defn. of Kprog〉

PK [[(w,Hash ζ1 w)]]W
= 〈defn. of PK〉

EK{w 7→ W}[[Hash ζ1 w]]

We introduce a shorthand `0 = {w 7→ W}

EK{w 7→ W}[[Hash ζ1 w]]
= 〈expand ζ1〉

EK`0[[Hash ((f,w)=fopen "a" FRead w) : ζ2 w]]
= 〈defn, EK〉

EK(`0 †MK [[f,w]](EK`0[[fopen "a" FRead w]]))[[Hash ζ2 w]]

We introduce more shorthands (see also Lemma Kd.1):

f1 =̂ Hread ”a” Λ J : ς

Φ1 =̂ Φ t {”a” 7→ (Read 1, J : ς)}
`1 =̂ {f 7→ f1, w 7→ (Φ1, w)}

we continue

EK(`0 †MK [[f,w]](EK`0[[fopen "a" FRead w]]))[[Hash ζ2 w]]
= 〈Lemma Kd.1〉

EK(`0 †MK [[f,w]](f1, (Φ1, w)))[[Hash ζ2 w]]
= 〈defn. of MK on Tuple, map, reduce〉

EK(`0 † {f 7→ f1, w 7→ (Φ1, w)})[[Hash ζ2 w]]
= 〈override〉

EK{f 7→ f1, w 7→ (Φ1, w)}[[Hash ζ2 w]]
= 〈shorthand〉

EK`1[[Hash ζ2 w]]

7.3.3 Lemma Kd.1

EK`0[[fopen "a" FRead w]]
= 〈defn. EK on App〉

(EK`0[[fopen]])((EK`0)
?[["a",FRead,w]])

= 〈map, defn. EK on Const,Var, currying〉
fopen〈”a”,FRead〉W

= 〈defn. of fopen in CK , currying, application〉
(f, (Φ′, w))
where (f,Φ′) = fopen[”a”,FRead](Φ t {”a” 7→ (Closed, J : ς)})
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= 〈Lemma C.2〉
(f, (Φ′, w))
where (f,Φ′) = ((Hread ”a” Λ J : ς), (Φ † {”a” 7→ (Read 1, J : ς)}))

= 〈where-clause〉
((Hread ”a” Λ J : ς), (Φ † {”a” 7→ (Read 1, J : ς)}, w))

= 〈shorthand〉
(f1, (Φ1, w))

8 Language-Based Semantics

These semantics are operational in character, being, in the main, transformation
laws or inference rules that preserve a programs meaning.

8.1 C Language Semantics

8.1.1 Hoare Triple Rules

From [HJ98, pp64–5] with change of notation.

{p}Q{r}, {p}Q{s} ` {p}Q{r ∧ s}
{p}Q{r}, {q}Q{r} ` {p ∨ q}Q{r}

{p}Q{r} ` {p ∧ q}Q{r ∨ s}
` {r(e)}x=e{r(x)}

{p ∧ b}Q1{r}, {p ∧ ¬b}Q2{r} ` {p}if b then Q1 else Q2{r}
{p}Q1{s}, {s}Q2{r} ` {p}Q1;Q2{r}

We can deduce the following:

{R}x=e{R ∧ x = e}

from the assignment rule by taking r(z) =̂ R ∧ z = e, as long as R does not
mention x [HJ98, p30]

8.1.2 wp-rules

From [HJ98, p66] with change of notation

℘ [x=e]{r(x)} =̂ r(e)
℘ [P;Q]{r} =̂ ℘ [P]{℘ [Q]{r}}

℘ [if b then P else Q]{r} =̂ b → ℘ [P]{r} , ℘ [Q]{r}
[r ⇒ s] ` [℘ [Q]{r}⇒ ℘ [Q]{s}]

[Q⇒ S] ` [℘ [S]{r}⇒ ℘ [Q]{r}]

8.1.3 C Program Language Semantics

We assume three global program variables WORLD, FS, FSH, denoting the world,
it’s file-system component and a file system handle environment, with corre-
sponding semantic variables W : World , Φ : FS and % : HMap FStatus. We
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assume that FS is a component of WORLD, which is a C-struct. We also as-
sume the existence of maps and map manipulators in the C-language. We also
introduce an program environment (ρ : PEnv) into the semantic domain.

WORLD = (FS,...)

The C-program mainline initialises FSH
We define the meaning of

{P}main(){cstmts}{Q}

as being
{P}FSH=nullmap;cstmts{Q}

which simplifies to
{P ∧ % = θ}cstmts{Q}

8.1.4 I/O Model in Hoare Triple Form

Hoare-Triple form of fopen

{ n ∈ dom Φ ∧ π1Φ(n) 6= Write }
h = fopen(n,Fread)

h′ = max(dom %) + 1
%′ = % t {h′ 7→ (Hread n Λ π2(Φ(n)))}
Φ′ = Φ † {n 7→ (Read r, π2(Φ(n)))}
where r = π1(Φ(n)) ≡ Closed → 1 , π1(π1(Φ(n))) + 1



{ n /∈ dom Φ ∨ π1Φ(n) = Closed }
h = fopen(n,FWrite) h′ = max(dom %) + 1
%′ = % t {h′ 7→ (Hwrite n Λ)}
Φ′ = Φ † {n 7→ (Write,Λ)}


Hoare-Triple form of fclose

{ h ∈ dom % ∧ %(h) = (HRead n ) ∧ n ∈ dom Φ ∧ Φ(n) = (Read r ) }
fclose(h) %′ = /−[h]%
Φ′ = Φ † {n 7→ (s, π2(Φ(n)))}
where s = r = 1 → Closed , Read (r − 1)



{ h ∈ dom % ∧ %(h) = (HWrite n δ) ∧ n ∈ dom Φ ∧ Φ(n) = (Write, ) }
fclose(h){
%′ = /−[h]%
Φ′ = Φ † {n 7→ (Closed, δ)}

}
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Hoare-Triple form of fwritei

{ h ∈ dom % ∧ %(h) = (HWrite n δ) }

fwritei(h,i)

{ %′ = % † {h 7→ (HWrite n δ _ 〈i〉)} }

Hoare-Triple form of freadi

{ h ∈ % ∧ %(h) = (HRead n δr J : δw) }

i = freadi(h)

{ i′ = J ∧ %′ = % † {h 7→ (HRead n δr
_ 〈J〉 δw)} }

8.1.5 IO Model in C Language form

This model exists solely to be able to give a Hoare-Triple or WP semantics to
the IO call. We define the behaviour using C like programming constructs as
well as (ASCII forms of) modelling concepts such as maps, etc. We then use
these to derive the relevant Hoare triples.

Derivation of Hoare Triple for fopen (Read). The call

h = fopen(n,FRead)

is equivalent to

{ n ∈ dom Φ ∧ π1Φ(n) 6= Write }

f0 = lookup(PHI,n);
ds = snd(f);
r = fst(f0)==Closed ? 1 : fst(fst(f0))+1 ;
f = (Read r,ds);
PHI = override(PHI,n,f);
fs = Hread n [] ds;
(h,FSH) = hAlloc FSH fs;

We proceed to compute the post-condition:

{ n ∈ dom Φ ∧ π1Φ(n) 6= Write }

f0 = lookup(PHI,n);

{ f ′
0 = Φ(n) }
ds = snd(f);

{ δ′ = π2f
′
0 }

r = fst(f0)==Closed ? 1 : fst(fst(f0))+1 ;

{ r′ = π1f
′
0 ≡ Closed → 1 , π1(π1(f ′

0)) + 1 }
f = (Read r,ds);

{ f ′ = (Read r′, δ′) }
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PHI = override(PHI,n,f);

{ Φ′ = Φ † {n 7→ f ′} }
fs = Hread n [] ds;

{ f ′
s = Hread n Λ δ′ }
(h,FSH) = hAlloc FSH fs;

{ (h′, %′) = hAlloc[f ′
s]% }

The variables visible outside fopen are h, Φ and %, so we can summarise the
overall effect of fopen(read) as:

{ n ∈ dom Φ ∧ π1Φ(n) 6= Write }
h = fopen(n,Fread)

h′ = max(dom %) + 1
%′ = % t {h′ 7→ (Hread n Λ π2(Φ(n)))}
Φ′ = Φ † {n 7→ (Read r, π2(Φ(n)))}
where r = π1(Φ(n)) ≡ Closed → 1 , π1(π1(Φ(n))) + 1


Derivation of Hoare Triple for fopen(Write). The call

h = fopen(n,FWrite)

is equivalent to

{ n /∈ dom Φ ∨ π1Φ(n) = Closed }
f = (Write,[]);
PHI = override(PHI,n,f);
fs = Hwrite n [];
(h,FSH) = hAlloc FSH fs;

We proceed to compute the post-condition:

{ n /∈ dom Φ ∨ π1Φ(n) = Closed }
f = (Write,[]);

{ f ′ = (Write,Λ) }
PHI = override(PHI,n,f);

{ Φ′ = Φ † {n 7→ f ′} }
fs = Hwrite n [];

{ f ′
s = Hwrite n Λ }
(h,FSH) = hAlloc FSH fs;

{ (h, %′) = hAlloc[f ′
s]% }

The variables visible outside are h, Φ and %, so we can summarise the overall
effect as:

{ n /∈ dom Φ ∨ π1Φ(n) = Closed }
h = fopen(n,FWrite) h′ = max(dom %) + 1
%′ = % t {h′ 7→ (Hwrite n Λ)}
Φ′ = Φ † {n 7→ (Write,Λ)}


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Derivation of Hoare Triple for fclose (Read). The call

fclose(h)

where h is opened for reading, is equivalent to

{ h ∈ dom % ∧ %(h) = (HRead n ) ∧ n ∈ dom Φ ∧ Φ(n) = (Read r ) }

fs = lookup(FSH,h);
n = fst(fs);
(Read r,ds) = lookup(PHI,n);
s = r == 1 ? Closed : Read (r-1)

PHI’ = override(PHI,n,(s,ds))
FSH’ = hFree(h,FSH)

Computing the postcondtion:

{ h ∈ dom % ∧ %(h) = (HRead n ) ∧ n ∈ dom Φ ∧ Φ(n) = (Read r ) }

fs = lookup(FSH,h);

{ f ′
s = %(n) }
n = fst(fs);

{ n = π1f
′
s }

(Read r,ds) = lookup(PHI,n);

{ (Read r, δ′) = Φ(n) }
s = r == 1 ? Closed : Read (r-1)

{ s′ = r = 1 → Closed , Read (r − 1) }
PHI’ = override(PHI,n,(s,ds))

{ Φ′ = Φ † {n 7→ (s′, δ′)} }
FSH’ = hFree(h,FSH)

{ %′ = /−[h]% }

The variables visible are h, Φ and %, so we can summarise the overall effect as:

{ h ∈ dom % ∧ %(h) = (HRead n ) ∧ n ∈ dom Φ ∧ Φ(n) = (Read r ) }

fclose(h) %′ = /−[h]%
Φ′ = Φ † {n 7→ (s, π2(Φ(n)))}
where s = r = 1 → Closed , Read (r − 1)


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Derivation of Hoare Triple for fclose (Write). The call

fclose(h)

where h is opened for writing, is equivalent to

{ h ∈ dom % ∧ %(h) = (HWrite n δ) ∧ n ∈ dom Φ ∧ Φ(n) = (Write, ) }
(Write n,ds) = lookup(FSH,h);
PHI = override(PHI,n,(Closed,ds));
FSH = hFree(h,FSH);

Computing the postcondition:

{ h ∈ dom % ∧ %(h) = (HWrite n δ) ∧ n ∈ dom Φ ∧ Φ(n) = (Write, ) }
(Write n,ds) = lookup(FSH,h);

{ (HWrite n δ) = %(h) }
PHI = override(PHI,n,(Closed,ds));

{ Φ′ = Φ † n′(Closed, δ) }
FSH = hFree(h,FSH);

{ %′ = hFree[h]% }
The variables visible outside fopen are h, Φ and %, so we can summarise the

overall effect of fopen(Write) as:

{ h ∈ dom % ∧ %(h) = (HWrite n δ) ∧ n ∈ dom Φ ∧ Φ(n) = (Write, ) }
fclose(h){
%′ = /−[h]%
Φ′ = Φ † {n 7→ (Closed, δ)}

}

Derivation of Hoare Triple for fwritei The call

fwrite(h,i)

is equivalent to

{ h ∈ % ∧ %(h) = (HWrite n δ }
(HWrite n ds) = lookup(FSH,h);
FSH=override(FSH,h,(HWrite n ds++[i]));
{ %′ = % † {h 7→ (HWrite n δ _ 〈i〉)} }
We obtain the post-condition immediately.

Derivation of Hoare Triple for freadi The call

i = freadi(f)

is equivalent to

{ h ∈ % ∧ %(h) = (HRead n δr J : δw) }
(HRead n dsr (J:dsw)) = lookup(FSH,h);
i = J;
FSH=override(FSH,h,(HRead n dsr dsw));
{ i′ = J ∧ %′ = % † {h 7→ (HRead n δr δw)} }
Again, we obtain the post-condition immediately.
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8.2 Clean Language Semantics

We use the symbol letb in this rewrite to indicate that the scoping of this form
is different to the scoping of the usual let expression in Clean and Haskell, as
indicated by the let-evaluation rule.

# p = expr1
expr 2

= 〈 Hash Syntactic Sugar 〉
letb p = expr1 in expr 2

(\x->b)e

= 〈 β-reduction 〉
b[x->e]

letb v = e1 in e2

= 〈 Let Evaluation 〉
e2[v -> e1]

letb (v1,v2) = (e1,e2) in e3

= 〈 Partial Let Evaluation 〉
letb v2 = e2 in e3[v1->e1]

letb x1 = e1 in
letb x2 = e2 in
e3

= 〈 Let Swap — provided x1,x2 not free in e1,e2 〉
letb x2 = e2 in
letb x1 = e1 in
e3

e1 where x = e2

= 〈 Where Evaluation 〉
e1[x -> e2]

8.3 IO Model in Clean Language Form

pre_fopen (n,FWrite)(phi,_)
= if (member(n,dom phi)) (fst(lookup phi n)==Closed) True

fopen (n,FWrite) (phi,rest)
= (h,(override phi n f),rest))
where

h = HWrite n []
f = (Write,[])
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pre_fopen(n,FRead) (phi,_)
= if (member(n,dom phi)) (fst(lookup phi n) != Write) False

fopen (n,FRead) (phi,rest)
= (h,(override phi n f),rest)
where
h = HRead n [] ds
f = (Read r,ds)
f0 = lookup phi n
r = if fst f0 == Closed then 1 else fst(fst f0)+1
ds = snd f0

pre_fclose (HWrite n ds) (phi,_)
= member(n,dom phi) && fst(lookup phi n)==Write

fclose (HWrite n ds) (phi,rest)
= (override phi n (Closed,ds),rest)

pre_fclose (HRead n _) (phi,_)
= member(n,dom phi) && fst(lookup phi n)==(Read _)

fclose (HRead n _) (phi,rest)
= (override phi n (s,ds),rest)
where
(Read r,ds) = lookup phi n
s = if r == 1 then Closed else (Read (s-1))

pre_fwritei _ (HWrite _) = True
pre_fwritei _ (HRead _) = False

fwritei i (HWrite n ds) = Hwrite n (ds++[i])

pre_freadi (HWrite _) = False
pre_freadi (HRead n rd rem) = rem != []

freadi (HRead n rd i:rest) = (i,Hread n rd++[i] rest)

8.4 Haskell Language Semantics

The “do” notation can be rewritten to use explicit bind, seq and lambda forms
(this is defined in the Haskell report)

x <- a
b

= 〈 do desugaring 〉
a >>= \x ->
b

= 〈 Bind elimination 〉
\w -> letb (val,w’) = a w in b w’
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a
b

= 〈 do desugaring 〉
a >> b

= 〈 Seq elimination 〉
\w -> letb w’ = a w in b w’

Let evaluation, partial let evaluation, let swap, where evaluation all as Clean
semantics.

8.5 IO Model in Haskell Language Form

The fopen, fclose, freadi and fwritei functions as for the Clean semantics.
“Handle” versions of the file operations also needed to encode the Haskell IO
system.

:: IO a = (W,Hmap) -> (a, (W,Hmap))
:: Hmap = Int -> FStatus

openFile n m = \(w,l) -> (h, (w’,override (h,fs) l))
where (fs,w’) = fopen n m w

h = hAlloc l

hreadi h = \(w,l) -> (the_int, (w, override (h,fs’) l))
where (the_int,fs’) = freadi fs

fs = lookup h l

hwritei h i = \(w,l) -> (w, override (h,fs’) l)
where fs’ = fwritei i fs

fs = lookup h l

hclose h = \(w,l) -> (w’, remove h l)
where w’ = fclose fs w

fs = lookup h l

ReadMode = Fread
WriteMode = Fwrite

hAlloc [] = 1
hAlloc l = (max dom l)+1

9 Language-Based Proofs

Language-based proofs are ones that work with the program text directly, possi-
bly with some extra notation. The language based semantics from the previous
section will be used to transform each program to a condition where the property
to be proved can be seen immediately.
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9.1 C Language Proof

We shall try using Hoare Triples to prove:

{ W = (Φ0 t {”a” 7→ (Closed, J : )}), ) }
Cprog{
W = (Φ0 t {”a” 7→ (Closed, 〈J2〉)}), )

}
This expands to

{ W = (Φ0 t {”a” 7→ (Closed, J : )}), ) }
main() { Cstmts }{
W = (Φ0 t {”a” 7→ (Closed, 〈J2〉)}), )

}

9.1.1 Condition Annotated Program.

{ P0 ≡ W = (Φ0 t {”a” 7→ (Closed, J : )}), ) ∧ % = θ }
f = fopen("a",FRead)

{ P1 }
x = freadi(f)

{ P2 }
fclose(f)

{ P3 }
f = fopen("a",FWrite)

{ P4 }
fwritei(f,x*x)

{ P5 }
fclose(f){
P6 ⇒W = (Φ0 t {”a” 7→ (Closed, 〈J2〉)}), )

}
The proof for statement i (si) will proceed by showing that Pi ⇒ pre-si, having
identified the substitution that makes this so, then using this to generate Pi+1

9.1.2 C Statement 1

s1 : f = fopen("a",FRead)

The pre-condition, with n = ”a” is

”a” ∈ dom Φ ∧ π1Φ(”a”) 6= Write

We have to show that P0 implies this, so, assuming

Φ = Φ0 t {”a” 7→ (Closed, J : )}

we try to show the pre-condition is satisfied.
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”a” ∈ dom Φ ∧ π1Φ(”a”) 6= Write
= 〈Lemma C.1〉

True ∧ π1Φ(”a”) 6= Write
= 〈prop. calc., Lemma C.2〉

π1(Closed, J : ) 6= Write
= 〈defn.of proj.〉

Closed 6= Write
= 〈ineq.〉

True

The post-condition, with n = ”a” and h = f is:

f ′ = max(dom %) + 1
%′ = % t {f ′ 7→ (Hread ”a” Λ π2(Φ(”a”)))}
Φ′ = Φ † {”a” 7→ (Read r, π2(Φ(”a”)))}
where r = π1(Φ(”a”)) ≡ Closed → 1 , π1(π1(Φ(”a”))) + 1

We evaluate each term given the P0 n as assumption.

f ′ = max(dom %) + 1
= 〈val. of %〉

f ′ = max ∅+ 1
= 〈defn. of max〉

f ′ = 0 + 1
= 〈arith.〉

f ′ = 1

%′ = % t {f ′ 7→ (Hread ”a” Λ π2(Φ(”a”)))}
= 〈val. of %, f ′, defn. t〉

%′ = {1 7→ (Hread ”a” Λ π2(Φ(”a”)))}
= 〈Lemma C.2〉

%′ = {1 7→ (Hread ”a” Λ π2(Closed, J : ))}
= 〈defn. proj.〉

%′ = {1 7→ (Hread ”a” Λ J : )}

Φ′ = Φ † {”a” 7→ (Read r, π2(Φ(”a”)))}
where r = π1(Φ(”a”)) ≡ Closed → 1 , π1(π1(Φ(”a”))) + 1

= 〈Lemma C.2〉
Φ′ = Φ † {”a” 7→ (Read r, π2(Φ(”a”)))}
where r = π1(Closed, J : ) ≡ Closed → 1 , π1(π1(Φ(”a”))) + 1

= 〈defn. of proj〉
Φ′ = Φ † {”a” 7→ (Read r, π2(Φ(”a”)))}
where r = Closed ≡ Closed → 1 , π1(π1(Φ(”a”))) + 1

= 〈cond.〉
Φ′ = Φ † {”a” 7→ (Read r, π2(Φ(”a”)))}
where r = 1

= 〈where-clause.〉
Φ′ = Φ † {”a” 7→ (Read 1, π2(Φ(”a”)))}
where r = 1

= 〈val. of Φ〉
Φ′ = (Φ0 t {”a” 7→ (Closed, J : )}) † {”a” 7→ (Read 1, π2(Φ(”a”)))}
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= 〈prop. of override and extend〉
Φ′ = Φ0 † {”a” 7→ (Read 1, π2(Φ(”a”)))}

= 〈Lemma C.2〉
Φ′ = Φ0 † {”a” 7→ (Read 1, π2(Closed, J : ))}

= 〈defn. of proj.〉
Φ′ = Φ0 t {”a” 7→ (Read 1, J : )}

The postcondition becomes:

f ′ = 1
%′ = {1 7→ (Hread ”a” Λ J : )}
Φ′ = Φ0 t {”a” 7→ (Read 1, J : }

We merge this with P0 to obtain P1, dropping primes:

P1 ≡

 W = (Φ0 t {”a” 7→ (Read 1, J : )}, )
% = {1 7→ (Hread ”a” Λ J : )}
f = 1

9.1.3 C Statement 2

s2 : x = freadi(f)

We show that P1 implies the pre-condition for this instance of freadi, which is

f ∈ % ∧ %(f) = (HRead n δr J : δw)

Assuming P1, we show the pre-condition is satisfied:

f ∈ dom % ∧ %(f) = (HRead n δr J : δw)
= 〈val. of f, %〉

1 ∈ dom {1 7→ (Hread ”a” Λ J : )}
∧ {1 7→ (Hread ”a” Λ J : )}(1) = (HRead n δr J : δw)

= 〈defn. of dom〉
True ∧ {1 7→ (Hread ”a” Λ J : )}(1) = (HRead n δr J : δw)

= 〈prop. calc., map appl.〉
(Hread ”a” Λ J : ) = (HRead n δr J : δw)

= 〈eq.〉
n = ”a” ∧ δr = Λ ∧ δw =

The precondition holds true under the given binding.
The post-condition of freadi with substitutions is:

x′ = J ∧ %′ = % † {1 7→ (HRead ”a” Λ _ 〈J〉 )}

We evaluate each term given P1 as assumption:

i′ = J

%′ = % † {1 7→ (HRead ”a” Λ _ 〈J〉 )}
= 〈defn. of conc.〉
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%′ = % † {1 7→ (HRead ”a” 〈J〉 )}
= 〈val. of %〉

%′ = {1 7→ (Hread ”a” Λ J : )} † {1 7→ (HRead ”a” 〈J〉 )}
= 〈defn. of override〉

%′ = {1 7→ (HRead ”a” 〈J〉 )}

The postcondition becomes:

x′ = J ∧ %′ = {1 7→ (HRead ”a” 〈J〉 )}

We merge this with P1, dropping primes, to get P2:

P2 ≡


W = (Φ0 t {”a” 7→ (Read 1, J : )}, )
% = {1 7→ (HRead ”a” 〈J〉 )}
f = 1
x = J

9.1.4 C Statement 3

s3 : fclose(f)

We show that P2 implies the pre-condition for this instance of fclose, which is

f ∈ dom % ∧ %(f) = (HRead n ) ∧ n ∈ dom Φ ∧ Φ(n) = (Read r )

Assuming P2, we show the pre-condition is satisfied:

f ∈ dom % ∧ %(f) = (HRead n ) ∧ n ∈ dom Φ ∧ Φ(n) = (Read r )
= 〈val. of f, %〉

1 ∈ dom{1 7→ (HRead ”a” 〈J〉 )} ∧ {1 7→ (HRead ”a” 〈J〉 )}(1) = (HRead n )
∧ n ∈ dom Φ ∧ Φ(n) = (Read r )

= 〈prop.of dom, map appl.〉
True ∧ (HRead ”a” 〈J〉 ) = (HRead n )
∧ n ∈ dom Φ ∧ Φ(n) = (Read r )

= 〈prop. calc., eq.〉
n = ”a” ∧ n ∈ dom Φ ∧ Φ(n) = (Read r )

= 〈val. of n〉
n = ”a” ∧ ”a” ∈ dom Φ ∧ Φ(”a”) = (Read r )

= 〈Lemma 1.〉
n = ”a” ∧True ∧ Φ(”a”) = (Read r )

= 〈prop. calc., Lemma 2. (fs = (Read 1, J : ))〉
n = ”a” ∧ (Read 1, J : ) = (Read r )

= 〈eq.〉
n = ”a” ∧ r = 1

The precondition holds true under the given binding.
The post-condition of fclose with these substitutions is:

%′ = /−[f ]%
Φ′ = Φ † {”a” 7→ (s, π2(Φ(”a”)))}
where s = 1 = 1 → Closed , Read (1− 1)

We evaluate each term given P2 as assumption:
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%′ = /−[f ]%
= 〈val. of f, %〉

%′ = /−[1]{1 7→ }
= 〈defn. of mremove〉

%′ = θ

Φ′ = Φ † {”a” 7→ (s, π2(Φ(”a”)))}
where s = 1 = 1 → Closed , Read (1− 1)

= 〈defn. of cond.〉
Φ′ = Φ † {”a” 7→ (s, π2(Φ(”a”)))}

where s = Closed
= 〈where clause〉

Φ′ = Φ † {”a” 7→ (Closed, π2(Φ(”a”)))}
= 〈Lemma C.2〉

Φ′ = Φ † {”a” 7→ (Closed, π2(Read 1, J : ))}
= 〈defn. of proj.〉

Φ′ = Φ † {”a” 7→ (Closed, J : )}
= 〈val. of Φ.〉

Φ′ = (Φ0 t {”a” 7→ (Read 1, J : )}) † {”a” 7→ (Closed, J : )}
= 〈prop. of †.〉

Φ′ = Φ0 t {”a” 7→ (Closed, J : )}

The postcondition becomes:

%′ = θ
Φ′ = Φ0 t {”a” 7→ (Closed, J : )}

We merge this with P2, dropping primes, to get P3:

P3 ≡


W = (Φ0 t {”a” 7→ (Closed, J : )}, )
% = θ
f = 1
x = J

9.1.5 C Statement 4

s4 : f = fopen("a",FWrite)

We show that P3 implies the pre-condition for this instance of fopen, which is

”a” /∈ dom Φ ∨ π1Φ(”a”) = Closed

Assuming P3, we show the pre-condition is satisfied:

”a” /∈ dom Φ ∨ π1Φ(”a”) = Closed
= 〈Lemma C.1〉

False ∨ π1Φ(”a”) = Closed
= 〈prop. calc., Lemma C.2〉

π1(Closed, J : ) = Closed
= 〈defn. proj.〉

Closed = Closed
= 〈eq.〉

True
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The post-condition of fopen with substitutions is:

f ′ = max(dom %) + 1
%′ = % t {f ′ 7→ (Hwrite ”a” Λ)}
Φ′ = Φ † {”a” 7→ (Write,Λ)}

We evaluate each term given P3 as assumption:

f ′ = max(dom %) + 1
= 〈val. of %〉

f ′ = max(dom θ) + 1
= 〈prop. dom,max, arith.〉

f ′ = 1

%′ = % t {f ′ 7→ (Hwrite ”a” Λ)}
= 〈val. of %〉

%′ = θ t {f ′ 7→ (Hwrite ”a” Λ)}
= 〈extend, val. of f ′〉

%′ = {1 7→ (Hwrite ”a” Λ)}

Φ′ = Φ † {”a” 7→ (Write,Λ)}
= 〈val. of Φ〉

Φ′ = (Φ0 t {”a” 7→ (Closed, J : )}) † {”a” 7→ (Write,Λ)}
= 〈prop. of t, †〉

Φ′ = Φ0 t {”a” 7→ (Write,Λ)}

The postcondition becomes:

f ′ = 1
%′ = {1 7→ (Hwrite ”a” Λ)}
Φ′ = Φ0 t {”a” 7→ (Write,Λ)}

We merge this with P3, dropping primes, to get P4:

P4 ≡


W = (Φ0 t {”a” 7→ (Write,Λ)}, )
% = {1 7→ (Hwrite ”a” Λ)}
f = 1
x = J

9.1.6 C Statement 5

s5 : fwritei(f,x*x)

We show that P4 implies the pre-condition for this instance of fwritei, which
is

f ∈ % ∧ %(f) = (HWrite n δ)

Assuming P4, we show the pre-condition is satisfied:

f ∈ dom % ∧ %(f) = (HWrite n δ)
= 〈val. of f, %〉

1 ∈ dom{1 7→ (Hwrite ”a” Λ)} ∧ {1 7→ (Hwrite ”a” Λ)}(1) = (HWrite n δ)
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= 〈def. of dom〉
True ∧ {1 7→ (Hwrite ”a” Λ)}(1) = (HWrite n δ)

= 〈prop. calc., map app.〉
(Hwrite ”a” Λ) = (HWrite n δ)

= 〈eq.〉
n = ”a” ∧ δ = Λ

The pre-condition holds true under the resulting binding.
The post-condition of fwritei with substitutions is:

%′ = % † {1 7→ (HWrite ”a” Λ _ 〈x2〉)}

We evaluate this given P4 as assumption:

%′ = % † {1 7→ (HWrite ”a” Λ _ 〈x2〉)}
= 〈def. of _〉

%′ = {1 7→ (Hwrite ”a” Λ)} † {1 7→ (HWrite ”a” 〈x2〉)}
= 〈val. of %〉

%′ = {1 7→ (Hwrite ”a” Λ)} † {1 7→ (HWrite ”a” 〈x2〉)}
= 〈prop. of †〉

%′ = {1 7→ (HWrite ”a” 〈x2〉)}
= 〈val. of x〉

%′ = {1 7→ (HWrite ”a” 〈J2〉)}

The postcondition becomes:

%′ = {1 7→ (HWrite ”a” 〈J2〉)}

We merge this with P4, dropping primes, to get P5:

P5 ≡


W = (Φ0 t {”a” 7→ (Write,Λ)}, )
% = {1 7→ (HWrite ”a” 〈J2〉)}
f = 1
x = J

9.1.7 C Statement 6

s6 : fclose(f)

We show that P5 implies the pre-condition for this instance of fclose, which is

f ∈ dom % ∧ %(f) = (HWrite n δ) ∧ n ∈ dom Φ ∧ Φ(n) = (Write, )

Assuming P5, we show it is satisfied:

f ∈ dom % ∧ %(f) = (HWrite n δ) ∧ n ∈ dom Φ ∧ Φ(n) = (Write, )
= 〈val. of f, %〉

1 ∈ dom{1 7→ (HWrite ”a” 〈J2〉)} ∧ {1 7→ (HWrite ”a” 〈J2〉)}(1) = (HWrite n δ)
∧ n ∈ dom Φ ∧ Φ(n) = (Write, )

= 〈prop. of dom, map app.〉
True ∧ (HWrite ”a” 〈J2〉) = (HWrite n δ)
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∧ n ∈ dom Φ ∧ Φ(n) = (Write, )
= 〈prop. calc., eq.〉

n = ”a” ∧ δ = 〈J2〉
∧ n ∈ dom Φ ∧ Φ(n) = (Write, )

= 〈subs.〉
n = ”a” ∧ δ = 〈J2〉 ∧ ”a” ∈ dom Φ ∧ Φ(”a”) = (Write, )

= 〈Lemma C.1〉
n = ”a” ∧ δ = 〈J2〉 ∧True ∧ Φ(”a”) = (Write, )

= 〈prop. calc., Lemma C.2〉
n = ”a” ∧ δ = 〈J2〉 ∧ (Write,Λ) = (Write, )

= 〈eq.〉
n = ”a” ∧ δ = 〈J2〉 ∧True

= 〈prop. calc.〉
n = ”a” ∧ δ = 〈J2〉

Precondtion holds subject to these substitutions.
The post-condition of fclose with substitutions is:

%′ = /−[1]%
Φ′ = Φ † {”a” 7→ (Closed, 〈J2〉)}

We evaluate each term given P5 as assumption:

%′ = /−[1]%
= 〈val. of %〉

%′ = /−[1]{1 7→ }
= 〈defn. of /−〉

%′ = θ

Φ′ = Φ † {”a” 7→ (Closed, 〈J2〉)}
= 〈val. of Φ〉

Φ′ = (Φ0 t {”a” 7→ (Write,Λ)}) † {”a” 7→ (Closed, 〈J2〉)}
= 〈map props.〉

Φ′ = Φ0 t {”a” 7→ (Closed, 〈J2〉)}

The postcondition becomes:

%′ = θ
Φ′ = Φ0 t {”a” 7→ (Closed, 〈J2〉)}

We merge this with P5, dropping primes, to get P6:

P6 ≡


W = (Φ0 t {”a” 7→ (Closed, 〈J2〉)}, )
% = θ
f = 1
x = J

9.1.8 Finishing the Proof

The annotated program is:{
W = (Φ0 t {”a” 7→ (Closed, J : )}), )
% = θ

}
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f = fopen("a",FRead) W = (Φ0 t {”a” 7→ (Read 1, J : )}, )
% = {1 7→ (Hread ”a” Λ J : )}
f = 1


x = freadi(f)
W = (Φ0 t {”a” 7→ (Read 1, J : )}, )
% = {1 7→ (HRead ”a” 〈J〉 )}
f = 1
x = J


fclose(f)
W = (Φ0 t {”a” 7→ (Closed, J : )}, )
% = θ
f = 1
x = J


f = fopen("a",FWrite)
W = (Φ0 t {”a” 7→ (Write,Λ)}, )
% = {1 7→ (Hwrite ”a” Λ)}
f = 1
x = J


fwritei(f,x*x)
W = (Φ0 t {”a” 7→ (Write,Λ)}, )
% = {1 7→ (HWrite ”a” 〈J2〉)}
f = 1
x = J


fclose(f)
W = (Φ0 t {”a” 7→ (Closed, 〈J2〉)}, )
% = θ
f = 1
x = J


which must imply{
W = (Φ0 t {”a” 7→ (Closed, 〈J2〉)}), )

}
This is vacuosly the case ♣

9.1.9 Lemma C.1

Given
Φ = Φ0 t {”a” 7→ }

show
”a” ∈ dom Φ = True

”a” ∈ dom Φ
= 〈val. of Φ〉

”a” ∈ dom(Φ0 t {”a” 7→ })
= 〈defn. of dom〉

”a” ∈ (dom Φ0 t {”a”})
= 〈set theory〉

True
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9.1.10 Lemma C.2

Given
Φ = Φ0 t {”a” 7→ fs}

show
Φ(”a”) = fs

Φ(”a”)
= 〈val. of Φ〉

(Φ0 t {”a” 7→ fs})(”a”)
= 〈defn. of application〉

fs

9.2 Clean Language Proof

We wish to show that

lookup phi’ "a" = (Closed,[J*J])
where
(phi’,_) = main (extend phi "a" (Closed,J:_),_)

The program can be re-written, using the Hash Syntactic Sugar rule as follows

main =\ w -> h1
h1 = letb (f,w)=fopen "a" FRead w in h2
h2 = letb (i,f) = freadi f in h3
h3 = letb w = fclose f w in h4
h4 = letb (f,w)=fopen "a" Fwrite w in h5
h5 = letb f =fwritei (x*x) f in h6
h6 = letb w = fclose f w in w

main (extend phi "a" (Closed,J:_),w)

= 〈 defn. of main 〉
(\w->h1) (extend phi "a" (Closed,J:_),_)

= 〈 shorthand h1 〉
(\w->letb (f,w)=fopen "a" FRead w in h2)
(extend phi "a" (Closed,J:_),_)

= 〈 β-reduction 〉
letb (f,w)

=fopen "a" FRead (extend phi "a" (Closed,J:_),_)
in h2

= 〈 Lemma K.1 〉
letb (f,w)=(Hread "a" [] J:_ ,(override phi "a" (Read 1,J:_),_))
in h2

= 〈 expand h2 〉
letb (f,w)=(Hread "a" [] J:_ ,(override phi "a" (Read 1,J:_),_))
in letb (x,f) = freadi f in h3

= 〈 partial let evalution on f 〉
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letb w = (override phi "a" (Read 1,J:_),_)
in letb (x,f) = freadi (Hread "a" [] J:_) in h3

= 〈 Lemma K.4, defn of freadi 〉
letb w = (override phi "a" (Read 1,J:_),_)
in letb (x,f) = (J,Hread "a" [J] _) in h3

= 〈 expand h3 〉
letb w = (override phi "a" (Read 1,J:_),_)
in letb (x,f) = (J,Hread "a" [J] _)
in letb w = fclose f w in h4

= 〈 Let Evaluation 〉
letb (x,f) = (J,Hread "a" [J] _)
in letb w = fclose f (override phi "a" (Read 1,J:_),_) in h4

= 〈 Partial Let Evaluation 〉
letb x = J in
letb w = fclose (Hread "a" [J] _) (override phi "a" (Read 1,J:_),_)
in h4

= 〈 Lemma K.2 〉
letb x = J in
letb w = (override phi "a" (Closed,J:_),_)
in h4

= 〈 expand h4 〉
letb x = J in
letb w = (override phi "a" (Closed,J:_),_)
in letb (f,w)=fopen "a" Fwrite w in h5

= 〈 Let Evaluation 〉
letb x = J in
in letb (f,w)=fopen "a" Fwrite (override phi "a" (Closed,J:_),_) in h5

= 〈 Lemma K.3 〉
letb x = J in
in letb (f,w)=(Hwrite "a" [], ((override phi "a" (Write,[])),_)) in h5

= 〈 expand h5 〉
letb x = J in
in letb (f,w)=(Hwrite "a" [], ((override phi "a" (Write,[])),_))
in letb f =fwritei (x*x) f in h6

= 〈 Let Evaluation 〉
letb (f,w)=(Hwrite "a" [], ((override phi "a" (Write,[])),_))
in letb f =fwritei (J*J) f in h6

= 〈 Partial Let Evaluation 〉
letb w=((override phi "a" (Write,[])),_)
in letb f =fwritei (J*J) (Hwrite "a" []) in h6

= 〈 Lemma K.5, defn. of fwritei 〉
letb w=((override phi "a" (Write,[])),_)
in letb f = Hwrite "a" [J*J] in h6

= 〈 expand h6 〉
letb w=((override phi "a" (Write,[])),_)
in letb f = Hwrite "a" [J*J]
in letb w = fclose f w in w
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= 〈 Let Evaluation (f) 〉
letb w=((override phi "a" (Write,[])),_)
in letb w = fclose (Hwrite "a" [J*J]) w in w

= 〈 Let Evaluation (w) 〉
letb w = fclose (Hwrite "a" [J*J]) ((override phi "a" (Write,[])),_)
in w

= 〈 Lemma K.6, defn. fclose 〉
letb w = (override (override phi "a" (Write,[])) "a" (Closed,[J*J]),_)
in w

= 〈 prop. of override 〉
letb w = (override phi "a" (Closed,[J*J]),_)
in w

= 〈 Let Evaluation 〉
(override phi "a" (Closed,[J*J]),_)

We have shown that

main (extend phi "a" (Closed,J:_),w)
=
(override phi "a" (Closed,[J*J]),_)

Now we evaluate our property:

lookup phi’ "a"
where
(phi’,_) = main (extend phi "a" (Closed,J:_),_)

= 〈 just demonstrated 〉
lookup phi’ "a"
where
(phi’,_) = (override phi "a" (Closed,[J*J]),_)

= 〈 where clause 〉
lookup (override phi "a" (Closed,[J*J])) "a"

= 〈 lookup 〉
(Closed,[J*J])

Proof is complete ♣

9.2.1 Lemma K.1

fopen "a" FRead (extend phi "a" (Closed,J:_),_)

= 〈 Lemma K.1.1, defn. of fopen 〉
(h,(override (extend phi "a" (Closed,J:_),_) "a" f,_))
where
h = Hread "a" [] ds
f = (Read r,ds)
f0 = lookup phi n
r = if fst f0 == Closed then 1 else _
ds = snd f0
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= 〈 prop. of override and extend 〉
(h,(override phi "a" f,_))
where
h = Hread "a" [] ds
f = (Read r,ds)
f0 = lookup phi n
r = if fst f0 == Closed then 1 else _
ds = snd f0

= 〈 eval f0 and subs. 〉
(h,(override phi "a" f,_))
where
h = Hread "a" [] ds
f = (Read r,ds)
r = if fst (Closed,J:_) == Closed then 1 else _
ds = snd (Closed,J:_)

= 〈 eval fst,snd and subs. 〉
(h,(override phi "a" f,_))
where

h = Hread "a" [] ds
f = (Read r,ds)
r = if Closed == Closed then 1 else _)
ds = J:_

= 〈 eval ds,snd, cond. and subs. 〉
(h,(override phi "a" f,_))
where
h = Hread "a" [] J:_
f = (Read 1,J:_)

= 〈 subs for h,f 〉
(Hread "a" [] J:_ ,(override phi "a" (Read 1,J:_),_))

9.2.2 Lemma K.1.1

pre_fopen "a" FRead (extend phi "a" (Closed,J:_),_)
= 〈 defn of pre fopen 〉
if (member("a",dom (extend phi "a" (Closed,J:_)))

(fst(lookup (extend phi "a" (Closed,J:_)) "a")==Closed)
True

= 〈 defn of dom 〉
if (member("a",dom phi union {"a"}))

(fst(lookup (extend phi "a" (Closed,J:_)) "a")==Closed)
True

= 〈 prop. of member 〉
if True

(fst(lookup (extend phi "a" (Closed,J:_)) "a")==Closed)
True

= 〈 cond. 〉
fst(lookup (extend phi "a" (Closed,J:_)) "a")==Closed

= 〈 defn. lookup. 〉
fst(Closed,J:_)==Closed

= 〈 defn. fst, eq. 〉
True
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9.2.3 Lemma K.2

fclose (Hread "a" [J] _) (override phi "a" (Read 1,J:_),_)
= 〈 Lemma K.2.1, defn of fclose 〉
(override (override phi "a" (Read 1,J:_)) "a" (s,ds),_)
where
(Read r,ds) = lookup (override phi "a" (Read 1,J:_)) "a"
s = if r == 1 then Closed else (Read (s-1))

= 〈 prop. of override 〉
(override phi "a" (s,ds),_)
where
(Read r,ds) = lookup (override phi "a" (Read 1,J:_)) "a"
s = if r == 1 then Closed else (Read (s-1))

= 〈 lookup and override 〉
(override phi "a" (s,ds),_)

where
(Read r,ds) = (Read 1,J:_)
s = if r == 1 then Closed else (Read (s-1))

= 〈 where clause 〉
(override phi "a" (s,J:_),_)

where
s = if 1 == 1 then Closed else (Read (s-1))

= 〈 cond., where clause 〉
(override phi "a" (Closed,J:_),_)

9.2.4 Lemma K.2.1

pre_ fclose (Hread "a" [J] _) (override phi "a" (Read 1,J:_),_)
= 〈 def. pre fclose 〉
member("a",dom (override phi "a" (Read 1,J:_)))
&& fst(lookup (override phi "a" (Read 1,J:_)) "a")=(Read _)

= 〈 prop. dom, member, lookup 〉
True && fst(Read 1,J:_)=(Read _)

= 〈 prop. calc., defn. fst, eq. 〉
True

9.2.5 Lemma K.3

fopen "a" Fwrite (override phi "a" (Closed,J:_),_)
= 〈 Lemma K.3.1, defn. of fopen 〉
(h,(override (override phi "a" (Closed,J:_)) "a" f),_))

where
h = Hwrite "a" []
f = (Write,[])

= 〈 prop. of override 〉
(h,((override phi "a" f),_))

where
h = Hwrite "a" []
f = (Write,[])

= 〈 where clause 〉
(Hwrite "a" [], ((override phi "a" (Write,[])),_))
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9.2.6 Lemma K.3.1

pre_fopen "a" Fwrite (override phi "a" (Closed,J:_),_)

= 〈 defn. 〉
if (member("a",dom(override phi "a" (Closed,J:_))))

(fst(lookup (override phi "a" (Closed,J:_)) "a")==Closed)
True

= 〈 prop. member and dom 〉
if True

(fst(lookup (override phi "a" (Closed,J:_)) "a")==Closed)
True

= 〈 cond. 〉
fst(lookup (override phi "a" (Closed,J:_)) "a")==Closed

= 〈 lookup 〉
fst(Closed,J:_)==Closed

= 〈 fst, eq. 〉
True

9.2.7 Lemma K.4

pre_freadi (Hread "a" [] J:_)

= 〈 defn. 〉
(J:_) != []

= 〈 lst eq. 〉
True

9.2.8 Lemma K.5

pre_fwritei (J*J) (Hwrite "a" [])

= 〈 defn. 〉
True

9.2.9 Lemma K.6

pre_fclose (Hwrite "a" [J*J]) ((override phi "a" (Write,[])),_)

= 〈 defn. pre fclose 〉
member("a",dom (override phi "a" (Write,[])))
&& fst(lookup (override phi "a" (Write,[])) "a")==Write

= 〈 defn. dom, defn. lookup 〉
member("a",(dom phi ‘union‘ {"a"} )) && fst(Write,[])==Write

= 〈 prop. member, defn. fst 〉
True && Write==Write

= 〈 eq., prop. calc 〉
True
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9.3 Haskell Language Proof

We start with the program text, and transform it by effectively replacing the
do-notation and monads by let expressions and lambda abtractions, in order to
make the world explicit.
Converted to “let” form:

main = do
h <- openFile "a" ReadMode
x <- hreadi h
hclose h
h <- openFile "a" WriteMode
hwritei h (x*x)
hclose h

= 〈 do desugaring 〉
main = openFile "a" ReadMode >>= \h ->

hreadi h >>= \x ->
hclose h >>
h <- openFile "a" WriteMode >>= \h ->
hwritei h (x*x) >>
hclose h

= 〈 bind and seq elimination 〉
main = h1

h1 = \w -> letb (h,w’) = openFile "a" ReadMode w in h2 w’
h2 = \w -> letb (x,w’) = hreadi h w in h3 w’
h3 = \w -> letb w’ = hclose h w in h4 w’
h4 = \w -> letb (h,w’) = openFile "a" WriteMode w in h5 w’
h5 = \w -> letb w’ = hwritei h (x*x) w in h6
h6 = \w -> hclose h w

Given this definition of main we wish to show that

lookup phi’ "a" = (Closed,[J*J])
where ((phi’,_),_) = main ((extend phi "a" (Closed,J:_),_),_)

Beginning with the evaluation of main

main ((extend phi "a" (Closed,J:_),W),[])

= 〈 Definition of main 〉
h1 ((extend phi "a" (Closed,J:_),W),[])

= 〈 expansion of h1 〉
\w -> letb (h,w’) = openFile "a" ReadMode w

in h2 w’ ((extend phi "a" (Closed,J:_),W),[])

= 〈 β-reduction 〉
letb (h,w’) = openFile "a" ReadMode

((extend phi "a" (Closed,J:_),W),[]) in h2 w’

= 〈 Lemma H.1 〉
letb (h,w’) = (1, ((override phi "a" (Read 1,J:_),W),

override [] 1 (Hread "a" [] (J:_)))) in h2 w’
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= 〈 Partial let evaluation 〉
letb h = 1 in h2
((override phi "a" (Read 1,J:_),W), override [] 1 (Hread "a" [] (J:_)))

= 〈 expansion of h2 〉
letb h = 1 in

\w -> let (x,w’) = hreadi h w in h3 w’
((override phi "a" (Read 1,J:_),W), override [] 1 (Hread "a" [] (J:_)))

= 〈 β-reduction 〉
let h = 1 in
letb (x,w’) = hreadi h ((override phi "a" (Read 1,J:_),W),

override 1 [] (Hread "a" [] (J:_)))
in h3 w’

= 〈 Lemma H.2 〉
letb h = 1 in letb (x,w’) = (J, (override phi "a" (Read 1,J:_),W),

override [] 1 (Hread "a" [J] _))
in h3 w’

= 〈 partial Let evaluation 〉
letb h = 1 in letb x = J
in h3 ((override phi "a" (Read 1,J:_),W),

override [] 1 (Hread "a" [J] _))

= 〈 expansion of h3 〉
letb h = 1 in letb x = J in \w -> let w’ = hclose h w in h4 w’

((override phi "a" (Read 1,J:_),W),
override [] 1 (Hread "a" [J] _))

= 〈 β-reduction 〉
letb h = 1 in letb x = J in
letb w’ = hclose h ((override phi "a" (Read 1,J:_),W),

override [] 1 (Hread "a" [J] _)) in h4 w’

= 〈 Lemma H.3 〉
letb h = 1 in let x = J in
letb w’ = ((override phi "a" (Closed,J:_),W),[]) in h4 w’

= 〈 let evaluation on w’ 〉
letb h = 1 in letb x = J in h4 ((override phi "a" (Closed,J:_),W),[])

= 〈 expansion of h4 〉
letb h = 1 in letb x = J in

\w -> letb (h,w’) = openFile "a" WriteMode w
in h5 w’ ((override phi "a" (Closed,J:_),W),[])

= 〈 β-reduction 〉
letb h = 1 in letb x = J in
letb (h,w’) = openFile "a" WriteMode ((override phi "a" (Closed,J:_),W),[])
in h5 w’

= 〈 Lemma H.4 〉
letb h = 1 in letb x = J in letb (h,w’) =
(1, ( (override phi "a" (Write,[]),W), override [] 1 (Hwrite "a" [])))
in h5 w’

= 〈 Partial Let evaluation 〉
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letb h = 1 in letb x = J in letb h = 1 in
h5 ((override phi "a" (Write,[]),W), override [] 1 (Hwrite "a" []))

= 〈 Let evaluation 〉
letb x = J in letb h = 1 in
h5 ((override phi "a" (Write,[]),W), override [] 1 (Hwrite "a" []))

= 〈 expansion of h5 〉
letb x = J in letb h = 1 in
\w -> letb w’ = hwritei h (x*x) w in h6 ((override phi "a"

(Write,[]),W), override [] 1 (Hwrite "a" []))

= 〈 β-reduction 〉
letb x = J in letb h = 1 in
letb w’ = hwritei h (x*x) ((override phi "a"

(Write,[]),W), override [] 1 (Hwrite "a" [])) in h6 w’

= 〈 Let evaluation on x 〉
letb h = 1 in letb w’ =
hwritei h (J*J) ((override phi "a"

(Write,[]),W), override [] 1 (Hwrite "a" [])) in h6 w’

= 〈 Substitution for h 〉
letb h = 1 in letb w’ =
hwritei 1 (J*J) ((override phi "a"

(Write,[]),W), override [] 1 (Hwrite "a" [])) in h6 w’

= 〈 Lemma H.5 〉
letb h = 1 in let w’ =
((override phi "a" (Write,[]),W),
override [] 1 (Hwrite "a" [J*J])) in h6 w’

= 〈 Let evaluation on w’ 〉
letb h = 1 in
h6 ((override phi "a" (Write,[]),W),

override [] 1 (Hwrite "a" [J*J]))

= 〈 expansion of h6 〉
letb h = 1 in
\w -> hclose h w ((override phi "a" (Write,[]),W),

override [] 1 (Hwrite "a" [J*J]))

= 〈 Let reduction on h and definition of hclose 〉
(override phi "a" (Closed, [J*J]), [])

So we have shown that

main ((extend phi "a" (Closed,J:_),W),[])

=

(override phi "a" (Closed, [J*J]) W, [])

As for the clean proof, we can now use lookup to establish the property.
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10 Lemmas for Haskell proof

10.1 Lemma H.1

openFile "a" ReadMode ((extend phi "a" (Closed,J:_),W),[])

= 〈 definition of openFile 〉
\(w,l) -> (h,(w’,override l h fs)) ((extend phi "a" (Closed,J:_),W),[])

where (fs,w’) = fopen "a" ReadMode w
h = nextint l

= 〈 nextint of l; where substitution; ReadMode conversion 〉
\(w,l) -> (1,(w’, override l 1 fs)) ((extend phi "a" (Closed,J:_),W),[])

where (fs, w’) = fopen "a" Fread w

= 〈 β-reduction 〉
(1,(w’, override [] 1 fs))
where (fs, w’) = fopen "a" Fread (extend phi "a" (Closed,J:_),W)

= 〈 Lemma K.1 〉
(1,(w’, override [] 1 fs))
where (fs, w’) = ( hRead "a" [] (J:_), override phi "a" (Read 1,J:_),W)

= 〈 where substitution 〉
(1,((override phi "a" (Read 1,J:_),W),

override [] 1 (hRead "a" [] (J:_))))

10.1.1 Lemma H.2

hreadi 1 ((override phi "a" (Read 1,J:_),W),
override [] 1 (hRead "a" [] (J:_)))

= 〈 definition of hreadi and β-reduction 〉
(the_int, ((override phi "a" (Read 1,J:_),W), override (1,fs’) []))

where (the_int,fs’) = freadi fs
fs = lookup 1 (override [] 1 (Hread "a" [] (J:_)))

= 〈 definition of lookup 〉
(the_int, ((override phi "a" (Read 1,J:_),W), override [] 1 fs’))

where (the_int,fs’) = freadi fs
fs = (Hread "a" [] (J:_))

= 〈 where substitution on fs 〉
(the_int, ((override phi "a" (Read 1,J:_),W), override [] 1 fs’))

where (the_int,fs’) = freadi (Hread "a" [] (J:_))

= 〈 definition of freadi 〉
(the_int, ((override phi "a" (Read 1,J:_),W), override [] 1 fs’))

where (the_int,fs’) = (J, HRead "a" [J] _)

= 〈 where substitution on freadi 〉
(J, ((override phi "a" (Read 1,J:_),W), override [] 1 (HRead "a" [J] _)))
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10.1.2 Lemma H.3

hclose 1 ((override phi "a" (Read 1,J:_),W),
override [] 1 (Hread "a" [J] _))

= 〈 Definition of hclose 〉
\(w,l) -> (w’, remove 1 l)

((override phi "a" (Read 1,J:_),W),
override [] 1 (Hread "a" [J] _))

where w’ = fclose fs w
fs = lookup 1 l

= 〈 β-reduction 〉
(w’, remove 1 (override [] 1 (Hread "a" [J] _)))
where w’ = fclose fs (override phi "a" (Read 1,J:_),W)

fs = lookup 1 (override [] 1 (Hread "a" [J] _))

= 〈 lookup and where substitution of fs 〉
(w’, remove 1 (override [] 1 (Hread "a" [J] _)))
where w’ = fclose (Hread "a" [J] _) (override phi "a" (Read 1,J:_),W)

= 〈 remove 〉
(w’, [])
where w’ = fclose (Hread "a" [J] _) (override phi "a" (Read 1,J:_),W)

= 〈 definition of fclose 〉
(w’, [])
where w’ = (override phi "a" (Closed,J:_),W)

= 〈 where substitution 〉
((override phi "a" (Closed,J:_),W), [])

10.1.3 Lemma H.4

openFile "a" WriteMode ((override phi "a" (Closed,J:_),W),[])

= 〈 definition of openFile; WriteMode substitution 〉
\(w,l) -> (h, (w’,override l h fs)) ((override phi "a" (Closed,J:_),W),[])

where (fs,w’) = fopen "a" Fwrite w
h = nextint l

= 〈 β-reduction 〉
(h, (w’,override [] h fs))

where (fs,w’) = fopen "a" Fwrite (override phi "a" (Closed,J:_),W)
h = nextint []

= 〈 nextint and where substitution of h 〉
(1, (w’,override [] 1 fs))

where (fs,w’) = fopen "a" Fwrite (override phi "a" (Closed,J:_),W)

= 〈 Lemma K.3 〉
(1, (w’,override [] 1 fs))

where (fs,w’) = (Hwrite "a" [], ((override phi "a" (Write,[])),W))

= 〈 where substitution 〉
(1, (((override phi "a" (Write,[])),W),override [] 1 (Hwrite "a" [])))
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10.1.4 Lemma H.5

hwritei 1 (J*J) ((override phi "a" (Write,[]),W), override [] 1 (Hwrite "a" []))

= 〈 definition of hwritei and argument substitution 〉
\(w,l) -> (w, override l 1 fs’) ((override phi "a" (Write,[]),W),

override [] 1 (Hwrite "a" []))
where fs’ = fwritei (J*J) fs

fs = lookup 1 l

= 〈 β-reduction 〉
((override phi "a" (Write,[]),W), override (override [] 1 (Hwrite "a" [])) 1 fs’)

where fs’ = fwritei (J*J) fs
fs = lookup 1 (override [] 1 (Hwrite "a" []))

= 〈 lookup and where substitution of fs 〉
((override phi "a" (Write,[]),W), override (override [] 1 (Hwrite "a" [])) 1 fs’)

where fs’ = fwritei (J*J) (Hwrite "a" [])

= 〈 definition of fwritei 〉
((override phi "a" (Write,[]),W), override (override [] 1 (Hwrite "a" [])) 1 fs’)

where fs’ = (Hwrite "a" [J*J])

= 〈 where substitution of fs’ 〉
((override phi "a" (Write,[]),W),
override (override [] 1 (Hwrite "a" [])) 1 (Hwrite "a" [J*J]))

= 〈 override 〉
((override phi "a" (Write,[]),W),
override [] 1 (Hwrite "a" [J*J]))
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