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Abstract 

 
Several clustering algorithms have been suggested to analyse genome expression 

data, but fewer solutions have been implemented to guide the design of clustering-
based experiments and assess the quality of their outcomes. A cluster validity 
framework provides insights into the problem of predicting the correct the number of 
clusters. This paper presents several validation techniques for gene expression data 
analysis. Normalisation and validity aggregation strategies are proposed to improve 
the prediction about the number of relevant clusters. The results obtained indicate that 
this systematic evaluation approach may significantly support genome expression 
analyses for knowledge discovery applications. 
Keywords: Genome expression; Clustering; Cluster validation; Genomic data mining. 
 
1. Introduction 

 
Several clustering techniques have been applied to the analysis of genome 

expression data [1,2]. Clustering can support the identification of existing underlying 
relationships among a set of variables such as biological conditions or perturbations. 
It may represent a basic tool not only for the classification of known categories, but 
also for the discovery of relevant classes. In the genome expression domain it has 
provided the basis for novel clinical diagnostic and prognostic studies [3]. 

On the other hand fewer solutions to systematically evaluate the quality of the 
clusters have been presented [4,5]. The prediction of the correct number of clusters is 
a fundamental problem in unsupervised classification problems. Many clustering 
algorithms require the definition of the number of clusters beforehand. To overcome 
this problem, various cluster validity indices have been proposed to assess the quality 
of a clustering partition [6]. This approach consists of running a clustering algorithm 
several times and obtaining different partitions, and the clustering partition that 
optimises a validity index is selected as the best partition. Thus, the main goal of a 
cluster validity technique is to identify the partition of clusters for which a measure of 
quality is optimal [5]. Cluster validity techniques include the Silhouette method [7], 
Dunn’s based index [8,9], Davies-Bouldin index [10] and the C-index [11]. For a 
review on validation techniques the reader is referred to [12]. 

The remainder of the paper is organised as follows. In Section 2 the experimental 
data are described. Section 3 introduces relevant validation methods and their 
applications to the analysis of expression data. A comparative study is presented in 
Section 4. Conclusions are presented in Section 5. 
 
 
 



2. Genomic Expression Data 
 

Genome expression data reflect the level of activity of several genes in parallel 
under different biochemical conditions [13]. This method is based on the idea that 
genes that are contained in a particular pathway should exhibit similar patterns of 
expression. The data studied in this paper consisted of two expression sets originating 
from leukaemia [14] and B-cell lymphoma [15] data. For related work on clustering 
based on these data sets the reader is referred to [16, 17, 18]. 

 
2.1. Leukaemia data 

 
The data comprised 38 samples (27 acute lymphoblastic leukaemia (ALL) and 11 

acute myeloid leukaemia (AML)) described by the expression levels of 50 genes with 
suspected roles in this type of cancer. These data were obtained from a study 
published by Golub and co-workers [14]. They presented a model to distinguish two 
sub-classes of ALL sample, known as B-cell ALL and T-cell ALL. The original data 
and experimental methods are available at http://www.genome.wi.mit.edu/MPR.  
2.2. B-cell lymphoma data 

 
The data consisted of 63 samples (45 diffuse large B-cell lymphoma (DLBCL) and 

18 normal) described by the expression levels of 23 genes. These data were obtained 
from a study published by Alizadeh and colleagues [15], who identified subgroups of 
DLBCL based on the analysis of the patterns generated by a specialized cDNA 
microarray technique. The study distinguished two categories of DLBCL: GC B-like 
DLBCL (22 samples) and Activated B-like DLBCL (23 samples). Data sets and 
experimental methods are available at http://llmpp.nih.gov/lymphoma. 

 
In this paper clustering is performed using the Kohonen Self-organising Maps 

(SOM) algorithm, which have been applied to analyse expression profiles in several 
biomedical studies [19]. This model is relatively computationally inexpensive and it 
shows significant advantages in comparison to other algorithms [19].  
 
3. Validation techniques 

  
This section introduces three validation methods known as the Silhouette, the 

Dunn’s and the Davies-Bouldin indices, which have shown to be robust strategies for 
the prediction of optimal clustering partitions [7, 9, 10]. 
 
3.1. Silhouette index  

 
For a given cluster, Xj (j = 1,…, c), this method assigns to each sample of Xj a 

quality measure, s(i) (i = 1,…, m), known as the Silhouette width. The Silhouette 
width is a confidence indicator on the membership of the ith sample in cluster Xj. The 
Silhouette width for the ith sample in cluster Xj is defined as: 
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where a(i) is the average distance between the ith sample and all of the samples 
included in Xj; ‘max’ is the maximum operator, and b(i) is the minimum average 



distance between the ith sample and all of the samples clustered in Xk (k = 1,…, c; k ≠ 
j). From this formula it follows that ( ) 11 ≤≤− is . 

When a s(i) is close to 1, one may infer that the ith sample has been “well-
clustered”, i.e. it was assigned to an appropriate cluster. When a s(i) is close to zero, it 
suggests that the ith sample could also be assigned to the nearest neighbouring cluster. 
If s(i) is close to –1, one may argue that such a sample has been “misclassified” [7]. 
Thus, for a given cluster, Xj (j = 1,…, c), it is possible to calculate a cluster Silhouette 
Sj, which characterises the heterogeneity and isolation properties of such a cluster: 
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where m is number of samples in Sj. 
It has been shown that for any partition U ↔ X: X1 ∪... Xi ∪… Xc, a Global 

Silhouette value, GSu, can be used as an effective validity index for U.  
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Furthermore, it has been demonstrated that equation (3) can be applied to estimate 
the most appropriate number of clusters for U. In this case the partition with the 
maximum Su is taken as the optimal partition.  
 
3.2. Dunn’s Index 
  

This index identifies sets of clusters that are compact and well separated. For any 
partition U ↔ X: X1 ∪... Xi ∪… Xc, where Xi represents the ith cluster of such partition, 
the Dunn‘s validation index, D, is defined as: 
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where δ(Xi, Xj) defines the distance between clusters Xi and Xj (intercluster distance); 
∆(Xk) represents the intracluster distance of cluster Xk, and c is the number of clusters 
of partition U. The main goal of this measure is to maximise intercluster distances 
whilst minimising intracluster distances. Thus large values of D correspond to good 
clusters. Therefore, the number of clusters that maximises D is taken as the optimal 
number of clusters, c.  
 
3.3. Davies-Bouldin Index 

 
As the Dunn’s index, the Davies-Bouldin index aims at identifying sets of clusters 

that are compact and well separated. The Davies-Bouldin validation index, DB, is 
defined as: 

( ) ( ) ( )
( )�

= ≠ ��

�
�
�

��

�
�
� ∆+∆

=
c

i ji

ji

ji XX

XX

c
UDB

1 ,
max

1
δ

,  (5) 

where U, δ(Xi, Xj), ∆(Xi), ∆(Xj) and c are defined as in equation (4). Small values of 
DB correspond to clusters that are compact, and whose centres are far away from each 
other. Therefore, the cluster configuration that minimizes DB is taken as the optimal 
number of clusters, c. 



Different methods may be used to calculate intercluster and intracluster 
distances [5]. Thirty-six indices based on equations (4) and (5) were calculated. These 
indices consist of different combinations of intercluster and intracluster distance 
methods. Six intercluster distances, δi, 1 ≤ i ≤ 6; and 3 intracluster distances, ∆j, 1 ≤ j ≤ 
3 were implemented. Thus for example, D13, represents a Dunn’s validity index based 
on an intercluster distance, δ1, and an intracluster distance ∆3. The mathematical 
definitions of these intercluster and intracluster distances are described in the 
following section. 
 
3.4 Distances used to implement the validation methods 
 
3.4.1 Basic distance metrics  

 
The distance between two samples, d(x,y), was calculated using the well-known 

Euclidean, Manhattan and Chebychev metrics [20].  
 
3.4.2 Intercluster distances 

 
Six intercluster distances are used for the calculation of the Dunn’s and Davies-

Bouldin validity indices. The single linkage distance defines the closest distance 
between two samples belonging to two different clusters. The complete linkage 
distance represents the distance between the most remote samples belonging to two 
different clusters. The average linkage distance defines the average distance between 
all of the samples belonging to two different clusters. The centroid linkage distance 
reflects the distance between the centres of two clusters. The average of centroids 
linkage represents the distance between the centre of a cluster and all of samples 
belonging to a different cluster. Hausdorff metrics are based on the discovery of a 
maximal distance from samples of one cluster to the nearest sample of another cluster. 
These intercluster distances are defined as follows.  

 
Single linkage: 
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where S and T are clusters from partition U; d(x,y) defines the distance between any 
two samples, x and y, belonging to S and T respectively; S and Tprovide the 
number of samples included in clusters S and T respectively. 

 
Complete linkage: 
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Average to centroids linkage: 
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Hausdorff metrics: 
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3.4.3. Intracluster distances 
  

Three intracluster distances are used to calculate the Dunn’s and Davies-Bouldin 
validity indices. The complete diameter distance represents the distance between the 
most remote samples belonging to the same cluster. The average diameter distance 
defines the average distance between all of the samples belonging to the same cluster. 
The centroid diameter distance reflects the double average distance between all of the 
samples and the cluster’s centre. These intracluster distances are defined as follows. 

 
Complete diameter:  

{ }),(max)(
,1 yxdS

Syx ∈
=∆ ,   (12) 

where S is a cluster from partition U; d(x,y) defines the distance between any two 
samples, x and y, belonging to S; S represents the number of samples included in 
clusters S. 

Average diameter: 
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Centroid diameter: 
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4. Comparison of validation techniques 

 
The Dunn’s and Davies-Bouldin validity indices require the definition of at 

least two clusters. The same situation applies to the Silhouette method. To compute 
the minimum average distance between the sample in one cluster and all of the 
samples from not the same cluster, the Silhouette width formula (1) requires at least 
two clusters. Thus, calculations for null-case are not considered here. 

Golub with colleagues suggested 50 “informative” genes, which are correlated 
with the AML/ALL cancer types. The problem of feature selection is a crucial 
problem, which is not part of the goals of our paper. This problem is accentuated 
when biological data sets are described in terms of many tens or hundreds of features. 



Feature selection methods have been recently applied to improve decision support 
tasks in expression studies [21, 22]. 

Tables 1 and 2 show the Global Silhouette values, GSu, for each partition, and 
the Silhouette values, S for each number of clusters, c, for c = 2 to c = 6, using the 
leukaemia and DLBCL data respectively. The bold entries correspond to the optimal 
values predicted by this validation method. In this case c = 2 is suggested as the best 
clustering configuration for both expression data sets. Table 1 suggests that the 
partition consisting of 4 clusters may also be considered as a useful partition, because 
it generates the second highest GSu. An examination of this partition confirms that it 
represents relevant information relating to the detection of the ALL subclasses, B-cell 
and T-cell, as demonstrated by Golub and colleagues [14]. In the case of the DLBCL 
data, a partition consisting of three clusters is predicted as the second best choice 
according to both Silhouette (Table 2) and Dunn’s index [5] validation techniques. 
This is a relevant partition as it distinguishes the groups GC B-like DLBCL, activated 
B-like DLBCL and normal cells [5]. 

 
Table 1. Silhouette values for expression clusters originating from leukemia samples. 
The entries represent the Global Silhouette values, GSu, for each partition, and the 
Silhouette values, S, for each cluster defining a partition. Bold entries highlight the 
optimal number of clusters, c, predicted by this method. 
 C GSu S1 S2 S3 S4 S5 S6 

2 0.43 0.17 0.57         
3 0.14 0.11 0.35 0.11       
4 0.25 0.15 0.31 0.31 0.26     
5 0.19 0.07 0.45 0.23 0.23 0.21   
6 0.23 0.28 0.23 0.28 0.42 0.14 0.14 
 
 

Table 2. Silhouette values for expression clusters originating from DLBCL samples. 
The entries represent the Global Silhouette values, GSu, for each partition, and the 
Silhouette values, S, for each cluster defining a partition. Bold entries highlight the 
optimal number of clusters, c, predicted by this method. 
 C GSu S1 S2 S3 S4 S5 S6 

2 0.26 0.23 0.28         
3 0.17 0.17 0.26 0.13       
4 0.17 0.11 0.32 0.18 0.13     
5 0.14 0.10 0.12 0.21 0.21 0.10   
6 0.15 0.22 0.08 0.26 0.26 0.03 0.17 
 
The results shown in Tables 1 and 2 were obtained using the well-known 

Euclidean distance between samples. Previous studies have shown that the estimation 
of the optimal partition is generally insensitive to the type of metrics selected to 
implement equations (1) and (2) [4].  

One may conclude that the Silhouette method is suitable for estimating only the 
first choice or best partition. Its ability to rank cluster partitions in terms of their 
biological and statistical validity is debatable. Nevertheless, this method may be 
successfully used in combination with other validation techniques for predicting 
different optimal clustering partitions. This application is currently being investigated 
[23]. 



The eighteen Dunn’s indices and the average index at each number of clusters, c, 
for c = 2 to c = 6 were computed in [4, 5]. An examination of these results confirms 
that c = 2 represent the most appropriate prediction for both leukaemia and DLBCL 
data. 
  The application of different intercluster/intracluster distance combinations 
may produce validation indices of different scale ranges. Hence those indices with 
higher values may have a stronger effect on the calculation of the average index 
values. This may result in a biased prediction of the optimal number of clusters. For 
example, the bottom lines of the Tables 3 and 4 represent the average values of the 
Davies-Bouldin validation index (for leukaemia and DLBCL data respectively), 
which are strongly influenced by the values based on the complete diameter distance 
(12). 
 
Table 3. Predicting the correct number of clusters: Davies-Bouldin validity indexes 
for expression clusters originating from leukaemia data. The entries represent the 
Davies-Bouldin values using 3 types of intracluster measures and 6 types of 
intercluster measures. Normalised Davies-Bouldin validity indexes are given between 
brackets. Bold entries represent the optimal number of clusters, c, predicted by each 
index. 
Normalised 

validity 
index 

c = 2  c = 3  c = 4  c = 5  c = 6  

DB11 8.89 (1.75) 5.70 (-0.15) 5.14 (-0.48) 5.26 (-0.40) 4.72 (-0.73) 
DB21 1.29 (–1.21) 1.36 (-0.77) 1.68 (1.31) 1.53 (0.33) 1.53 (0.34) 
DB31 2.30 (-1.40) 2.48 (0.13) 2.64 (1.41) 2.47 (0.04) 2.44 (-0.17) 
DB41 2.83 (-1.69) 3.86 (0.89) 3.72 (0.53) 3.62 (0.28) 3.50 (-0.01) 
DB51 2.56 (-1.58) 2.88 (0.29) 3.03 (1.17) 2.86 (0.18) 2.82 (-0.06) 
DB61 1.69 (-1.07) 1.73 (-0.92) 2.30 (1.31) 2.01 (0.18) 2.09 (0.50) 
DB12 4.97 (1.71) 3.69 (-0.05) 3.14 (-0.82) 3.55 (-0.24) 3.30 (-0.59) 
DB22 0.72 (-1.36) 0.87 (-0.54) 0.97 (-0.01) 1.13 (0.84) 1.18 (1.07) 
DB32 1.28 (-1.56) 1.60 (0.14) 1.52 (-0.29) 1.71 (0.73) 1.75 (0.97) 
DB42 1.58 (-1.65) 2.48 (0.66) 2.13 (-0.25) 2.46 (0.60) 2.48 (0.65) 
DB52 1.43 (-1.60) 1.85 (0.23) 1.74 (-0.25) 1.97 (0.72) 2.00 (0.89) 
DB62 0.95 (-1.38) 1.11 (-0.65) 1.33 (0.30) 1.42 (0.69) 1.50 (1.05) 
DB13 6.87 (1.70) 4.92 (0.04) 4.01 (-0.74) 4.53 (-0.30) 4.06 (0.70) 
DB23 1.00 (-1.51) 1.16 (-0.46) 1.28 (0.30) 1.35 (0.72) 1.38 (0.95) 
DB33 1.77 (-1.68) 2.12 (0.72) 1.99 (-0.17) 2.10 (0.54) 2.10 (0.59) 
DB43 2.18 (-1.63) 3.30 (1.01) 2.81 (-0.15) 3.07 (0.46) 3.01 (0.32) 
DB53 1.98 (-1.68) 2.46 (0.73) 2.29 (-0.15) 2.43 (0.55) 2.43 (0.55) 
DB63 1.31 (-1.42) 1.48 (-0.64) 1.75 (0.61) 1.72 (0.45) 1.84 (1.00) 

Average 2.53 (-0.96) 2.50 (0.03) 2.41 (0.20) 2.51 (0.35) 2.45 (0.37) 
 
 
 
 
 
 
 



Table 4. Predicting the correct number of clusters: Davies-Bouldin validity indexes 
for expression clusters originating from DLBCL data. The entries represent the 
Davies-Bouldin values using 3 types of intracluster measures and 6 types of 
intercluster measures. Normalised Davies-Bouldin validity indexes are given between 
brackets. Bold entries represent the optimal number of clusters, c, predicted by each 
index. 
Normalised 

validity 
index 

c = 2  c = 3  c = 4  c = 5  c = 6  

DB11 6.57 (1.59) 5.80 (0.31) 5.25 (-0.58) 5.02 (-0.96) 5.39 (-0.36) 
DB21 1.29 (-1.73) 1.69 (0.19) 1.78 (0.62) 1.69 (0.20) 1.80 (0.73) 
DB31 2.63 (-1.72) 2.78 (0.60) 2.74 (-0.03) 2.78 (0.64) 2.77 (0.50) 
DB41 3.78 (-1.49) 4.58 (-0.30) 4.75 (-0.05) 5.45 (0.99) 5.36 (0.85) 
DB51 3.06 (-1.59) 3.35 (0.04) 3.31 (-0.15) 3.50 (0.91) 3.48 (0.79) 
DB61 2.26 (-1.60) 2.39 (-0.34) 2.51 (0.77) 2.50 (0.73) 2.47 (0.44) 
DB12 3.79 (1.48) 3.44 (0.08) 3.16 (-1.03) 3.21 (-0.82) 3.49 (0.29) 
DB22 0.75 (-1.63) 1.00 (-0.15) 1.08 (0.31) 1.10 (0.45) 1.20 (1.01) 
DB32 1.51 (-1.44) 1.65 (-0.31) 1.67 (-0.15) 1.80 (0.94 1.80 (0.97) 
DB42 2.18 (-1.39) 2.71 (-0.43) 2.89 (-0.12) 3.52 (1.00) 3.48 (0.93) 
DB52 1.76 (1.40) 1.98 (-0.36) 2.02 (-0.18) 2.26 (0.97) 2.26 (0.96) 
DB62 1.30 (-1.39) 1.42 (-0.60) 1.53 (0.19) 1.61(0.74) 1.66 (1.06) 
DB13 5.26 (1.59) 4.68 (0.07) 4.33 (-0.84) 4.31 (-0.88) 4.67 (0.06) 
DB23 1.04 (-1.65) 1.36 (-0.13) 1.47 (0.37) 1.48 (0.42) 1.60 (0.98) 
DB33 2.10 (-1.42) 2.24 (-0.36) 2.27 (-0.13) 2.42 (0.95) 2.42 (0.96) 
DB43 3.02 (-1.39) 3.69 (-0.45) 3.94 (-0.10) 4.73 (1.01) 4.67 (0.93) 
DB53 2.45 (-1.39) 2.70 (-0.38) 2.75 (-0.18) 3.04 (0.98) 3.04 (0.96) 
DB63 1.81 (-1.37) 1.93 (-0.66) 2.08 (0.25) 2.18 (0.79) 2.21 (1.00) 

Average 2.59 (-1.00) 2.74 (-0.18) 2.75 (-0.06) 2.92 (0.50) 2.99 (0.73) 
 

To resolve this problem the following normalisation technique has been applied. 
Given a cluster configuration consisting of c clusters, for any partition Uc ↔ X: X1 
∪...∪ Xc, normalised Dunn’s indices - *

ijD , are calculated as:  
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where i reflects the selection of intercluster distance calculation method (i = 1,…, 6), j 
is the selection of intracluster distance calculation method (j = 1,..., 3), ( )cij UD  is the 

value of a Dunn’s validity index, n is the number of partitions, ijDσ – standard 

deviation of ( )cij UD  across all values of c. The normalised Davis-Bouldin indices 
may be calculated by formula (15) using the Davis-Bouldin indices instead of Dunn’s 
ones. 

Tables 3 and 4 depict the non-normalised and normalised Davies-Bouldin index 
values for the leukaemia and DLBCL data respectively. Normalised validity indices 
are given between brackets. This normalisation scheme may offer a more robust 
mechanism to predict the correct number of clusters. It highlights the distinction 
between the index values from different clustering configurations.  



The results shown in Tables 3 and 4 were obtained when d(x,y) was calculated 
using the Euclidean distance. Tables 5-8 summarise the effects of three measures, 
d(x,y) described in 3.4.1 on the calculation of the non-normalised and normalised 
Davies-Bouldin and Dunn’s cluster validity indices. It suggests that the estimation of 
the optimal partition by normalised and non-normalised indices is not sensitive to the 
type of metrics, d(x,y), implemented.  

 
Table 5. Davies-Bouldin validity indexes for expression clusters originating from 
leukaemia data. The entries represent the average Davies-Bouldin values based on the 
distances shown in Tables 3, and using three measures for d(x,y). Normalised Davies-
Bouldin validity indexes are given between brackets. Bold entries represent the 
optimal number of clusters, c, predicted by each method. 

Validity 
index based 
on distances 

c = 2  c = 3  c = 4  c = 5  c = 6  

Euclidian 2.53 (-0.96) 2.50 (0.04) 2.41 (0.20) 2.51 (0.35) 2.45 (0.37) 
Manhattan 3.19 (-1.08) 4.09 (0.30) 3.66 (0.05) 3.98 (0.47) 3.70 (0.26) 
Chebychev 3.30 (-0.67) 2.85 (0.11) 2.82 (-0.15) 2.89 (0.61) 2.80 (0.10) 

 
Table 6. Davies-Bouldin validity indexes for expression clusters originating from 
DLBCL data. The entries represent the average Davies-Bouldin values based on the 
distances shown in Tables 3, and using three measures for d(x,y). Normalised Davies-
Bouldin validity indexes are given between brackets. Bold entries represent the 
optimal number of clusters, c, predicted by each method. 

Validity 
index based 
on distances 

c = 2  c = 3  c = 4  c = 5  c = 6  

Euclidian 2.59 (-1.00) 2.74 (-0.18) 2.75 (-0.06) 2.92 (0.50) 2.99 (0.73) 
Manhattan 3.91 (-0.98) 4.31 (-0.11) 4.38 (-0.05) 4.80 (0.44) 4.79 (0.69) 
Chebychev 3.11 (-1.11) 3.37 (-0.27) 3.20 (-0.16) 3.48 (0.74) 3.60 (0.80) 

 
Table 7. Dunn’s validity indexes for expression clusters originating from leukaemia 
data. The entries represent the average Dunn’s values based on the distances shown in 
Table 3, and using three measures for d(x,y). Normalised Dunn’s validity indexes are 
given between brackets. Bold entries represent the optimal number of clusters, c, 
predicted by each method. 

Validity 
index based 
on distances 

c = 2  c = 3  c = 4  c = 5  c = 6  

Euclidian 0.93 (1.47) 0.48 (-0.46) 0.45 (-0.08) 0.39 (-0.55) 0.40 (-0.38) 
Manhattan 1.70 (1.63) 0.86 (-0.42) 0.79 (-0.09) 0.65 (-0.73) 0.66 (-0.40) 
Chebychev 0.90 (1.29) 0.48 (0.10) 0.49 (-0.20) 0.39 (-0.61) 0.40 (-0.58) 

 
 
 
 
 



Table 8. Dunn’s validity indexes for expression clusters originating from DLBCL 
data. The entries represent the average Dunn’s values based on the distances shown in 
Tables 3, and using three measures for d(x,y). Normalised Dunn’s validity indexes are 
given between brackets. Bold entries represent the optimal number of clusters, c, 
predicted by each method. 

Validity 
index based 
on distances 

c = 2  c = 3  c = 4  c = 5  c = 6  

Euclidian 0.99 (1.35) 0.79 (0.32) 0.66 (-0.39) 0.68 (-0.24) 0.60 (-1.03) 
Manhattan 1.57 (1.25) 1.21 (0.24) 1.02 (-0.45) 1.04 (-0.23) 0.92 (-0.81) 
Chebychev 0.97 (1.46) 0.79 (0.17) 0.70 (-0.21) 0.69 (-0.55) 0.63 (-0.87) 

 
Another approach to predicting the optimal partition is an aggregation method 

based on a weighed voting strategy. One of such examples is shown in the Table 9 for 
the Davies-Bouldin indices and the leukaemia data. This table was obtained from 
Table 3 by replacing the index values by weighed votes, whose values range from 1 to 
5. Thus, for example, DB11 represents the smallest index value and suggests the 
partition c = 6 as the optimal partition, hence its weighed vote is equal to 5. On the 
other hand DB11 represents the highest index value for partition c = 2, hence its 
weighed vote is equal to 1. After computing all of the Davies-Bouldin indices, the 
average weighed vote for each cluster partition has been calculated and it confirms 
that c = 2 represents the most appropriate prediction. In this case the partition c = 2 
obtained an average weighed valued equal to 4.33. Nevertheless the best value for c 
may be disputed, one might consider the partition consisting of 4 clusters as a correct 
choice as these clusters capture relevant information for the discovery of B-cell and T-
cell ALL subclasses [5]. This observation is confirmed by the average weighed value 
obtained for c = 4 in Table 9. 

 
Table 9. Predicting the correct number of clusters for leukaemia data by weighed 
voting technique. The entries represent vote values based on Davies-Bouldin 
validation index using 3 types of intracluster and 6 types of intercluster measures. 

 Validity 
index 

c = 2  c = 3  c = 4  c = 5  c = 6  

DB11 1 2 4 3 5 
DB21 5 4 1 3 2 
DB31 5 2 1 3 4 
DB41 5 1 2 3 4 
DB51 5 2 1 3 4 
DB61 5 4 1 3 2 
DB12 1 2 5 3 4 
DB22 5 4 3 2 1 
DB32 5 3 4 2 1 
DB42 5 1 4 3 2 
DB52 5 3 4 2 1 
DB62 5 4 3 2 1 
DB13 1 2 5 3 4 
DB23 5 4 3 2 1 
DB33 5 1 4 3 2 
DB43 5 1 4 2 3 



DB53 5 1 4 3 2 
DB63 5 4 2 3 1 

Average 4.33 2.50 3.06 2.67 2.44 
 

5. Conclusions 
 
Several clustering techniques have been proposed for the analysis of genome 

expression data. Cluster validity indices represent useful tools to support such a task. 
They are particularly relevant in applications in which there is not a priori indication 
of the actual number of clusters. In this paper three validation indices were applied to 
two expression data sets, using different intracluster and intercluster distances. 
Combination of these methods may be successfully used for the assessment of cluster 
validity. It was shown that these methods might support the prediction of the optimal 
cluster partitioning for those data sets. Normalisation and weighed voting techniques 
are proposed to improve the prediction of the number of clusters based on multiple 
indices. Other validation techniques, such as Goodman-Kruskal index [24] and 
Hubert’s Γ statistic [25], as well as the comparison and combination of results 
obtained from different clustering algorithms, will be part of future work. 

Comparisons indicate that the normalisation of indices may improve the 
prediction process. Normalisation allows smoothing the effect of the highest values on 
the calculation of the average index values. Moreover, it effectively highlights the 
differences between the average index values from different clustering configurations. 
The advantage of a weighed voting approach lies in a robust aggregation of multiple 
validation methods in order to improve the estimation of the most adequate clustering 
partition. 

The clustering of both data sets in the current research is performed using the 
SOM algorithm. This validation framework has also been tested on the K-Means 
clustering algorithm, and other methods are currently being investigated [23]. Due to 
time and space constraints additional analyses using artificial data sets have not been 
included. Two data sets with known class structures have been analysed, which have 
been previously assessed using systematic approaches [14, 15]. Future work includes 
a simulation study using artificial expression data and the analysis of more complex 
experimental data sets.  

The methods implemented in this research may contribute to the evaluation of 
clustering results and the prediction of optimal cluster partitions. The results obtained 
suggest that such a validity approach may represent an effective tool to support 
biomedical knowledge discovery in genome expression data. 
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