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Abstract Intervals and events are analyzed in terms of strings that represent points
as symbols occurring uniquely. Allen interval relations, Dowty’s aspect hypothe-
sis and inertia are understood relative to strings, compressed into canonical forms,
describable in Monadic Second-Order logic. That understanding is built around a
translation of strings replacing stative predicates by their borders, represented in the
S-words of Schwer and Durand. Borders point to non-stative predicates, including
forces that may compete, succeed to varying degrees, fail and recur.

1 Introduction

To analyze temporal relations between events, James Allen treats intervals as prim-
itive (not unlike [9]), noting

There seems to be a strong intuition that, given an event, we can always “turn up the mag-
nification” and look at its structure. . . . Since the only times we consider will be times of
events, it appears that we can always decompose times into subparts. Thus the formal notion
of a time point, which would not be decomposable, is not useful. [1, p. 834].

Sidestepping indivisible points, Allen relates intervals a and a� in 13 mutually exclu-
sive ways (reviewed in Sect. 2 below). An example is a overlaps a�, which can be
pictured as the string

a a, a� a� (1)

of length 5,

– starting with an empty box for times before a,
– followed by a for times in a but not a�,
– followed by a, a� for times in a and a�,
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46 T. Fernando

– followed by a� for times in a� but not a,
– followed by for times after a�.1

Now, if, in addition, a third interval a�� overlaps both a and a�, we can bring a�� into
view by turning up the magnification (as Allen puts it) on (1) for the string

a�� a, a�� a, a�, a�� a, a� a� (2)

of length 7,

– splitting the first box and third box a, a� in (1) each into two, a�� and

a, a�, a�� a, a� , respectively, whilst

– adding a�� to a for a, a�� .

To understand the change from (1) to (2), it is useful to define for any set A
and string s = α1 · · · αn of sets αi , the A-reduct of s to be the intersection of s
componentwise with A, written ρA(s)

ρA(α1 · · · αn) := (α1 ∩ A) · · · (αn ∩ A).

For instance, the {a, a�}-reduct of (2) is

a a, a� a, a� a�

which we can then compress to (1) by applying a function bc (for block compression)
that, given a string α1 · · ·αn , deletes every αi such that i < n and αi = αi+1

bc(α1 · · · αn) :=
⎧
⎨
⎩

α1 · · · αn if n < 2
bc(α2 · · ·αn) else if α1 = α2

α1 bc(α2 · · ·αn) otherwise.

Let us agree to call a string α1 · · ·αn stutterless if αi �= αi+1 whenever 1 ≤ i < n.
Then clearly, bc(s) is stutterless and

s is stutterless ⇐⇒ s = bc(s).

The finite-state approach to temporality in [5–7] reduces a string s of subsets of a set
A to its stutterless form bc(s), on the assumption that every element a ∈ A names a
stative predicate pa , understood according to David Dowty’s hypothesis that

the different aspectual properties of the various kinds of verbs can be explained by postulating
a single homogeneous class of predicates — stative predicates — plus three or four sentential
operators or connectives. [3, p. 71].

1Boxes are drawn instead of ∅ and curly braces {·} to reduce the risk of confusing, for example, the
empty language ∅ with the string � of length one (not to mention the null string of length 0).
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Temporal Representations with and without Points 47

A stative predicate here amounts to a set p of intervals such that for all intervals I, J
whose union I ∪ J is an interval,

I ∈ p and J ∈ p ⇐⇒ (I ∪ J ) ∈ p (3)

(with =⇒ making p cumulative, and ⇐= making p divisive). For example, rain is
stative insofar as it holds of an interval I iff it holds of any pair of intervals whose
union is I , illustrated by the equivalence between (a) and (b).

(a) It rained from 8 am to midnight.
(b) It rained from 8 am to noon, and from 10 am to midnight.

For any finite linear order ≺, the requirement (3) on a stative predicate p over intervals
(relative to ≺) is equivalent to reducing p to the set of subintervals of the set p↓ of
points t for which the interval {t} is in p

p = {I ⊆ p↓ | I is an interval} where p↓ := {t | {t} ∈ p}.

For example, relative to the string

a a, a� a� ,

we can interpret a and a� as the subsets

Ua = {2, 3} and Ua� = {3, 4}

of the set {1, 2, 3, 4, 5} of string positions where a and a� (respectively) occur, and
then lift Ua and Ua� to stative predicates pa and pa� over intervals, using Ua as (pa)↓

pa = {I ⊆ Ua | I is an interval}

and Ua� as (pa�)↓

pa� = {I ⊆ Ua� | I is an interval}.

Over any string, we can repackage any stative predicate as a subset U of string
positions.

But now, can we take for granted Dowty’s hypothesis that aspect can be based on
stative predicates and assume a string representing an event is built solely from stative
predicates? This is far from clear. The event nucleus of [14], for instance, postulates
not only states but also events that can be extended or atomic, including what Moens
and Steedman refer to as “points” (Comrie’s semelfactives), which should not be
confused with the points that a linear order compares. The present work is concerned
with yet another notion of point, defined relative to a string s over the alphabet 2A.
An element a ∈ A is said to be an s-point if it occurs exactly once in s—i.e.,
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48 T. Fernando

ρ{a}(s) ∈ ∗ a ∗ (4)

Just as a string of statives can be compressed by removing stutters through bc, a string
s of points can be compressed by deleting all occurrences in s of the empty box �
for d�(s). More precisely, d�(�) := � (where � is the string of length 0), and

d�(αs) :=
�

d�(s) if α = �
αd�(s) otherwise.

Line (4) above simplifies to the equation

d�(ρ{a}(s)) = a .

To formulate a corresponding equation for an s-interval a, it is useful to pause and
note that in general, a string s = α1 · · · αn of n subsets αi of a set A specifies for each
a ∈ A, a subset of the set

[n] := {1, . . . , n}

of string positions, namely, the set

Ua := {i ∈ [n] | a ∈ αi }

of positions where a occurs. If we repackage s as the model

Mod A(s) := �[n], Sn, {Ua}a∈A�

over [n] with successor relation

Sn := {(i, i + 1) | i ∈ [n − 1]}

then a theorem due to Büchi, Elgot and Trakhtenbrot says the regular languages over
the set 2A of subsets of A are given by the sentences ϕ of MSOA as

{s ∈ (2A)∗ | Mod A(s) |= ϕ}

where MSOA is Monadic Second-Order logic over strings with unary predicates
labeled by A (e.g., [13]).2 The Büchi-Elgot-Trakhthenbrot theorem is usually for-
mulated for strings over the alphabet A (as opposed to 2A above), but there are at
least two advantages in using the alphabet 2A. First, for applications such as (1) and
(2), it is convenient to put zero, one or more symbols from A in boxes for a simple
temporal construal of succession. The second advantage has to do with restricting

2Regularity of languages is interesting here for computational reasons; for instance, since inclusions
between regular languages are computable (unlike inclusions between context-free languages), so
are entailments in MSO.
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Temporal Representations with and without Points 49

an MSOA-model M = �[n], Sn, {Ua}a∈A� to a subset A� of A. The A�-reduct of M
is the MSOA� -model

M � A� = �[n], Sn, {Ua}a∈A� �

obtained from M by keeping only the unary predicates Ua with a in the subset A�.
As with the componentwise intersection ρA�(s) of s with A�, only elements of A� are
observable. The two notions of A�-reduct coincide

Mod A(s)� A� = Mod A�(ρA�(s))

making the square

commute. Notice that a string s fed to the function ρA� must be formed from sets for
ρA� to carry out intersection (componentwise).

But what if we “turn up the magnification” by allowing inside a box a label for a
non-stative predicate? For example, we might expand string (1)

a a, a� a�

to the string

l(a) a, l(a�) a, a�, r(a) a�, r(a�)

introducing labels

l(a) and l(a�) for the left (open) border of a and a� respectively

and

r(a) and r(a�) for the right (closed) border of a and a� respectively.

The introduction of borders is made precise in Sect. 2 through a function b on strings,
turning the equation

d�(ρ{a}(s)) = a for an s-point a

into the equation

d�(b(ρ{a}(s))) = l(a) r(a) for an s-interval a
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(Propositions 1 and 2), and replacing interiors a, a� by borders l(a), l(a�), r(a), r(a�)
for a picture

d�(b( a a, a� a� )) = l(a) l(a�) r(a) r(a�)

of the ordering of borders characteristic of the Allen relation a overlaps a�. In [4],
Schwer and Durand call a string s of non-empty sets an S-word (S for set), and define
for any set A, the S-projection over A of s to be d�(ρA(s)), i.e., the A-reduct of s
with all occurrences of � deleted. Let the vocabulary of a string α1 · · · αn of sets αi

be the union

voc(α1 · · · αn) :=
n�

i=1

αi

(making voc(s) the ⊆-least set A such that s ∈ (2A)∗). Let us say s projects to s � if
s � is the S-projection over voc(s �) of s

d�(ρvoc(s �)(s)) = s �.

Every subset of voc(s) specifies a potentially different string to which s can project.
The problem of satisfying several statements of projection (each statement describing
a feature of the same situation) is taken up in the account of superposition in Sect. 3
below. The translation b is inverted in Sect. 4, with an eye to points other than the
borders l(a) and r(a). In particular, actions in [2] that give rise to events are described,
leading to a formulation of inertia associated with statives. That said, special attention
is paid in Sects. 2 and 3 to Allen interval relations and the transitivity table in [1]
enumerating the Allen relations that can hold between three intervals.

The present work steps beyond the previous work [5–7] in exploring non-stative
predicates given by the border translation b and actions over and above borders of
statives. Dowty’s aspect hypothesis is tested with and without points, understood
in different ways, one of which is indivisibility at a fixed granularity. (More in the
Conclusion.)

2 Points and the Border Translation

Given a string s of subsets of A, an s-point is an element a of A that occurs exactly
once in s. This condition is expressed in MSO through a unary predicate symbol Pa

labeled by a (interpreted Ua by Mod A(s)) as the MSO{a}-sentence

(∃x)(∀y)(Pa(y) ≡ x = y)

(with biconditional ≡) stating there is a position x where a occurs and nowhere else.
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Temporal Representations with and without Points 51

Proposition 1 For any a ∈ A and s ∈ (2A)∗, the following are equivalent

(i) ρ{a}(s) ∈ ∗ a ∗

(ii) Mod(s) |= (∃x)(∀y)(Pa(y) ≡ x = y)

(iii) s projects to a .

Points marking the borders of an interval are made explicit by a string function b
mentioned in the introduction, to which we turn next. Let l and r be two 1-1 functions
with domain A such that the three sets

A, {l(a) | a ∈ A} and {r(a) | a ∈ A}

are pairwise disjoint. It is useful to think of l(a) and r(a) as syntactic terms (rather
than say, numbers), and to collect these in

A• := {l(a) | a ∈ A} ∪ {r(a) | a ∈ A}.

Now, let the function
bA : (2A)∗ → (2A•)∗

map a string α1 · · · αn of subsets αi of A to a string β1 · · ·βn of subsets βi of A• with

βi := {l(a) | a ∈ αi+1 − αi } ∪ {r(a) | a ∈ αi − αi+1} for i < n

βn := {r(a) | a ∈ αn}.

For example,

b{a,a�}( a a, a� a� ) = l(a) l(a�) r(a) r(a�)

and in general, for A� ⊆ A,

commutes. To simplify notation, we will often drop the subscript A on bA. The
idea behind b is to describe a half-open interval a as (l(a), r(a)] with open left
border l(a) and closed right border r(a). For an interval analog of Proposition 1, let
boundeda(x, y) be the MSO{a}-formula

boundeda(x, y) := (∀z)(Pa(z) ≡ (x < z ∧ z ≤ y))

saying a picks out (via Pa) string positions after x but before or equal to y, and
observe that for any string s of subsets of A,
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b(ρ{a}(s)) = ρ{l(a),r(a)}(b(s)).

Proposition 2 For any a ∈ A and s ∈ (2A)∗, the following are equivalent

(i) ρ{a}(s) ∈ + a + ∗

(ii) Mod(s) |= (∃x)(∃y)(x < y ∧ boundeda(x, y))

(iii) b(ρ{a}(s)) ∈ ∗
l(a)

∗
r(a)

∗

(iv) b(s) projects to l(a) r(a) .

Let us define an s-interval to be an element a that satisfies any (equivalently, all) of
(i)–(iv) in Proposition 2. To the list (i)–(iv), we can add

(v) bc(ρ{a}(s)) = a or bc(ρ{a}(s)) = a .

The case of
bc(ρ{a}(s)) = a

in (v) is that of a period a in [2]. Alternatively, we can relax any assumption of
boundeness by dropping on either side of a , expanding (v) to

bc(ρ{a}(s)) ∈ { a , a , a , a }.

It is convenient for what follows to work with the more restrictive notion described
by Proposition 2. When considering strings s over the alphabet 2A• (as opposed to
2A), we overload the definition of an s-interval to apply to a when s projects to

l(a) r(a) .

We say s demarcates A if each a ∈ A is an s-interval. For any finite set A, we collect
the strings of non-empty subsets of A that demarcate A in the language

L•(A) := {s ∈ (2A• − {�})∗ | every a ∈ A is an s -interval}.

For example,

L•({a}) = { l(a) r(a) }

and for syntactically distinct a, a�,

L•({a, a�}) = {sR(a, a�) | R ∈ AR}

whereAR is the set

AR := {<,>, d, di, f, fi, m, mi, o, oi, s, si,=}
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Table 1 Allen interval relations as strings of points, after [4]

R a Ra� sR(a, a�) R−1 sR−1 (a, a�)

< a before a� l(a) r(a) l(a�) r(a�) > l(a�) r(a�) l(a) r(a)

m a meets a� l(a) r(a), l(a�) r(a�) mi l(a�) r(a�), l(a) r(a)

o a overlaps a� l(a) l(a�) r(a) r(a�) oi l(a�) l(a) r(a�) r(a)

s a starts a� l(a), l(a�) r(a) r(a�) si l(a), l(a�) r(a�) r(a)

d a during a� l(a�) l(a) r(a) r(a�) di l(a) l(a�) r(a�) r(a)

f a finishes a� l(a�) l(a) r(a), r(a�) fi l(a) l(a�) r(a), r(a�)

= a equal a� l(a), l(a�) r(a), r(a�) =

of 13 interval relations R in [1], pictured in Table 1 (from [4]) by a string sR(a, a�)
with vocabulary

{a, a�}• = {l(a), r(a), l(a�), r(a�)}

such that for s ∈ (2A)∗,

a Ra�holdsins ⇐⇒ b(s) projects to sR(a, a�).

Note that a Ra� is said to hold in a string s of subsets of A, rather than A•.3

Interval networks based on Allen relations treat a set A of interval names as the set
of vertices (nodes) of a graph with edges (arcs) labeled by the set of Allen relations
understood to be possible between the vertices. The obvious question is: given a
specification f : (A × A) → 2AR of sets f (a, a�) of Allen relations possible for
pairs (a, a�) from A, is there a string s that meets that specification in the sense of
(5) below?

for all a, a� ∈ A, there exists R ∈ f (a, a�) such that a Ra� holds in s (5)

This question is approached in [1] through a transitivity table T : (AR×AR) →
2AR mapping a pair (R, R�) fromAR to the set T (R, R�) of relations R�� ∈ AR such
that for some intervals X, Y and Z,

3The strings sR(a, a�) can be derived from strings s◦
R(a, a�) over the alphabet {a, a�} by the equation

sR(a, a�) = b(�s◦
R(a, a�)).

For example,

s◦
<(a, a�) = a a� and s◦

m(a, a�) = a a� .

A full list of s◦
R(a, a�), for every Allen relation R, can be found in Table 7.1 in [5, p. 223].
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X R Y and Y R� Z and X R�� Z.

For example, T (<,<) = {<} since < is transitive

if X < Y and Y < Z then X < Z

while T (o, d) = {o, d, s} since any one of the three possible conclusions in the impli-
cation

if XoY and YdZ then (either XoZ or XdZ or XsZ)

can be realized. We can describe the function T in terms of the languageL•({1, 2, 3}),
using 1, 2, 3 as names of the intervals X, Y, Z, respectively. For all R, R� ∈ AR,
T (R, R�) is the set of R�� ∈ AR such that some string in L•({1, 2, 3}) projects to
each of

sR(1, 2), sR�(2, 3) and sR��(1, 3).

Next, a function f : (A × A) → 2AR labeling each pair (a, a�) ∈ A × A with a
set f (a, a�) ⊆ AR of Allen relations is T-consistent if for all a, a�, a�� ∈ A,

f (a, a��) ⊆
�

R∈ f (a,a�)

�

R�∈ f (a�,a��)

T (R, R�).

T -consistency falls short of true consistency; Fig. 5 in [1, p. 838] provides a T -
consistent labeling f of a set A of 4 intervals for which there is no string s of subsets
of A satisfying (5) above. But for A of 3 or fewer intervals, every T -consistent
labeling of A has a string s validating (5). Moreover, if we require that f (a, a�)
always be a singleton, T -consistency suffices.

More precisely, let us say a function g : A × A → AR is 3-consistent if for all
a, a�, a�� ∈ A,

g(a, a��) ∈ T (g(a, a�), g(a�, a��)).

Every string s ∈ L•(A)demarcating A defines a functionARs : A × A → ARgiven
by

ARs(a, a�) = unique R ∈ AR s.t. s projects to sR(a, a�).

For example, if A = {1, 2, 3} and s is

l(1), l(3) r(1), l(2) r(2) r(3) = b( 1,3 2,3 3 )

then ARs(1, 2) = m (meet), ARs(1, 3) = s (start) and ARs(2, 3) = d (during).
For any s ∈ L•(A),ARs is manifestly 3-consistent, and, in fact, every 3-consistent
function g from A × A toAR can be obtained in this way from some A-demarcation
in L•(A). As shown next, this can be seen through the pointwise ordering implicit
in g.

tim.fernando@tcd.ie



Temporal Representations with and without Points 55

Proposition 3 For any finite set A and function g : A × A → AR,

g is 3-consistent ⇐⇒ g = ARs for some s ∈ L•(A).

Proof. The non-trivial direction =⇒ is proved by induction on the cardinality n of
A. For n = 1, the required A-demarcation is

l(a) r(a)

where A = {a}. For A = A� ∪ {a} with a /∈ A�, apply the induction hypothesis to A�
for an A�-demarcation s (noting that the restriction of g to A� × A� is 3-consistent).
We incorporate a into s by inserting the borders l(a) and r(a) of a one at a time,
working with relations < and = on string positions (in s and the extension of s that
we are seeking), not to be confused with the Allen interval relations in Table 1. To
insert l(a) in s, we consult g to determine for each a� ∈ A�, which disjuncts in

l(a�) < l(a) or l(a�) = l(a) or l(a) < l(a�)
r(a�) < l(a) or r(a�) = l(a) or l(a) < r(a�)

hold under g, fixing a single position for l(a) that is acceptable to all a� ∈ A�, by
virtue of the 3-consistency of g. More specifically, for γ1, γ2 ∈ {l, r}, we define

γ1(a1) =g γ2(a2) ⇐⇒ sg(a1,a2)(a1, a2) projects to γ1(a1), γ2(a2)

and

γ1(a1) <g γ2(a2) ⇐⇒ sg(a1,a2)(a1, a2) projects to γ1(a1) γ2(a2)

and argue along 3 cases.

Case 1: l(a) <g every A�-border in s. Put the new box l(a) before (left of) s.
Case 2: l(a) =g some A�-border. Then put l(a) into the same box of s as that

border, appealing to the 3-consistency of g for the uniqueness of that
box.

Case 3: otherwise, l(a) >g some A�-border. Put the new box l(a) just after the
last position in s with such an A�-border.

Having positioned l(a) in s, we then insert r(a) to the right of l(a), taking into
account which disjuncts in

l(a�) <g r(a) or l(a�) =g r(a) or r(a) <g l(a�)
r(a�) <g r(a) or r(a�) =g r(a) or r(a) <g r(a�)
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hold. The argument breaks up into 3 cases similar to that above for inserting l(a);
for example,

r(a) is put right after l(a)

in case r(a) is <g every A�-border >g l(a) (the analog of Case 1 above). �
Not only do A-demarcations in L•(A) represent all 3-consistent functions from
A × A to AR (by Proposition 3), they do so canonically; any difference between
two strings s and s � in L•(A) is directly reflected in the assignments ARs and
ARs � of Allen relations.4 The remainder of the present paper works with string
representations.

3 Superposition Respecting Projection

In this section, we show, amongst other things, how to generate the setL•(A) bottom-
up, for any finite set A. The crucial tool is superposition, the most basic form of which
is the componentwise union &◦ of two strings α1 · · ·αk and α�

1 · · · α�
k of sets with the

same length k

(α1 · · ·αk) &◦ (α�
1 · · · α�

k) := (α1 ∪ α�
1) · · · (αk ∪ α�

k).

Complications calling for additional care arise from

(i) projections formed not simply out of reducts (but by compressing, d�), and
(ii) the requirement that outputs project to the inputs.

To address these complications, it is useful to work with inductive rules such as (s0)
and (s1) below

&(�, �, �)
(s0)

&(s, s �, s ��)
&(αs,α�s �, (α ∪ α�)s ��)

(s1)

which generate &◦ in that

s&◦s � = s �� ⇐⇒ &(s, s �, s ��) is derivable from (s0), (s1).

The componentwise intersection described by (s1) superposes in lockstep. We can
relax this by interleaving/shuffling under the rules (d1) and (d2)

&(s, s �, s ��)
&(αs, s �,αs ��)

(d1)
&(s, s �, s ��)

&(s,α�s �,α�s ��)
(d2).

4 To see this, consider the first position where s and s� differ. Let α and α� be the symbols there of
s and s�, respectively. Then (α ∪ α�) − (α ∩ α�) is non-empty. Let γ (a) be an element of that set,
and γ �(a�) belong in (α ∪ α�) − {γ (a)}. Notice thatARs(a, a�) �= ARs� (a, a�).
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Proposition 4 For any finite set � and s, s �, s �� ∈ (2� − {�})∗, the following are
equivalent

(i) &(s, s �, s ��) is derivable from (s0), (s1), (d1) and (d2)
(ii) for some r ∈ d−1

� s and some r � ∈ d−1
� s �, r&◦r � = s ��.

Let us collect the triples described by Proposition 4 in

&d := {(s, s �, s ��) ∈ (2� − {�})∗ × (2� − {�})∗ × (2� − {�})∗ |
&(s, s �, s ��) is derivable from (s0), (s1), (d1) and (d2)}

and pick out the part of &d preserving projections in

&d := {(s, s �, s ��) ∈ &d | s �� projects to s and s �}.

To generate &d, we introduce subscripts �,�� to constrain the rules (s1)

&(s, s �, s ��) α ∩ �� ⊆ α� α� ∩ � ⊆ α

&(αs,α�s �, (α ∪ α�)s ��)
(s1)�,��

and (d1) and (d2)

&(s, s �, s ��) α ∩ �� = ∅
&(αs, s �,αs ��)

(d1)��
&(s, s �, s ��) α� ∩ � = ∅

&(s,α�s �,α�s ��)
(d2)� .

Proposition 5 For any finite set � and s, s �, s �� ∈ (2� − {�})∗,

&d(s, s �, s ��) ⇐⇒ &(s, s �, s ��) is derivable from (s0), (s1)voc(s),voc(s �),

(d1)voc(s �) and (d2)voc(s).

On pairs s, s � with disjoint vocabularies, &d is no different from &d

&d(s, s �, s ��) ⇐⇒ &d(s, s �, s ��) whenever voc(s) ∩ voc(s �) = ∅.

For any finite set A, we can generateL•(A) bottom-up through a binary operation &�
on languages L , L � given by &d according to

L &� L � := {s �� ∈ (2A − {�})∗ | (∃s ∈ L)(∃s � ∈ L �) &d(s, s �, s ��)} .

Then for any finite string a1 · · · an , we define a language La1···an over the alphabet
2A• − {�} by induction on n, setting

L� := �
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and

Lsa := Ls &� l(a) r(a) .

Proposition 6 For any finite string a1 · · · an,

La1···an = L•({a1, . . . , an}).

The case n = 2 leads to the setAR of Allen relations,

Laa� = l(a) r(a) &� l(a�) r(a�)

=L•({a, a�})
= {sR(a, a�) | R ∈ AR}.

Next, the case n = 3 encodes the transitivity table T

T (R, R�) = {R�� ∈ AR | (∃s ∈ La1a2a3) s projects to

sR(a1, a2), sR�(a2, a3) and sR��(a1, a3)} . (6)

Implicit in (6) is a generate-and-test approach, which we can improve by the con-
strained superposition sR(a1, a2) &� sR�(a2, a3)

T (R, R�) = {R�� ∈ AR | some string in sR(a1, a2) &� sR�(a2, a3)

projects to sR��(a1, a3)}

sidesteping the full setLa1,a2,a3 , most strings in which do not project to both sR(a1, a2)

and sR�(a2, a3).

4 More on the Border: Expansions, Inertia and Events

The requirement that l(a) and r(a) mark the left and right borders of a can be
expressed with the help of certain MSO{a}-formulas over a free variable x . Let χl(a)(x)

say Pa holds right after x but not at x

χl(a)(x) := (∃y)(x Sy ∧ Pa(y)) ∧ ¬Pa(x)

and χr(a)(x) say Pa holds at x but not right after

χr(a)(x) := Pa(x) ∧ ¬(∃y)(x Sy ∧ Pa(y)).

We can then interpret Pl(a) and Pr(a) in terms of Pa according to the set
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(A•) := {(∀x)(Pt (x) ≡ χt (x)) | t ∈ A•}

of MSOA∪A•-sentences equating Pt (x) with χt (x). Given a string s of subsets of A•,
the strings over the alphabet 2A that b maps to s can be collected in the set

b−1s = {ρA(s �) | s � ∈ s&(2A)∗ and (∀ϕ ∈ 
(A•)) Mod(s �) |= ϕ}

in 3 steps

Step 1: expand with labels from A, superposing s with (2A)∗

Step 2: constrain by 
(A•)
Step 3: reduce by ρA (for A-reduct).

To compute b from Steps 1–3 above, it suffices to replace A by A• in steps 1 and
3. The difference between b and b−1 comes down to the subalphabet added in Step
1 and preserved in Step 3. 
(A•) is, however, arguably more in sync with b than
with b−1, grounding, as it does, Pl(a) and Pr(a) in Pa . The inverse b−1 invites us to
consider the reverse:

(Q) how do we interpret Pa , given interpretations of Pl(a) and Pr(a)?

Answering (Q) is an instructive exercise, pointing to actions (or forces) and events.
Our answer to (Q) comes in two parts, assuming Pl(a) and Pr(a) are interpreted as

subsets Ul(a) and Ur(a) (respectively) of the set [n] of positions of a string of length
n. The first part is an inductive construction

Ua =
�

i≥0

Ua,i (7)

of the interpretation Ua of Pa according to the definitions

Ua,0 := Ur(a)

Ua,i+1 := Ua,i ∪ {k ∈ [n − 1] | k + 1 ∈ Ua,i and k /∈ Ul(a)}

suggested by the implications

(∀x)(Pr(a)(x) ⊃ Pa(x))

(∀x)(∀y)((x Sy ∧ Pa(y) ∧ ¬Pl(a)(x)) ⊃ Pa(x)) (8)

from 
(A•). The second part of our answer consists of two conditions

Ul(a) ∩ Ua = ∅ (9)

{i + 1 | i ∈ Ul(a)} ⊆ Ua (10)

expressed by the implications
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(∀x)(Pl(a)(x) ⊃ ¬Pa(x))

(∀x)(Pl(a)(x) ⊃ (∃y)(x Sy ∧ Pa(y)))

implicit in 
(A•). (9) and (10) hold precisely if l(a) and r(a) are positioned properly
under Ul(a) and Ur(a) — i.e., there is a string in

(� + r(a) )( l(a) r(a) )∗

to which the string s corresponding to the MSOA• -model �[n], Sn, {Ut∈A• }� projects

d�(ρ{l(a),r(a)}(s)) ∈ (� + r(a) )( l(a) r(a) )∗. (11)

Proposition 7 For every s ∈ (2A•)∗,

b−1s �= ∅ ⇐⇒ (11) holds for every a ∈ A.

Moreover, if Mod(s) = �[n], Sn, {Ut }t∈A•� then for every s � ∈ (2A)∗ such that b(s �) =
s,

Mod(s �) = �[n], Sn, {Ua}a∈A�

where Ua is given by (7) above from the sets Ul(a) and Ur(a) in Mod(s). That is,
under b, Pa is definable from Pl(a) and Pr(a) according to

Pa(x) ≡ (∃X)(X (x) ∧ a-path(X))

where a-path(X) is the conjunction

∀x(X (x) ⊃ (Pr(a)(x) ∨ ∃y(x Sy ∧ X (y)))

∧¬∃x(X (x) ∧ Pl(a)(x))

saying X is an S-path to Pr(a) that avoids Pl(a).

A crucial ingredient of the analysis of b−1 described by Proposition 7 is the
implication (8) underlying the inductive step Ua,i+1. That step lets a spread to the
neighboring left box unless l(a) is in that box. This property of l(a) can be associated
with a label f (a) by the implication

(∀x)(¬Pa(x) ∧ (∃y)(x Sy ∧ Pa(y)) ⊃ Pf (a)(x)) (12)

which (without the converse of (12)) falls short of reducing Pf (a) to Pl(a). For the
sake of symmetry, we also introduce labels a and Pf (a) subject to

(∀x)(Pa(x) ≡ ¬Pa(x))
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making a the negation of a, and the implication

(∀x)(Pa(x) ∧ (∃y)(x Sy ∧ ¬Pa(y)) ⊃ Pf (a)(x)). (13)

tracking, with (12), any changes in a/a. The intuition is that f (a) and f (a) mark
the applications of forces for and against a (respectively). The slogan behind (12)
and (13) is

no change unless forced

or, in one word, inertia. Equating syntactically f (a) with l(a) and f (a) with r(a)

ensure (12) and (13) hold, but let us be careful to resist these identifications and
allow Pf (a) and Pf (a) to diverge from Pl(a) and Pr(a) outside (12) and (13), saving
the idea of inertia from vacuity. Whereas under (11), l(a) and r(a) cannot occur
in the same box, there is nothing a priori illegitimate about a box containing both
f (a) and f (a). Clashing forces are commonplace and merit logical scrutiny (rather
than dismissal). Over any given stretch of time, any number of forces can be at play,
some of which may be neutralized by competition. A force in isolation may have
very different effects with company. That said, there is no denying that we detect and
evaluate forces by the state changes they effect.

Stative predicates labeled by a ∈ A differ significantly from non-stative predicates
labeled by l(a), r(a), f (a) and f (a) in how strings built from them compress to
canonical forms. Recall from the Introduction the link between homogeneity and
block compression bc, deleting stutters

bc−1bc(s) = α+
1 · · · α+

n if bc(s) = α1 · · ·αn

just as d� deletes �

d−1
� d�(s) = �∗α1�∗ · · ·�∗αn�∗ if d�(s) = α1 · · ·αn.

Next, let us collect the image of (2�)∗ under bc in

Lbc(�) := {bc(s) | s ∈ (2�)∗}

and its image under d� in

Ld(�) := {d�(s) | s ∈ (2�)∗}

and note that the square
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Table 2 ARKV as reconstructed in [14], annotated with strings

atomic extended

+conseq culmination culminated process

a a a, ap( f ) a, ap( f ),ef( f ) ef( f ), a

−conseq point process

ap( f ) ef( f ) ap( f ) ap( f ), ef( f ) ef( f )

does not quite commute as

b(bc( a )) = r(a) �= d�(b( a )) = r(a) .

But this is easily repaired by appending a non-empty set to (2A)∗, replacing (2�)∗
by

L+(�) := {sα | s ∈ (2�)∗ and α ∈ 2� − {�}}

for

which does commute.

Proposition 8 For every s ∈ L+(A),

b(bc(s)) = d�(b(s))

and bc(s) is the unique string in the set b−1d�(b(s)).

Underlying both notions of compression, d� and bc, is the slogan

no time without change.

But while bc represents that change in terms of decomposable intervals/statives, d�
employs non-decomposable points/borders (not to mention forces). The function d�
is simpler than bc, and provides a pointed twist on the interval-based approach in [5]
to Dowty’s aspect hypothesis.

An important test for Dowty’s aspect hypothesis is the Aristotle-Ryle-Kenny-
Vendler verb classification (ARKV), a version of which, due to [14], is annotated
with strings in Table 2. In Table 2 the symbol a is understood to represent the con-
sequent state, to which + and − are attached in the first column. By contrast, f
is a force, the application of which is marked as ap( f ), and effect as ef( f ). That
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effect need not preclude the repeated application of f , as is clear from the right-
most (extended/process) column of the table, featuring ap( f ) in adjacent boxes. The
effect may, for example, be an incremental change along some scale (for instance,
temperature in the case of the verb cool). The contrast between ap( f )/ef( f ) in the
−conseq row and the statives a/a in the +conseq row is compatible with Manner
Result complementarity

the proposal that verbs lexicalize either manner or result meaning components, but not both
[12].

Levin and Rappaport Hovav are careful to distinguish lexicalized meaning from
“additional facets of meaning that can be inferred from a particular use of that verb
in context and from the choice of noun phrases serving as arguments of the verb.” If
we enlarge the vocabulary of a string from statives in A to borders in A•, note that
the transition

a a expands to a, l(a) a

with l(a) acting as a force f (a) implicated by the inertial principle (12)

(∀x)(¬Pa(x) ∧ (∃y)(x Sy ∧ Pa(y)) ⊃ Pf (a)(x)) . (12)

By resisting to identify f (a) syntactically with l(a), we are acknowledging a notion
of a force (represented by f ) over and above borders of statives. As a scheme for lex-
icalized meaning, Table 2 describes a force f in isolation from other forces that may,
in a particular context of use, interfere with f . Any such interference is abstracted
away from the input/output pairs constituting the meaning of a program in Dynamic
Logic [10] (applied in [15, 16] for an account of ARKV). It is tempting to liken the
formal difference in Dynamic Logic between programs (interpreted as binary rela-
tions on states) and formulas (interpreted as subsets of states) to the basic aspectual
distinction between non-stative and stative predicates (drawn in [11] and many other
works). Under the present account, however, stative and non-stative predicates alike
can be formulated as symbols interpreted as unary predicates, and the line between
statives and non-statives is to be discerned not so much within a model (which in
MSO is a string) as between models related by projections. In particular, the question
of whether or not ap( f ) is stative comes to whether or not reducing the string

ap( f ) ap( f ) to ap( f )

by block compression bc is appropriate. (It is if ap( f ) is homogeneous, as statives in
[3] are understood to be.) The link forged above between ap( f ) and the left border
l(a) (with a as ef( f )) suggests otherwise, even if, according to the last column of
Table 2, ap( f ) may recur in a string.
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5 Conclusion

The main contribution of the present work is the introduction of non-stative predicates
through a border translation b, which is then applied to Allen intervals and events.
For convenience, let us collect labels of statives in a set D (for Dowty), and restrict
stutter equivalence to subsets of D

sααs � ≈ sαs � for α ⊆ D (14)

whilst disregarding the empty box � for strings of sets disjoint from D

s�s � ≈ ss � for voc(ss �) ∩ D = ∅. (15)

(14) attends to statives, (15) to non-statives. The shortest ≈-representative is obtained
by block compression bc in the case of (14), and depadding d� in the case of (15).
For s ∈ (2A)+, we can devise an MSOA-formula stutterA(x, y) to pick out stutters
as adjacent string positions x, y with the same A-labels

stutterA(x, y) := x Sy ∧
�

a∈A

(Pa(x) ≡ Pa(y))

and characterize stutterless strings by ruling stutterA(x, y) out

bc(s) = s ⇐⇒ Mod A(s) |= ¬∃x∃y stutterA(x, y)

and similarly for �-removal d�

d�(s) = s ⇐⇒ Mod A(s) |= ¬∃x emptyA(x)

where emptyA(x) picks out string positions x at which nothing from A occurs

emptyA(x) :=
�

a∈A

¬Pa(x).

The subscript A on stutterA(x, y) and emptyA(x) is an indispensible ingredient rep-
resenting granularity, commonly consigned to the background. A is foregrounded as
a signature in institutions [8], where A is attached as a subscript on |= along with
the condition

M |=A ϕ ⇐⇒ M � A� |=A� ϕ

for all MSOA-models M , subsets A� of A, and MSOA� -sentences ϕ. It is through A that
we can turn up the magnification, except that it is magnification turned down which is
technically more convenient to analyze, using A�-reducts ρA�(s) where A� ⊆ A. The
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difference between statives and non-statives is revealed by the choice of compression
to apply to A�-reducts for A�-projections —

ρA�; bc in the case of statives

and
ρA�; d� in the case of non-statives.

But what does all this have to do with points?
Various notions of point are relevant here. One is the indivisibility Allen asso-

ciates with points, a reason (he argues) for preferring intervals. Our reconstruction of
interval relations and transitivities in Sects. 2 and 3 is based on finite strings α1 · · ·αn

with finitely many string positions [n] = {1, . . . , n}, each one an indivisible point in
the MSOA-model Mod A(α1 · · · αn). But, enlarge A and we can split a box with the
apparatus of projections above, as illustrated by the example of strings

a a, a� a� (1)

and
a�� a, a�� a, a�, a�� a, a� a� (2)

from the Introduction. That is, a box is an indivisible point only if we keep A fixed.
This notion of point is somewhat slippery inasmuch as granularity can be varied. For
temporal representations with points, fix A; for temporal representations without
points, vary A.

A different notion of point is brought out by the border translation b. The use of
borders in Sects. 2 and 3 trades the box-splitting of (1) in (2) for the introduction of an
empty box that d� can remove or superposition with another string can fill (Sect. 3).
We move from the interior described by a stative a to the border described by l(a)

or r(a). An essential feature of the border l(a) spelled out by the MSO-equivalence

Pl(a)(x) ≡ (∃y)(x Sy ∧ Pa(y)) ∧ ¬Pa(x)

from Sect. 4 is that l(a) depends on two adjacent positions that differ on a. (The
case of r(a) is complicated by occurrences at the end of the string.) This explains
why in the ARKV table, Table 2, the atomic column is filled by strings of length
2. Inasmuch as the strings in the domain of b are built from statives, our use of b
is arguably compatible with Dowty’s hypothesis that a basis of statives suffices for
aspect. However, the −conseq, atomic entry in Table 2 involves a force f over and
above statives a. Weakening the border l(a) to a force f (a) implicit in the idea of
inertia and explicit in

¬Pa(x) ∧ (∃y)(x Sy ∧ Pa(y)) ⊃ Pf (a)(x) (12)

tim.fernando@tcd.ie



66 T. Fernando

hints at the existence of forces beyond the borders introduced by the border translation
b. There is an opening here to break Dowty’s aspect hypothesis apart, deriving statives
from forces, some guidance on which is sought in Sect. 4 from the inverse b−1 of b.

Yet another notion of point is that of an s-point a occurring uniquely in s (Sect. 2).
This unique occurrence requirement should be understood as applying to particulars
(singulars, tokens) rather than universals (plurals, types). To see this, note from
Proposition 7 that l(a) and r(a) may occur more than once in a string as long as a
does not describe a single interval. While particulars are singularly helpful as labels
for forming linear orders, there is nothing wrong with a stative scattered over many
intervals in a string. Likewise, a string built with a label representing many borders.
It is noteworthy that superposition in Sect. 3 applies as much to universals (e.g., event
types) as to particulars (e.g., event tokens).
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