
Intervals and Events with and without Points

Tim Fernando?

Computer Science Department, Trinity College Dublin
Tim.Fernando@tcd.ie

Abstract. Intervals and events are examined in terms of strings with
and without points, represented by symbols that occur uniquely in strings.
Allen interval relations, Dowty’s aspect hypothesis and inertia are un-
derstood against strings, compressed into canonical forms, describable
in Monadic Second-Order logic. That understanding is built around a
translation of strings that replaces stative predicates by their borders.

1 Introduction

To analyze temporal relations between events, James Allen treats intervals as
primitive (not unlike [7]), noting

There seems to be a strong intuition that, given an event, we can always
“turn up the magnification” and look at its structure. . . . Since the only
times we consider will be times of events, it appears that we can always
decompose times into subparts. Thus the formal notion of a time point,
which would not be decomposable, is not useful. [1, page 834].

In place of an indivisible point, an arbitrarily decomposable interval t might be
conceived as a box filled by a predicate such as rain that is homogeneous in that
it holds of t iff it holds of any pair of intervals whose union is t, illustrated by
the equivalence between (a) and (b).

(a) It rained from 8 am to midnight.

(b) It rained from 8 am to noon, and from 10 am to midnight.

David Dowty has famously hypothesized that

the different aspectual properties of the various kinds of verbs can be ex-
plained by postulating a single homogeneous class of predicates — stative
predicates — plus three or four sentential operators or connectives. [2,
page 71].

Dowty’s investigation of his hypothesis in terms of intervals and worlds is refor-
mulated in [3] using strings of finite sets of homogeneous predicates. A simple

? My thanks to three anonymous referees for helpful comments.

example of such a string is the representation of the Allen overlap relation be-
tween intervals a and a′ as the string

a a, a′ a′ (1)

of length 5, starting with an empty box for times before a, followed by a for

times in a but not a′, followed by a, a′ for times in a and a′, followed by a′

for times in a′ but not a, followed by for times after a′.1 In (1), the intervals
a and a′ are identified with predicates interpreted as the subsets

Ua = {2, 3} and Ua′ = {3, 4}

of the set {1, 2, 3, 4, 5} of string positions where a and a′ (respectively) occur.
In general, a string s = α1 · · ·αn of n subsets αi of a set A specifies for each

a ∈ A, a subset of the set

[n] := {1, . . . , n}

of string positions, namely, the set

Ua := {i ∈ [n] | a ∈ αi}

of positions where a occurs. If we repackage s as the model

Mod(s) := 〈[n], Sn, {Ua}a∈A〉

over [n] with successor relation

Sn := {(i, i+ 1) | i ∈ [n− 1]}

then a theorem due to Büchi, Elgot and Trakhtenbrot says the regular languages
over the set 2A of subsets of A are given by the sentences ϕ of MSOA as

{s ∈ (2A)+ | Mod(s) |= ϕ}

where MSOA is Monadic Second-Order logic over strings with unary predicates
labelled by A (e.g., [8]). The Büchi-Elgot-Trakhthenbrot theorem is usually for-
mulated for strings over the alphabet A (as opposed to 2A above), but there
are at least two advantages in using the alphabet 2A. First, for applications
such as (1), it is convenient to put zero, one or more intervals in boxes for a
simple temporal construal of succession. Second, for any subset A′ ⊆ A of A, a
string s = α1 · · ·αn ∈ (2A)+ need only be intersected componentwise with A′ to
capture the A′-reduct of Mod(s) by the string

ρA′(α1 · · ·αn) := (α1 ∩A′) · · · (αn ∩A′).

1 Boxes are drawn instead of ∅ and curly braces {·} so as not to confuse, for example,
the empty language ∅ with the string � of length one.

For example, returning to (1) with A′ = {a},

ρ{a}(a a, a′ a′) = a a .

Only elements of A′ are observable in A′-reducts. To expand what can be ob-
served (and turn up, as Allen puts it, the magnification), A must be enlarged
(not reduced). On (1), for instance, a third interval a′′ may come into view,
overlapping both a and a′, as depicted by the string

a′′ a, a′′ a, a′, a′′ a, a′ a′ .

Its {a}-reduct

ρ{a}(a′′ a, a′′ a, a′, a′′ a, a′ a′) = a a a

is, like the {a}-reduct a a of (1), just another representation of a
inasmuch as any box α of homogeneous predicates is decomposable to αn for
any positive integer n. With this in mind, let us define a stutter of a string
α1 · · ·αn to be a box αi such that αi = αi+1. To remove stutters, we apply block
compression bc, defined by induction on the string length n

bc(α1 · · ·αn) :=

α1 · · ·αn if n < 2
bc(α2 · · ·αn) else if α1 = α2

α1 bc(α2 · · ·αn) otherwise

so that bc(s) has no stutter, and

s has no stutter ⇐⇒ s = bc(s).

The finite-state approach to temporality in [4, 5] identifies a string s of sets of
homogeneous predicates with its stutterless form bc(s).

But can we assume a string representing an event is built solely from homo-
geneous predicates? It is not clear such an assumption can be taken for granted.
The event nucleus of [9], for instance, postulates not only states but also events
that can be extended or atomic, including points. Given a string s over the al-
phabet 2A, let us agree an element a ∈ A is an s-point if it occurs exactly once
in s — i.e.,

ρ{a}(s) ∈
∗
a
∗

(2)

Just as a string of statives can be compressed by removing stutters through bc,
a string s of points can be compressed by deleting all occurrences in s of the
empty box � for d�(s). Line (2) above simplifies to the equation

d�(ρ{a}(s)) = a .

We shall see that for an s-interval a, the corresponding equation is

d�(b(ρ{a}(s))) = l(a) r(a)

for a certain function b on strings that associates a with a left border l(a) and
right border r(a). The precise details are spelled out in section 2, where the set
of interval relations from [1] are analyzed from the perspective of MSOA through
formulas such as

(∀z)(Pa(z) ≡ (x < z ∧ z ≤ y))

saying a occurs exactly at positions > x and ≤ y (where Pa is the unary predicate
symbol in MSOA labeled by a, and < and ≤ are defined from the successor rela-
tion via monadic second-order quantification). Applications to events are taken
up in section 3, where the set of predicate labels is expanded in a constrained
manner and the map b is inverted to expose a notion of inertia and force. A
synthesis of bc and d� is presented, suited to strings with or without points.

2 Strings of Points and Allen Relations

The key notion in this section is projection between strings, for which it is useful
to define the vocabulary of a string α1 · · ·αn of sets αi to be the union

voc(α1 · · ·αn) :=

n⋃
i=1

αi

(making voc(s) the ⊆-least set A such that s ∈ (2A)∗). We can then say s projects
to s′ if deleting all occurrences of the empty box � from the voc(s′)-reduct of s
yields s′

d�(ρvoc(s′)(s)) = s′

(recalling that d�(α1 · · ·αn) is what remains after deleting each αi = �). The
MSO{a}-sentence

(∃x)(∀y)(Pa(y) ≡ x = y)

states there is a position where a occurs and nowhere else, as asserted in (2). It
follows immediately that

Proposition 1. The following are equivalent, for any a ∈ A and s ∈ (2A)∗.

(i) Mod(s) |= (∃x)(∀y)(Pa(y) ≡ x = y)
(ii) ρ{a}(s) ∈

∗
a
∗

(iii) s projects to a

Turning to (bounded) intervals, we define the string function b mentioned in the
introduction relative to a set A, with which we associate a set

A• := {l(a) | a ∈ A} ∪ {r(a) | a ∈ A}

formed from two 1-1 functions l and r, under the assumption that the three sets

A, {l(a) | a ∈ A} and {r(a) | a ∈ A}

are pairwise disjoint. (Think of l(a) and r(a) as terms — bits of syntax — rather
than say, numbers.) Now, let the function

bA : (2A)∗ → (2A•)∗

map a string α1 · · ·αn of subsets αi of A to a string β1 · · ·βn of subsets βi of A•
as follows

βi :=

{
{r(a) | a ∈ αn} if i = n
{l(a) | a ∈ αi+1 − αi} ∪ {r(a) | a ∈ αi − αi+1} if i < n.

For example, for a, a′ ∈ A,

bA(a a, a′ a′) = l(a) l(a′) r(a) r(a′) .

To simplify notation, we will often drop the subscript A on bA. The idea behind
b is that Pa is an interval iff it is the half-open interval (l(a), r(a)] with open left
border l(a) and closed right border r(a). For an interval analog of Proposition
1, recall the MSO-formula

boundeda(x, y) := (∀z)(Pa(z) ≡ (x < z ∧ z ≤ y))

mentioned in the introduction, and observe that

b(ρ{a}(s)) = ρ{l(a),r(a)}(b(s)).

Proposition 2. The following are equivalent, for any a ∈ A and s ∈ (2A)∗.

(i) Mod(s) |= (∃x)(∃y)(x < y ∧ boundeda(x, y))

(ii) ρ{a}(s) ∈
+
a

+ ∗

(iii) b(ρ{a}(s)) ∈
∗
l(a)

∗
r(a)

∗

(iv) b(s) projects to l(a) r(a)

Focussing on strings s over the alphabet 2A• (as opposed to 2A), let us agree

that a is an s-interval if s projects to l(a) r(a) (as Proposition 2 suggests),

and also that s demarcates A if each a ∈ A is an s-interval. We show next how
to generate the strings that demarcate a finite set A. The plan is to map any
finite sequence a1 · · · an into a finite set L•(a1 · · · an) of strings establishing

Proposition 3. For any n distinct a1, . . . , an, a string s demarcates {a1, . . . , an}
iff s projects to some string in L•(a1 · · · an).

The languages L•(a1 · · · an) are defined by induction on n. Writing ε for the
string of length 0, we set

L•(ε) := ε

conflating a string s as usual with the language {s}. The inductive step is

L•(a1 · · · anan+1) := L•(a1 · · · an) &� l(an+1) r(an+1)

for a certain operation &� defined as follows. Given two strings α1 · · ·αk and
α′1 · · ·α′k of sets with the same length k, we form their componenwise union for
their superposition

(α1 · · ·αk) & (α′1 · · ·α′k) := (α1 ∪ α′1) · · · (αk ∪ α′k).

We lift & to languages L and L′ stringwise

L & L′ :=
⋃
k≥0

{s&s′ | s ∈ Lk and s′ ∈ L′k}

where Lk is the set of strings in L of length k, and similarly for L′k. Next, we
collect strings d�-equivalent to s and s′ in d−1� d�(s) and d−1� d�(s′) respectively,
which we superpose for

s &� s′ := d−1� d�(s) & d−1� d�(s′)

and then reduce to the finite set

s &� s′ := {d�(s′′) | s′′ ∈ s &�s
′}

and finally lift to languages L,L′ stringwise

L &� L′ :=
⋃
s∈L

⋃
s′∈L′

s &�s′.

Proposition 3 is proved by induction on n ≥ 1. The case n = 1 is immediate

L•(a1) = ε &� l(a1) r(a1) = l(a1) r(a1) .

For the inductive step n + 1, appeal to an+1 6∈ {a1, . . . , an}, the induction hy-
pothesis, and

Lemma 4. If voc(s)∩ voc(s′) = ∅, then every string in s&�s′ projects to d�(s)
and d�(s)′.

When a 6= a′, a routine calculation shows

L•(aa′) = {sR(a, a′) | R ∈ AR}

where the 13 interval relations in [1] constitute the set

AR := {<,>,d,di,f,fi,m,mi,o,oi,s,si,=}

and for each R ∈ AR, sR(a, a′) is the string with vocabulary

{l(a), r(a), l(a′), r(a′)}

given in Table 1 such that for s ∈ (2A)∗ (as opposed to (2A•)∗),

s |= aRa′ ⇐⇒ b(s) projects to sR(a, a′).

R aRa′ sR(a, a′) R−1 sR−1(a, a′)

< a before a′ l(a) r(a) l(a′) r(a′) > l(a′) r(a′) l(a) r(a)

m a meets a′ l(a) r(a), l(a′) r(a′) mi l(a′) r(a′), l(a) r(a)

o a overlaps a′ l(a) l(a′) r(a) r(a′) oi l(a′) l(a) r(a′) r(a)

s a starts a′ l(a), l(a′) r(a) r(a′) si l(a), l(a′) r(a′) r(a)

d a during a′ l(a′) l(a) r(a) r(a′) di l(a) l(a′) r(a′) r(a)

f a finishes a′ l(a′) l(a) r(a), r(a′) fi l(a) l(a′) r(a), r(a′)

= a equal a′ l(a), l(a′) r(a), r(a′) =

Table 1. Allen interval relations as strings of points2

Given a set A of interval names and a specification f : (A × A) → 2AR of
sets f(a, a′) of Allen relations possible for pairs (a, a′) from A, is there a string
s that meets that specification in the sense of (3) below?

for all a, a′ ∈ A, there exists R ∈ f(a, a′) such that s |= aRa′ (3)

A popular tool from [1] is the transitivity table T : (AR×AR)→ 2AR mapping
a pair (R,R′) from AR to the set T (R,R′) of relations R′′ ∈ AR such that for
some intervals X, Y and Z,

X R Y and Y R′ Z and X R′′ Z.

A function f : (A×A)→ 2AR is a T-consistent labeling of A if for all a, a′, a′′ ∈ A,

f(a, a′′) ⊆
⋃

R∈f(a,a′)

⋃
R′∈f(a′,a′′)

T (R,R′).

T -consistency falls short of true consistency; Figure 5 in [1, page 838] provides
a T -consistent labelling f of a set A of 4 intervals for which there is no string
s of subsets of A satisfying (3) above. But for A of 3 or fewer intervals, every
T -consistent labeling of A has a string s making (3) true. By Proposition 3,
we can compute T (R,R′) by searching the language L•(a1a2a3) for strings that
satisfy a1Ra2 and a2R

′a3

T (R,R′) = {R′′ ∈ AR | (∃s ∈ L•(a1a2a3)) s projects to

sR(a1, a2), sR′(a2, a3) and sR′′(a1, a3)} . (4)

Implicit in (4) is a generate-and-test approach, which we can improve by refining
the superposition &� underlying L•(a1 · · · an) to an operation &p such that for
all s, s′ ∈ (2A − {�})∗,

s &p s
′ = {s′′ ∈ (s &� s′) | s′′ projects to s and s′} (5)

2 The strings sR(a, a′) can be derived from strings s◦R(a, a′) over the alphabet {a, a′}
by the equation sR(a, a′) = b(�s◦R(a, a′)). For example, s◦<(a, a′) = a a′ and

s◦m(a, a′) = a a′ . A full list of s◦R(a, a′), for every Allen relation R, can be found
in Table 7.1 in [4, page 223].

(noting from Lemma 4 that for strings in the superposition of s with s′ to project
to d�(s) and d�(s′), we assumed s and s′ have disjoint vocabularies). To define
&p, we first construct a family of 3-ary relations &Σ,Σ′,Σ′′ on strings over the
alphabet 2Σ , indexed by subsets Σ′ and Σ′′ of Σ. We proceed by induction, with
base case

&Σ,Σ′,Σ′′(ε, ε, ε)

superposing ε with itself to get itself, and 3 rules which given &Σ,Σ′,Σ′′(s, s
′, s′′),

extend s′′ by a symbol added to s

&Σ,Σ′,Σ′′(s, s
′, s′′) α ⊆ Σ −Σ′′

&Σ,Σ′,Σ′′(αs, s′, αs′′)

or to s′
&Σ,Σ′,Σ′′(s, s

′, s′′) α′ ⊆ Σ −Σ′

&Σ,Σ′,Σ′′(s, α′s′, α′s′′)

or to both (in part)

&Σ,Σ′,Σ′′(s, s
′, s′′) α, α′ ⊆ Σ α ∩Σ′′ ⊆ α′ α′ ∩Σ′ ⊆ α

&Σ,Σ′,Σ′′(αs, α′s, (α ∪ α′)s′′)

subject in all cases to certain conditions on the symbol added, expressed through
Σ,Σ′, Σ′′. The case Σ′ = Σ′′ = � gives &�

&Σ,�,�(s, s′, s′′) ⇐⇒ s′′ ∈ (s &� s′)

for all s, s′, s′′ ∈ (2Σ)∗. More generally, however, the point of non-empty Σ′ and
Σ′′ is to constrain the superposition according to

Proposition 5. For all Σ′, Σ′′ ⊆ Σ and s, s′, s′′ ∈ (2Σ − {�})∗,

&Σ,Σ′,Σ′′(s, s
′, s′′) ⇐⇒ s′′ ∈ s&�s′ and

s′′ projects to d�(ρΣ′(s)) and d�(ρΣ′′(s
′)).

Now, for &P , let Σ be A•, and Σ′ be the vocabulary of s, and Σ′′ be the
vocabulary of s′

&P (s, s′) := {s′′ | &A•,voc(s),voc(s′)(s, s
′, s′′)}.

By Proposition 5, (5) holds for all s, s′ ∈ (2A• − {�})∗. We can then sharpen
the computation of T (R,R′) by (4) to the set of relations R′′ ∈ AR such that

sR(a1, a2) &P sR′(a2, a3) has a string that projects to sR′′(a1, a3).

Also, to check if a labeling f of A that specifies singleton sets {Ra,a′} = f(a, a′)
has a string satisfying (3), we &P -superpose together each sRa,a′ (a, a′). Apart
from transitivity tables and (3), &P applies to the constrained generation of
strings in or out of L•(a1 · · · an), with projection constraints beyond intervals.

3 Expansions, Inertia and Events

The requirement that l(a) and r(a) mark the left and right borders of a can be
expressed with the help of certain MSO{a}-formulas over a free variable x. Let
χl(a)(x) say Pa holds right after x but not at x

χl(a)(x) := ¬Pa(x) ∧ (∃y)(xSy ∧ Pa(y))

and χr(a)(x) say Pa holds at x but not right after

χr(a)(x) := Pa(x) ∧ ¬(∃y)(xSy ∧ Pa(y)).

We can then interpret Pl(a) and Pr(a) in terms of Pa according to the set

Φ(A•) := {(∀x)(Pt(x) ≡ χt(x)) | t ∈ A•}

of MSOA∪A• -sentences equating Pt(x) with χt(x). Given a string s of subsets of
A•, the strings over the alphabet 2A that b maps to s can be collected in the set

b−1s = {ρA(s′) | s′ ∈ s&(2A)∗ and (∀ϕ ∈ Φ(A•)) Mod(s′) |= ϕ}

in 3 steps

Step 1: expand with labels from A, superposing s with (2A)∗

Step 2: constrain by Φ(A•)
Step 3: reduce by ρA (for A-reduct).

To compute b from Steps 1-3 above, it suffices to replace A by A• in steps 1 and
3. The difference between b and b−1 comes down to the subalphabet added in
Step 1 and preserved in Step 3. Φ(A•) is, however, arguably more in sync with
b than with b−1, grounding, as it does, Pl(a) and Pr(a) in Pa. The inverse b−1

invites us to consider the reverse:

(Q) how do we interpret Pa, given interpretations of Pl(a) and Pr(a)?

Answering (Q) is an instructive exercise, pointing to forces and events.
Our answer to (Q) comes in two parts, assuming Pl(a) and Pr(a) are inter-

preted as subsets Ul(a) and Ur(a) (respectively) of the set [n] of positions of a
string of length n. The first part is an inductive construction

Ua =
⋃
i≥0

Ua,i (6)

of the interpretation Ua of Pa according to the definitions

Ua,0 := Ur(a)

Ua,i+1 := Ua,i ∪ {k ∈ [n− 1] | k + 1 ∈ Ua,i and k 6∈ Ul(a)}

suggested by the implications

(∀x)(Pr(a)(x) ⊃ Pa(x))

(∀x)(∀y)((xSy ∧ Pa(y) ∧ ¬Pl(a)(x)) ⊃ Pa(x)) (7)

from Φ(A•). The second part of our answer consists of two conditions

Ul(a) ∩ Ua = ∅ (8)

{i+ 1 | i ∈ Ul(a)} ⊆ Ua (9)

expressed by the implications

(∀x)(Pl(a)(x) ⊃ ¬Pa(x))

(∀x)(Pl(a)(x) ⊃ (∃y)(xSy ∧ Pa(y)))

implicit in Φ(A•). (8) and (9) hold precisely if l(a) and r(a) are positioned
properly under Ul(a) and Ur(a) — i.e., there is a string in

(ε+ r(a))(l(a) r(a))∗

to which the string s corresponding to the MSOA• -model 〈[n], Sn, {Ut∈A•}〉
projects

d�(ρ{l(a),r(a)}(s)) ∈ (ε+ r(a))(l(a) r(a))∗. (10)

Proposition 6. For every s ∈ (2A•)∗,

b−1s 6= ∅ ⇐⇒ (10) holds for every a ∈ A.

Moreover, if Mod(s) = 〈[n], Sn, {Ut}t∈A•〉 then for every s′ ∈ (2A)∗ such that
b(s′) = s,

Mod(s′) = 〈[n], Sn, {Ua}a∈A〉

where Ua is given by (6) above from the sets Ul(a) and Ur(a) in Mod(s). That is,
under b, Pa is definable from Pl(a) and Pr(a) according to

Pa(x) ≡ (∃X)(X(x) ∧ a-path(X))

where a-path(X) is the conjunction

∀x(X(x) ⊃ Pr(a)(x) ∨ ∃y(xSy ∧X(y)) ∧ ¬∃x(X(x) ∧ Pl(a)(x))

saying X is an S-path to Pr(a) that avoids Pl(a).

A crucial ingredient of the analysis of b−1 described by Proposition 6 is the
implication (7) underlying the inductive step Ua,i+1. That step lets a spread to

the neighboring left box unless l(a) is in that box. This property of l(a) can be
isolated in a label f(a) constrained by the implication

(∀x)(¬Pa(x) ∧ (∃y)(xSy ∧ Pa(y)) ⊃ Pf(a)(x)) (11)

which (without the converse of (11)) falls short of reducing Pf(a) to Pl(a). For
the sake of symmetry, we also introduce labels a and Pf(a) subject to

(∀x)(Pa(x) ≡ ¬Pa(x))

making a the negation of a, and the implication

(∀x)(Pa(x) ∧ (∃y)(xSy ∧ ¬Pa(y)) ⊃ Pf(a)(x)). (12)

tracking, with (11), any changes in a/a. The intuition is that f(a) and f(a) mark
the applications of forces for and against a (respectively). The slogan behind (11)
and (12) is

no change unless forced

or, in one word, inertia. To save that principle from vacuity, let us be careful not
to identify f(a) with l(a) or f(a) with r(a). Indeed, insofar as clashing forces are
commonplace and merit logical scrutiny (rather than dismissal), there is nothing
illegitimate about a box containing both f(a) and f(a). By contrast, l(a) and r(a)
are mutually exclusive under (10). Over any given stretch of time, any number
of forces can be at play, some of which may be neutralized by competition. A
force in isolation may have very different effects with company. That said, there
is no denying that we detect and evaluate forces by the state changes they effect.

Stative predicates labelled by a ∈ A differ significantly from non-stative
predicates labelled by l(a), r(a), f(a) and f(a) in how strings built from them
compress to canonical forms. Recall from the Introduction the link between
homogeneity and block compression bc, deleting stutters

bc−1bc(s) = α+
1 · · ·α+

n if bc(s) = α1 · · ·αn

just as d� deletes �

d−1� d�(s) = �∗α1�
∗ · · ·�∗αn�∗ if d�(s) = α1 · · ·αn.

Proposition 7. For every s ∈ (2A)∗�, b(bc(s)) = d�(b(s))� and bc(s) is the
unique string over 2A in the set b−1(d�(b(s))�).3

Underlying both notions of compression, d� and bc, is the slogan

3 � is put after (2A)∗ and after d�(b(s)) to reconcile a difference between a’s left and
right borders, l(a) and r(a); whereas r(a) is in a, l(a) is outside a. This gives rise
to a wrinkle in Proposition 2, line (ii), ρ{a}(s) ∈

+
a

+ ∗
. The Kleene star

∗

becomes a plus in Proposition 7, with s ∈ (2A)∗� necessitating a � after d�(b(s)).

no time without change.

But while bc represents that change in terms of decomposable intervals/statives,
d� employs non-decomposable points/borders (not to mention forces). The func-
tion d� is simpler than bc, and provides a pointed twist on the interval-based
approach in [3] to Dowty’s aspect hypothesis.

An obvious question is how to compress a string s of sets consisting of labels
for stative and non-stative predicates alike (as in Step 2 above). Let us collect
labels of non-homogeneous predicates in a set C. A simple synthesis of d� and
bc is the function bcC(s) defined by induction on the length of s as follows. Let
bcC(ε) := ε and

bcC(αs) :=

{
bcC(s) if α = � or (α ∩ C = ∅ and s begins with α)

α bcC(s) otherwise.

It is easy to see that

bcC(s) = d�(s) if s ∈ (2C)∗

while for any label 6∈ C ∪ voc(s),

bc(s) = d (bcC(i (s))) if voc(s) ∩ C = ∅

where i inserts

i (α1 · · ·αn) := (α1 ∪ { }) · · · (αn ∪ { })

and d deletes

d (α1 · · ·αn) := (α1 − { }) · · · (αn − { }).

Any void � is filled with ambient noise , which we may otherwise ignore.

4 Conclusion

We can summarize the work above as follows, recalling the passages from [1]
and [2] quoted in the Introduction. We “turn up the magnification” by inverting
A-reducts ρA, and analyze homogeneous statives through block compression bc,
reconstructed according to Proposition 7 through a border translation b and
�-removal d�. Working with strings s, we form A-canonical representations by
compressing ρA(s) according to

s�s′ ≈ ss′ (leading to d�)

and

sααs′ ≈ sαs′ if α ∩ C = ∅ (leading to bc)

where C collects labels of non-homogeneous predicates (including forces). Among
the labels in C are s-points that (as defined in section 2) describe particulars, in
contrast to labels that occur in more than one position in s (describing univer-
sals). Handling granularity through A and A-reducts is a hallmark of institutions
([6]), where models and sentences are organized around signatures for variable
granularity. To view MSO as an institution, we pair a set A up with a subset B
of A for a signature (A,B); a model of signature (A,B) is then a string s ∈ (2A)∗

such that each element of B is an s-point, which serves as a first-order variable
to express MSO predication in a sentence of signature (A,B). That said, the set
C of non-homogeneous predicates is not restricted to s-points. Indeed, line (10)
in section 3 allows r(a) and l(a) to occur more than once in a string s for which
b−1s is non-empty. The advance over [4, 5] that the present work may claim has
less to do with the particular notion, s-point, than with the deletion d� of �,
simplifying block compression bc. Compression d� and bc carve out two sides of
a coin, the border translation b that yields s-points and more.

References

1. J. Allen. Maintaining knowledge about temporal intervals. Communications of the
ACM, 26(11):832–843, 1983.

2. D.R. Dowty. Word Meaning and Montague Grammar. Reidel, Dordrecht, 1979.
3. T. Fernando. Dowty’s aspect hypothesis segmented. In Proceedings of the 19th

Amsterdam Colloquium, pages 107–114. 2013.
4. T. Fernando. The semantics of tense and aspect: A finite-state perspective. In

S. Lappin and C. Fox, editors, Handbook of Contemporary Semantic Theory, pages
203–236. Wiley-Blackwell, second edition, 2015.

5. T. Fernando. On regular languages over power sets. Journal of Language Modelling,
4(1):29–56, 2016.

6. J.A. Goguen and R.M. Burstall. Institutions: abstract model theory for specification
and programming. Journal of the ACM, 39(1):95–146, 1992.

7. C.L. Hamblin. Instants and intervals. Studium Generale, 24:127–134, 1971.
8. L. Libkin. Elements of Finite Model Theory. Springer, 2010.
9. M. Moens and M. Steedman. Temporal ontology and temporal reference. Compu-

tational Linguistics, 14(2):15– 28, 1988.

