Dowty's aspect hypothesis segmented

Tim Fernando

Trinity College Dublin

Amsterdam Colloquium, December 2013

A rough approximation from Rothstein 2004

activities $\lambda e.(DO(\varphi))(e)$

achievements $\lambda e.(\mathsf{BECOME}(\varphi))(e)$

 $\text{accomplishments} \quad \lambda e. \exists e'[(\mathsf{DO}(\varphi))(e') \land e = e' \sqcup_{\mathcal{S}} \mathsf{Cul}(e)]$

A rough approximation from Rothstein 2004

activities $\lambda e.(\mathsf{DO}(\varphi))(e)$

achievements $\lambda e.(\mathsf{BECOME}(\varphi))(e)$

accomplishments $\lambda e.\exists e'[(\mathsf{DO}(\varphi))(e') \land e = e' \sqcup_S \mathsf{Cul}(e)]$

```
Word Meaning & Montague Grammar, 1979
statives + DO, BECOME, CAUSE ...
```

A rough approximation from Rothstein 2004

activities $\lambda e.(\mathsf{DO}(\varphi))(e)$

achievements $\lambda e.(\mathsf{BECOME}(\varphi))(e)$

accomplishments $\lambda e.\exists e'[(\mathsf{DO}(\varphi))(e') \land e = e' \sqcup_S \mathsf{Cul}(e)]$

Word Meaning & Montague Grammar, 1979 statives + DO, BECOME, CAUSE . . .

A rough approximation from Rothstein 2004

activities $\lambda e.(\mathsf{DO}(\varphi))(e)$

achievements $\lambda e.(\mathsf{BECOME}(\varphi))(e)$

accomplishments $\lambda e.\exists e'[(\mathsf{DO}(\varphi))(e') \land e = e' \sqcup_S \mathsf{Cul}(e)]$

A rough approximation from Rothstein 2004

activities $\lambda e.(\mathsf{DO}(\varphi))(e)$

achievements $\lambda e.(\mathsf{BECOME}(\varphi))(e)$

accomplishments $\lambda e.\exists e'[(\mathsf{DO}(\varphi))(e') \land e = e' \sqcup_{\mathsf{S}} \mathsf{Cul}(e)]$

For stative φ

$$\langle I, w \rangle \models \varphi \quad \text{iff} \quad (\forall t \in I) \ \langle \{t\}, w \rangle \models \varphi$$

contra φ for an event

 $\langle I, w \rangle \models \varphi$ iff I is the time of a φ -event in w

Idea. Bring out events by segmenting I to track change in stative φ 's

A segmentation of I is a sequence $I_1I_2\cdots I_n$ such that $I=\bigcup_{i=1}^n I_i$ and for $1\leq i < n,\ I_i \prec I_{i+1}$ — i.e. $(\forall t\in I_i)(\forall t'\in I_{i+1})\ t\prec t'$.

For stative φ ,

$$\langle I, w \rangle \models \varphi \quad \text{iff} \quad (\forall t \in I) \ \langle \{t\}, w \rangle \models \varphi$$

contra φ for an event

 $\langle I, w \rangle \models \varphi$ iff I is the time of a φ -event in w

Idea. Bring out events by segmenting I to track change in stative φ 's

A segmentation of I is a sequence $I_1I_2\cdots I_n$ such that $I=\bigcup_{i=1}^n I_i$ and for $1\leq i < n,\ I_i \prec I_{i+1}$ — i.e. $(\forall t\in I_i)(\forall t'\in I_{i+1})\ t\prec t'$.

For stative φ ,

$$\langle I, w \rangle \models \varphi \quad \text{iff} \quad (\forall t \in I) \ \langle \{t\}, w \rangle \models \varphi$$

contra φ for an event

$$\langle I, w \rangle \models \varphi$$
 iff I is the time of a φ -event in w

Idea. Bring out events by segmenting I to track change in stative φ 's

A segmentation of I is a sequence $I_1I_2\cdots I_n$ such that $I=\bigcup_{i=1}^n I_i$ and for $1\leq i < n,\ I_i \prec I_{i+1}$ — i.e. $(\forall t\in I_i)(\forall t'\in I_{i+1})\ t\prec t'$.

For stative φ ,

$$\langle I, w \rangle \models \varphi \quad \text{iff} \quad (\forall t \in I) \ \langle \{t\}, w \rangle \models \varphi$$

contra φ for an event

 $\langle I, w \rangle \models \varphi$ iff I is the time of a φ -event in w

Idea. Bring out events by segmenting I to track change in stative φ 's

A segmentation of I is a sequence $I_1I_2\cdots I_n$ such that $I=\bigcup_{i=1}^n I_i$ and for $1\leq i < n$, $I_i \prec I_{i+1}$ – i.e. $(\forall t \in I_i)(\forall t' \in I_{i+1})$ $t \prec t'$.

For stative φ ,

$$\langle I, w \rangle \models \varphi \quad \text{iff} \quad (\forall t \in I) \ \langle \{t\}, w \rangle \models \varphi$$

contra φ for an event

$$\langle I, w \rangle \models \varphi$$
 iff I is the time of a φ -event in w

Idea. Bring out events by segmenting I to track change in stative φ 's

A segmentation of I is a sequence $I_1I_2\cdots I_n$ such that $I=\bigcup_{i=1}^n I_i$ and for $1\leq i< n,\ I_i\prec I_{i+1}$ — i.e. $(\forall t\in I_i)(\forall t'\in I_{i+1})\ t\prec t'$.

For stative φ ,

$$\langle I, w \rangle \models \varphi \quad \text{iff} \quad (\forall t \in I) \ \langle \{t\}, w \rangle \models \varphi$$

contra φ for an event

$$\langle I, w \rangle \models \varphi$$
 iff I is the time of a φ -event in w

Idea. Bring out events by segmenting I to track change in stative φ 's

A segmentation of I is a sequence $I_1I_2\cdots I_n$ such that $I=\bigcup_{i=1}^n I_i$ and for $1\leq i< n,\ I_i\prec I_{i+1}$ — i.e. $(\forall t\in I_i)(\forall t'\in I_{i+1})\ t\prec t'$.

For stative φ ,

$$\langle I, w \rangle \models \varphi \quad \text{iff} \quad (\forall t \in I) \ \langle \{t\}, w \rangle \models \varphi$$

contra φ for an event

$$\langle I, w \rangle \models \varphi$$
 iff I is the time of a φ -event in w

Idea. Bring out events by segmenting I to track change in stative φ 's

A segmentation of I is a sequence $I_1I_2\cdots I_n$ such that $I=\bigcup_{i=1}^n I_i$ and for $1\leq i< n,\ I_i\prec I_{i+1}$ – i.e. $(\forall t\in I_i)(\forall t'\in I_{i+1})\ t\prec t'$.

$$\begin{array}{c|c}
\varphi & \sim \varphi \\
\hline
\varphi & \varphi & \sim \varphi \\
\hline
\varphi & \sim \varphi
\end{array}$$

For stative φ ,

$$\langle I, w \rangle \models \varphi \quad \text{iff} \quad (\forall t \in I) \ \langle \{t\}, w \rangle \models \varphi$$

contra φ for an event

$$\langle I, w \rangle \models \varphi$$
 iff I is the time of a φ -event in w

Idea. Bring out events by segmenting I to track change in stative φ 's

A segmentation of I is a sequence $I_1I_2\cdots I_n$ such that $I=\bigcup_{i=1}^n I_i$ and for $1\leq i < n$, $I_i \prec I_{i+1}$ – i.e. $(\forall t \in I_i)(\forall t' \in I_{i+1})$ $t \prec t'$.

$$\begin{array}{c|c}
\varphi & \sim \varphi \\
\hline
\varphi & \varphi & \sim \varphi \\
\hline
\varphi & \sim \varphi
\end{array}$$

For stative φ ,

$$\langle I, w \rangle \models \varphi \quad \text{iff} \quad (\forall t \in I) \ \langle \{t\}, w \rangle \models \varphi$$

contra φ for an event

$$\langle I, w \rangle \models \varphi$$
 iff I is the time of a φ -event in w

Idea. Bring out events by segmenting I to track change in stative φ 's

A segmentation of I is a sequence $I_1I_2\cdots I_n$ such that $I=\bigcup_{i=1}^n I_i$ and for $1\leq i< n,\ I_i\prec I_{i+1}$ — i.e. $(\forall t\in I_i)(\forall t'\in I_{i+1})\ t\prec t'$.

$$\begin{array}{c|c}
\varphi & \sim \varphi \\
\hline
\varphi & \varphi & \sim \varphi \\
\hline
\varphi & \sim \varphi
\end{array}$$

A segmentation $I_1 \cdots I_n$ of I w-tracks φ if for all subintervals I' of I,

$$\langle I', w \rangle \models \varphi \quad \text{iff} \quad I' \subseteq \bigcup \{I_i \mid 1 \le i \le n \text{ and } \langle I_i, w \rangle \models \varphi\}.$$

A (φ, w, n) -alternation in I is a string $t_1 t_2 \cdots t_n \in I^n$ s.t. $t_i \prec t_{i+1}$ and $\langle \{t_i\}, w \rangle \models \varphi$ iff i is odd.

I is (φ, w) -alternation bounded (a.b.) if for some n > 0, no (φ, w, n) -alternation in *I* exists.

Fact. For stative φ ,

A segmentation $I_1 \cdots I_n$ of I w-tracks φ if for all subintervals I' of I,

$$\langle I', w \rangle \models \varphi \quad \text{iff} \quad I' \subseteq \bigcup \{I_i \mid 1 \leq i \leq n \text{ and } \langle I_i, w \rangle \models \varphi\}.$$

A (φ, w, n) -alternation in I is a string $t_1 t_2 \cdots t_n \in I^n$ s.t. $t_i \prec t_{i+1}$ and $\langle \{t_i\}, w \rangle \models \varphi$ iff i is odd.

I is (φ, w) -alternation bounded (a.b.) if for some n > 0, no (φ, w, n) -alternation in *I* exists.

Fact. For stative φ ,

A segmentation $I_1 \cdots I_n$ of I w-tracks φ if for all subintervals I' of I,

$$\langle I', w \rangle \models \varphi \quad \text{iff} \quad I' \subseteq \bigcup \{I_i \mid 1 \le i \le n \text{ and } \langle I_i, w \rangle \models \varphi \}.$$

A (φ, w, n) -alternation in I is a string $t_1 t_2 \cdots t_n \in I^n$ s.t. $t_i \prec t_{i+1}$ and $\langle \{t_i\}, w \rangle \models \varphi$ iff i is odd.

I is (φ, w) -alternation bounded (a.b.) if for some n > 0, no (φ, w, n) -alternation in *I* exists

Fact. For stative φ ,

A segmentation $I_1 \cdots I_n$ of I w-tracks φ if for all subintervals I' of I,

$$\langle I', w \rangle \models \varphi \quad \text{iff} \quad I' \subseteq \bigcup \{I_i \mid 1 \leq i \leq n \text{ and } \langle I_i, w \rangle \models \varphi\}.$$

A (φ, w, n) -alternation in I is a string $t_1 t_2 \cdots t_n \in I^n$ s.t. $t_i \prec t_{i+1}$ and $\langle \{t_i\}, w \rangle \models \varphi$ iff i is odd.

I is (φ, w) -alternation bounded (a.b.) if for some n > 0, no (φ, w, n) -alternation in *I* exists.

Fact. For stative φ ,

$$I_1I_2 \models_w \boxed{\psi \ \varphi, \psi} \quad \text{iff} \quad \langle I_1, w \rangle \models \psi \text{ and } \langle I_2, w \rangle \models \varphi \wedge \psi$$
 $I_1 \cdots I_n \models_w \alpha_1 \cdots \alpha_m \quad \text{iff} \quad n = m \text{ and for } 1 \leq i \leq n \text{ and } \varphi \in \alpha_i,$
 $\langle I_i, w \rangle \models \varphi$

non-durative	durativ	ve	(length	\geq 3)	
achieve $\sim \varphi \mid \varphi$	accomplish	$\sim \varphi$	$\sim \varphi, \psi$	$\sim \varphi, \psi$	+ φ
semelfactive ψ	acti	ivity	$\psi \psi$	+	

 $\alpha_1 \cdots \alpha_n$ is *telic* if there is some φ in α_n such that the negation $\sim \varphi$ of φ appears in α_i for $1 \leq i < n$

Mary ran to post-office $\varphi = at(mary, post-office)$ not quantized (Krifka) . . . "arrow of time" (Landman & R 2012)

$$I_1I_2 \models_w \boxed{\psi \ \varphi, \psi} \quad \text{iff} \quad \langle I_1, w \rangle \models \psi \text{ and } \langle I_2, w \rangle \models \varphi \wedge \psi$$
 $I_1 \cdots I_n \models_w \alpha_1 \cdots \alpha_m \quad \text{iff} \quad n = m \text{ and for } 1 \leq i \leq n \text{ and } \varphi \in \alpha_i,$
 $\langle I_i, w \rangle \models \varphi$

non-durative	dura	tive	(length	≥ 3)	
achieve $\sim \varphi \mid \varphi$	accomplish	$\sim \varphi$	$\sim \varphi, \psi$	$\sim \varphi, \psi$	+ 9
semelfactive ψ	ac	ctivity	$\psi \psi \psi$		

 $\alpha_1 \cdots \alpha_n$ is *telic* if there is some φ in α_n such that the negation $\sim \varphi$ of φ appears in α_i for $1 \leq i < n$

Mary ran to post-office $\varphi = at(mary, post-office)$ not quantized (Krifka) ... "arrow of time" (Landman & R 2012)

$$I_1I_2 \models_w \boxed{\psi \ \varphi, \psi} \quad \text{iff} \quad \langle I_1, w \rangle \models \psi \text{ and } \langle I_2, w \rangle \models \varphi \wedge \psi$$
 $I_1 \cdots I_n \models_w \alpha_1 \cdots \alpha_m \quad \text{iff} \quad n = m \text{ and for } 1 \leq i \leq n \text{ and } \varphi \in \alpha_i,$
 $\langle I_i, w \rangle \models \varphi$

	non-durative	durative (length \geq 3)
telic	achieve $\sim \varphi \mid \varphi$	accomplish $\sim \varphi$ $\sim \varphi, \psi$ $\sim \varphi, \psi$ φ
-tel	semelfactive ψ	activity $\boxed{\psi} \ket{\psi}^+$

 $\alpha_1 \cdots \alpha_n$ is *telic* if there is some φ in α_n such that the negation $\sim \varphi$ of φ appears in α_i for $1 \leq i < n$

Mary ran to post-office $\varphi = at(mary, post-office)$ not quantized (Krifka) . . . "arrow of time" (Landman & R 2012)

$$\begin{split} I_1I_2 \models_w \boxed{\psi \ \varphi, \psi} \quad \text{iff} \quad \langle I_1, w \rangle \models \psi \text{ and } \langle I_2, w \rangle \models \varphi \wedge \psi \\ I_1 \cdots I_n \models_w \alpha_1 \cdots \alpha_m \quad \text{iff} \quad n = m \text{ and for } 1 \leq i \leq n \text{ and } \varphi \in \alpha_i, \\ \langle I_i, w \rangle \models \varphi \end{split}$$

	non-durative	durative (length \geq 3)
telic	achieve $\sim \varphi \mid \varphi$	accomplish $\sim \varphi \sim \varphi, \psi \sim \varphi, \psi + \varphi$
-tel	semelfactive ψ	activity $\boxed{\psi \psi}^+$

 $\alpha_1 \cdots \alpha_n$ is *telic* if there is some φ in α_n such that the negation $\sim \varphi$ of φ appears in α_i for $1 \le i < n$

Mary ran to post-office $\varphi = at(mary,post-office)$ not quantized (Krifka) . . . "arrow of time" (Landman & R 2012)

$$\begin{split} I_1I_2 \models_w \boxed{\psi \ \varphi, \psi} \quad \text{iff} \quad \langle I_1, w \rangle \models \psi \text{ and } \langle I_2, w \rangle \models \varphi \wedge \psi \\ I_1 \cdots I_n \models_w \alpha_1 \cdots \alpha_m \quad \text{iff} \quad n = m \text{ and for } 1 \leq i \leq n \text{ and } \varphi \in \alpha_i, \\ \langle I_i, w \rangle \models \varphi \end{split}$$

	non-durative	durative (length \geq 3)
telic	achieve $\sim \varphi \mid \varphi$	accomplish $\boxed{\sim \varphi \ \sim \varphi, \psi \ \sim \varphi, \psi} + \boxed{\varphi}$
-tel	semelfactive ψ	activity $\boxed{\psi\ \psi }^+$

 $\alpha_1 \cdots \alpha_n$ is *telic* if there is some φ in α_n such that the negation $\sim \varphi$ of φ appears in α_i for $1 \le i < n$

Mary ran to post-office $\varphi = at(mary, post-office)$ not quantized (Krifka) ... "arrow of time" (Landman & R 2012)

$$\begin{array}{c|c} \operatorname{culm} \boxed{\sim \varphi \ | \varphi \>} & \operatorname{cul} \ \operatorname{proc} \boxed{\sim \varphi \ | \sim \varphi, \psi \ | \sim \varphi, \psi} \\ \operatorname{point} \boxed{ \boxed{\psi} } & \operatorname{process} \boxed{ \boxed{\psi \ | \psi \>}^+ } \end{array}$$

- $(1) \quad \mathsf{iterate}(\boxed{\psi}) \ = \ \boxed{\psi\ \psi}^+$
- (2) $s\beta$; $\alpha s' := s(\beta \cup \alpha)s'$
- (3) $L; L' := \{s; s' \mid s \in L \{\epsilon\} \text{ and } s' \in L' \{\epsilon\}\}$
- (4) iterate(L) := (least $Z \supseteq L; L$) $Z; L \subseteq Z$
- (5) $\psi \psi ; \neg \varphi \varphi = \neg \varphi \neg \varphi, \psi \neg \varphi, \psi \varphi \mod inertial$

$$\begin{array}{c|c} \operatorname{culm} \boxed{\sim \varphi \ | \varphi \>} & \operatorname{cul} \ \operatorname{proc} \boxed{\sim \varphi \ | \sim \varphi, \psi \ | \sim \varphi, \psi} \\ \operatorname{point} \boxed{\psi} & \operatorname{process} \boxed{\psi \ | \psi}^+ \end{array}$$

(1) iterate(
$$\boxed{\psi}$$
) = $\boxed{\psi} \psi^+$

- (2) $s\beta$; $\alpha s' := s(\beta \cup \alpha)s'$
- (3) $L;L':=\{s;s'\mid s\in L-\{\epsilon\} \text{ and } s'\in L'-\{\epsilon\}\}$
- (4) iterate(L) := (least $Z \supseteq L$; L) Z; $L \subseteq Z$
- (5) $\psi \psi \uparrow$; $\neg \varphi \varphi = \neg \varphi \neg \varphi, \psi \neg \varphi, \psi \uparrow \varphi \mod inertial$

$$\begin{array}{c|c} \operatorname{culm} \boxed{\sim \varphi \ | \varphi \>} & \operatorname{cul} \ \operatorname{proc} \boxed{\sim \varphi \ | \sim \varphi, \psi \ | \sim \varphi, \psi} \\ \operatorname{point} \boxed{\psi} & \operatorname{process} \boxed{\psi \ | \psi}^+ \end{array}$$

(1) iterate(
$$\psi$$
) = ψ

(2)
$$s\beta$$
; $\alpha s' := s(\beta \cup \alpha)s'$

(3)
$$L; L' := \{s; s' \mid s \in L - \{\epsilon\} \text{ and } s' \in L' - \{\epsilon\} \}$$

(4) iterate(
$$L$$
) := (least $Z \supseteq L$; L) Z ; $L \subseteq Z$

(5)
$$\psi \psi \uparrow$$
; $\sim \varphi \phi = \sim \varphi \sim \varphi, \psi \sim \varphi, \psi \uparrow \varphi \mod inertial$

$$\begin{array}{c|c} \operatorname{culm} \boxed{\sim \varphi \ | \varphi \>} & \operatorname{cul} \operatorname{proc} \boxed{\sim \varphi \ | \sim \varphi, \psi \ | \sim \varphi, \psi \>}^+ \boxed{\varphi} \\ \operatorname{point} \boxed{ \boxed{\psi} } & \operatorname{process} \boxed{ \boxed{\psi \ | \psi \>}^+ } \end{array}$$

(1) iterate(
$$\psi$$
) = ψ

(2)
$$s\beta$$
; $\alpha s' := s(\beta \cup \alpha)s'$

(3)
$$L; L' := \{s; s' \mid s \in L - \{\epsilon\} \text{ and } s' \in L' - \{\epsilon\}\}$$

$$(4) \quad \mathsf{iterate}(L) \ := \ (\mathsf{least} \ Z \supseteq L; L) \ Z; L \subseteq Z$$

$$\begin{array}{c|c} \operatorname{culm} \boxed{\sim \varphi \ | \varphi \>} & \operatorname{cul} \ \operatorname{proc} \boxed{\sim \varphi \ | \sim \varphi, \psi \ | \sim \varphi, \psi \>}^+ \boxed{\varphi} \\ \operatorname{point} \boxed{\psi} & \operatorname{process} \boxed{\psi \ | \psi\>}^+ \end{array}$$

(1) iterate(
$$\psi$$
) = ψ

(2)
$$s\beta$$
; $\alpha s' := s(\beta \cup \alpha)s'$

(3)
$$L; L' := \{s; s' \mid s \in L - \{\epsilon\} \text{ and } s' \in L' - \{\epsilon\}\}$$

(4) iterate(
$$L$$
) := (least $Z \supseteq L; L$) $Z; L \subseteq Z$

(5)
$$\psi \psi$$
; $\sim \varphi \varphi = \sim \varphi \sim \varphi, \psi \sim \varphi, \psi \varphi \mod inertial$

$$\begin{array}{c|c} \operatorname{culm} \boxed{\sim \varphi \ | \varphi \>} & \operatorname{cul} \operatorname{proc} \boxed{\sim \varphi \ | \sim \varphi, \psi \ | \sim \varphi, \psi \>}^+ \boxed{\varphi} \\ \operatorname{point} \boxed{\psi} & \operatorname{process} \boxed{\psi \ | \psi\>}^+ \end{array}$$

$$(1) \quad \mathsf{iterate}(\boxed{\psi}) = \boxed{\psi \psi}$$

(2)
$$s\beta$$
; $\alpha s' := s(\beta \cup \alpha)s'$

(3)
$$L; L' := \{s; s' \mid s \in L - \{\epsilon\} \text{ and } s' \in L' - \{\epsilon\}\}$$

(4) iterate(
$$L$$
) := (least $Z \supseteq L; L$) $Z; L \subseteq Z$

With a state, unless something happens to change that state, then the state will continue ... With a dynamic situation, on the other hand, the situation will only continue if it is continually subject to a new input of energy.

$$\langle I, w \rangle \models \operatorname{Prev}(\varphi)$$
 iff $\langle I', w \rangle \models \varphi$ for some I' abutting I

$$\langle I, w \rangle \models \varphi \wedge \operatorname{Prev}(\sim \varphi)$$
 iff $I'I \models_{w} \overline{\sim \varphi} \varphi$ for some I'

$$\psi := \varphi \wedge \operatorname{Prev}(\sim \varphi)$$
, no segmentation w -satisfies any string in φ

With a state, unless something happens to change that state, then the state will continue ... With a dynamic situation, on the other hand, the situation will only continue if it is continually subject to a new input of energy.

$$\langle I, w \rangle \models \mathsf{Prev}(\varphi) \quad \mathsf{iff} \quad \langle I', w \rangle \models \varphi \; \mathsf{for \; some} \; I' \; \mathsf{abutting} \; I$$

$$\langle I, w \rangle \models \varphi \land \mathsf{Prev}(\sim \varphi) \quad \mathsf{iff} \quad I'I \models_{w} \sim \varphi \; \varphi \; \mathsf{for \; some} \; I'$$

$$\psi := \varphi \land \mathsf{Prev}(\sim \varphi), \; \mathsf{no \; segmentation} \; w\text{-satisfies any string}$$

With a state, unless something happens to change that state, then the state will continue ... With a dynamic situation, on the other hand, the situation will only continue if it is continually subject to a new input of energy.

$$\langle I, w \rangle \models \mathsf{Prev}(\varphi) \quad \mathsf{iff} \quad \langle I', w \rangle \models \varphi \; \mathsf{for \; some} \; I' \; \mathsf{abutting} \; I$$

$$\langle I, w \rangle \models \varphi \wedge \mathsf{Prev}(\sim \varphi) \quad \mathsf{iff} \quad I'I \models_w \boxed{\sim \varphi \; \varphi} \; \mathsf{for \; some} \; I'$$

For $\psi \;:=\; arphi \wedge \mathsf{Prev}(\sim arphi)$, no segmentation w-satisfies any string in

$$iterate(\boxed{\psi}) = \boxed{\psi} \boxed{\psi}^+$$

With a state, unless something happens to change that state, then the state will continue ... With a dynamic situation, on the other hand, the situation will only continue if it is continually subject to a new input of energy.

$$\langle I, w \rangle \models \mathsf{Prev}(\varphi) \quad \mathsf{iff} \quad \langle I', w \rangle \models \varphi \text{ for some } I' \text{ abutting } I$$

$$\langle I, w \rangle \models \varphi \land \mathsf{Prev}(\sim \varphi) \quad \mathsf{iff} \quad I'I \models_w \boxed{\sim \varphi \ \varphi} \text{ for some } I'$$

For $\psi := \varphi \land \mathsf{Prev}(\sim \varphi)$, no segmentation w-satisfies any string in

$$iterate(\boxed{\psi}) = \boxed{\psi \psi}^+$$

Incremental change and grain

$$\langle I, w \rangle \models d < \varphi \text{-deg} \quad \text{iff} \quad (\forall t \in I) \ d < \deg_{\varphi, w}^{D}(t)$$

$$\langle I, w \rangle \models \varphi \text{-deg} \leq d \quad \text{iff} \quad (\forall t \in I) \ \deg_{\varphi, w}^{D}(t) \leq d$$

$$\text{For } \psi := (\exists d \in D) \ (d < \varphi \text{-deg} \land \text{Prev}(\varphi \text{-deg} \leq d)),$$

$$I_0 I_1 \cdots I_n \models_w \boxed{\psi}^n \quad \text{iff} \quad (\exists d_1, \dots, d_n \in D)(\forall i \in [1, n])$$

$$(\forall t \in I_{i-1})(\forall t' \in I_i)$$

$$\deg_{\varphi, w}^{D}(t) \leq d_i < \deg_{\varphi, w}^{D}(t')$$

$$\begin{array}{c|c} \varphi\text{-deg} \leq d_1 & d_1 < \varphi\text{-deg}, \ \varphi\text{-deg} \leq d_2 \end{array} \cdots \\ \cdots & d_{n-1} < \varphi\text{-deg}, \ \varphi\text{-deg} \leq d_n & d_n < \varphi\text{-deg} \end{array}$$

Grain is fixed by the set of propositions we can box.

$$\langle I, w \rangle \models d < \varphi \text{-deg} \quad \text{iff} \quad (\forall t \in I) \ d < \deg^D_{\varphi, w}(t)$$

$$\langle I, w \rangle \models \varphi \text{-deg} \leq d \quad \text{iff} \quad (\forall t \in I) \ \deg^D_{\varphi, w}(t) \leq d$$

$$\text{For } \psi := (\exists d \in D) \ (d < \varphi \text{-deg} \land \mathsf{Prev}(\varphi \text{-deg} \leq d)),$$

$$|I_0 I_1 \cdots I_n \models_w \boxed{\psi}^n \quad \text{iff} \quad (\exists d_1, \dots, d_n \in D)(\forall i \in [1, n])$$

$$(\forall t \in I_{i-1})(\forall t' \in I_i)$$

$$\deg^D_{\varphi, w}(t) \leq d_i < \deg^D_{\varphi, w}(t')$$

$$egin{aligned} arphi_{-} \mathrm{deg} & \leq d_1 \ d_1 < arphi_{-} \mathrm{deg}, \ arphi_{-} \mathrm{deg} \leq d_2 \ \cdots \ & \cdots \ d_{n-1} < arphi_{-} \mathrm{deg}, \ arphi_{-} \mathrm{deg} \leq d_n \ d_n < arphi_{-} \mathrm{deg} \end{aligned}$$

$$\langle I,w
angle \models d < arphi$$
-deg iff $(\forall t\in I)\ d < \deg^D_{arphi,w}(t)$
 $\langle I,w
angle \models arphi$ -deg $\leq d$ iff $(\forall t\in I)\ \deg^D_{arphi,w}(t) \leq d$

For $\psi:=(\exists d\in D)\ (d-deg \wedge Prev $(arphi$ -deg $\leq d)$),
 $I_0I_1\cdots I_n\models_w \boxed{\psi}^n$ iff $(\exists d_1,\ldots,d_n\in D)(\forall i\in [1,n])$
 $(\forall t\in I_{i-1})(\forall t'\in I_i)$
 $\deg^D_{arphi,w}(t)\leq d_i<\deg^D_{arphi,w}(t')$$

$$egin{aligned} arphi_- ext{deg} & \leq d_1 \ d_1 < arphi_- ext{deg}, \ arphi_- ext{deg} \leq d_2 \ \cdots \end{aligned}$$
 $\cdots \ d_{n-1} < arphi_- ext{deg}, \ arphi_- ext{deg} \leq d_n \ d_n < arphi_- ext{deg} \end{aligned}$

$$\langle I,w
angle \models d < arphi$$
-deg iff $(\forall t \in I) \ d < \deg^D_{arphi,w}(t)$
 $\langle I,w
angle \models arphi$ -deg $\leq d$ iff $(\forall t \in I) \deg^D_{arphi,w}(t) \leq d$

For $\psi := (\exists d \in D) \ (d < arphi$ -deg \wedge Prev $(arphi$ -deg $\leq d)$),

 $I_0I_1 \cdots I_n \models_w \boxed{\psi}^n$ iff $(\exists d_1,\ldots,d_n \in D)(\forall i \in [1,n])$
 $(\forall t \in I_{i-1})(\forall t' \in I_i)$
 $\deg^D_{arphi,w}(t) \leq d_i < \deg^D_{arphi,w}(t')$

$$arphi$$
-deg $\leq d_1 \mid d_1 < arphi$ -deg, $arphi$ -deg $\leq d_2 \mid \cdots$
 $\cdots \mid d_{n-1} < arphi$ -deg, $arphi$ -deg $\leq d_n \mid d_n < arphi$ -deg

$$\langle I,w
angle \models d < arphi$$
-deg iff $(\forall t \in I) \ d < \deg^D_{arphi,w}(t)$
 $\langle I,w
angle \models arphi$ -deg $\leq d$ iff $(\forall t \in I) \deg^D_{arphi,w}(t) \leq d$

For $\psi := (\exists d \in D) \ (d < arphi$ -deg \wedge Prev $(arphi$ -deg $\leq d)$),

 $I_0I_1 \cdots I_n \models_w \boxed{\psi}^n$ iff $(\exists d_1,\ldots,d_n \in D)(\forall i \in [1,n])$
 $(\forall t \in I_{i-1})(\forall t' \in I_i)$
 $\deg^D_{arphi,w}(t) \leq d_i < \deg^D_{arphi,w}(t')$

$$arphi$$
-deg $\leq d_1 \mid d_1 < arphi$ -deg, $arphi$ -deg $\leq d_2 \mid \cdots \mid d_{n-1} < arphi$ -deg, $arphi$ -deg $\leq d_n \mid d_n < arphi$ -deg

The projections
$$bc_A(s) := bc(\rho_A(s))$$

 $o_{\mathcal{A}}$ "see only \mathcal{A} "

 $b\!c$ "no time without change" : compress $lpha^+$ to lpha

For infinite Φ , let $Fin(\Phi)$ be the set of finite subsets of Φ .

A Φ -system is a function $f: Fin(\Phi) \to (2^{\Phi})^*$ such that

$$(\forall B \in Fin(\Phi))(\forall A \subseteq B) \quad f(A) = bc_A(f(B)).$$

The projections
$$bc_A(s) := bc(\rho_A(s))$$

 $o_{\mathcal{A}}$ "see only \mathcal{A} "

 $b\!c$ "no time without change" : compress $lpha^+$ to lpha

For infinite Φ , let $Fin(\Phi)$ be the set of finite subsets of Φ .

A Φ-system is a function $f: Fin(\Phi) \rightarrow (2^{\Phi})^*$ such that

$$(\forall B \in Fin(\Phi))(\forall A \subseteq B) \quad f(A) = bc_A(f(B)).$$

The projections
$$bc_A(s) \ := \ bc(
ho_A(s))$$

ρ_A "see only A"

 $b\!c$ "no time without change" : compress $lpha^+$ to lpha

For infinite Φ , let $Fin(\Phi)$ be the set of finite subsets of Φ .

A Φ-system is a function $f: Fin(\Phi) \rightarrow (2^{\Phi})^*$ such that

$$(\forall B \in Fin(\Phi))(\forall A \subseteq B) \quad f(A) = bc_A(f(B)).$$

The projections
$$bc_A(s) := bc(\rho_A(s))$$

 ρ_A "see only A"

 ${\it bc}$ "no time without change" : compress α^+ to α

For infinite Φ , let $Fin(\Phi)$ be the set of finite subsets of Φ A Φ -system is a function $f: Fin(\Phi) \to (2^{\Phi})^*$ such that $(\forall B \in Fin(\Phi))(\forall A \subseteq B) \quad f(A) = bc_A(f(B)).$

The projections
$$\mathcal{W}_{A}(s) := \mathcal{W}(\rho_{A}(s))$$

 ρ_A "see only A"

 $b\!c$ "no time without change" : compress α^+ to α

For infinite Φ , let $Fin(\Phi)$ be the set of finite subsets of Φ .

A Φ-system is a function $f: Fin(\Phi) o (2^{\Phi})^*$ such that

$$(\forall B \in Fin(\Phi))(\forall A \subseteq B) \quad f(A) = bc_A(f(B)).$$

The projections
$$\mathcal{L}_A(s) := \mathcal{L}(\rho_A(s))$$

 ρ_A "see only A"

 $m{\emph{bc}}$ "no time without change" : compress α^+ to α

For infinite Φ , let $Fin(\Phi)$ be the set of finite subsets of Φ .

A
$$\Phi$$
-system is a function $f: Fin(\Phi) \to (2^{\Phi})^*$ such that
$$(\forall B \in Fin(\Phi))(\forall A \subseteq B) \quad f(A) = \ \, \varpi_A(f(B))$$

The projections
$$\mathcal{L}_A(s) := \mathcal{L}(\rho_A(s))$$

 ρ_A "see only A"

 ${\it bc}$ "no time without change" : compress α^+ to α

For infinite Φ , let $Fin(\Phi)$ be the set of finite subsets of Φ .

A Φ -system is a function $f: Fin(\Phi) \to (2^{\Phi})^*$ such that

$$(\forall B \in Fin(\Phi))(\forall A \subseteq B) \quad f(A) = \&_A(f(B)).$$

The projections $\mathcal{L}_A(s) := \mathcal{L}(\rho_A(s))$

days in a year → months in a year

 ρ_A "see only A"

bc "no time without change" : compress a^+ to a^-

For infinite Φ , let $Fin(\Phi)$ be the set of finite subsets of Φ .

A Φ -system is a function $f: Fin(\Phi) \to (2^{\Phi})^*$ such that

$$(\forall B \in Fin(\Phi))(\forall A \subseteq B) \quad f(A) = \mathscr{b}_A(f(B)).$$

$\mathbb{IL}(\Phi)$ branches

For
$$f, f' \in \mathbb{IL}(\Phi)$$
, $f \prec_{\Phi} f'$ iff $f \neq f'$ and $(\forall A \in Fin(\Phi))$ $f(A)$ is a prefix of $f'(A)$ where

s is a prefix of s' iff
$$(\exists s'') s' = ss''$$

Fact. \prec_{Φ} is transitive and left linear: for all $f \in \mathbb{L}(\Phi)$, and $f_1, f_2 \prec_{\Phi} f$,

$$f_1 \prec_{\Phi} f_2$$
 or $f_2 \prec_{\Phi} f_1$ or $f_1 = f_2$

Moreover, no Φ -system is \prec_{Φ} -maximal.

$\mathbb{IL}(\Phi)$ branches

For
$$f, f' \in \mathbb{IL}(\Phi)$$
,

$$f \prec_{\Phi} f'$$
 iff $f \neq f'$ and $(\forall A \in Fin(\Phi))$ $f(A)$ is a prefix of $f'(A)$ where

$$s$$
 is a prefix of s' iff $(\exists s'')$ $s' = ss''$

Fact. \prec_{Φ} is transitive and left linear: for all $f \in \mathbb{L}(\Phi)$, and $f_1, f_2 \prec_{\Phi} f$,

$$f_1 \prec_{\Phi} f_2$$
 or $f_2 \prec_{\Phi} f_1$ or $f_1 = f_2$

Moreover, no Φ -system is \prec_{Φ} -maximal.

$$\mathbb{IL}(\Phi)$$
 branches

For
$$f, f' \in \mathbb{IL}(\Phi)$$
,

$$f \prec_{\Phi} f'$$
 iff $f \neq f'$ and $(\forall A \in Fin(\Phi))$ $f(A)$ is a prefix of $f'(A)$

where

$$s$$
 is a prefix of s' iff $(\exists s'') s' = ss''$

Fact. \prec_{Φ} is transitive and left linear: for all $f \in \mathbb{IL}(\Phi)$, and $f_1, f_2 \prec_{\Phi} f$,

$$f_1 \prec_{\Phi} f_2$$
 or $f_2 \prec_{\Phi} f_1$ or $f_1 = f_2$.

Moreover, no Φ -system is \prec_{Φ} -maximal.

An interval world pair $\langle I, w \rangle$ is Φ -approximable if every $\varphi \in \Phi$ is homogeneous and alternation-bounded in $\langle I, w \rangle$.

- Fact. Every Φ -approximable $\langle I, w \rangle$ is representable in $\mathbb{H}(\Phi)$ by a unique system $\{f(A)\}_{A \in Fin(\Phi)}$ of approximations of $\langle I, w \rangle$ as $f(A) \in (2^A)^*$ at granularity A.
- DAH_s: At granularity A, events within $\langle I, w \rangle$ are representable as substrings of f(A)
 - an *E*-event occurs in $\langle I, w \rangle$ iff $(\exists s \in L_E)$ $s \sqsubseteq f(A)$ relational intension: $s' \supseteq_E s$ iff $s \in L_E$ and $s \sqsubseteq s'$

An interval world pair $\langle I, w \rangle$ is Φ -approximable if every $\varphi \in \Phi$ is homogeneous and alternation-bounded in $\langle I, w \rangle$.

Fact. Every Φ -approximable $\langle I, w \rangle$ is representable in $\mathbb{IL}(\Phi)$ by a unique system $\{f(A)\}_{A \in Fin(\Phi)}$ of approximations of $\langle I, w \rangle$ as $f(A) \in (2^A)^*$ at granularity A.

DAH_s: At granularity A, events within $\langle I, w \rangle$ are representable as substrings of f(A)

an *E*-event occurs in $\langle I, w \rangle$ iff $(\exists s \in L_E)$ $s \sqsubseteq f(A)$ relational intension: $s' \supseteq_E s$ iff $s \in L_E$ and $s \sqsubseteq s'$

An interval world pair $\langle I, w \rangle$ is Φ -approximable if every $\varphi \in \Phi$ is homogeneous and alternation-bounded in $\langle I, w \rangle$.

- Fact. Every Φ -approximable $\langle I, w \rangle$ is representable in $\mathbb{IL}(\Phi)$ by a unique system $\{f(A)\}_{A \in Fin(\Phi)}$ of approximations of $\langle I, w \rangle$ as $f(A) \in (2^A)^*$ at granularity A.
- DAH_s: At granularity A, events within $\langle I, w \rangle$ are representable as substrings of f(A)

an *E*-event occurs in
$$\langle I, w \rangle$$
 iff $(\exists s \in L_E)$ $s \sqsubseteq f(A)$ relational intension: $s' \supseteq_E s$ iff $s \in L_E$ and $s \sqsubseteq s'$

An interval world pair $\langle I, w \rangle$ is Φ -approximable if every $\varphi \in \Phi$ is homogeneous and alternation-bounded in $\langle I, w \rangle$.

- Fact. Every Φ -approximable $\langle I, w \rangle$ is representable in $\mathbb{IL}(\Phi)$ by a unique system $\{f(A)\}_{A \in Fin(\Phi)}$ of approximations of $\langle I, w \rangle$ as $f(A) \in (2^A)^*$ at granularity A.
- DAH_s: At granularity A, events within $\langle I, w \rangle$ are representable as substrings of f(A)

an *E*-event occurs in $\langle I, w \rangle$ iff $(\exists s \in L_E)$ $s \sqsubseteq f(A)$ relational intension: $s' \supseteq_E s$ iff $s \in L_E$ and $s \sqsubseteq s'$

An interval world pair $\langle I, w \rangle$ is Φ -approximable if every $\varphi \in \Phi$ is homogeneous and alternation-bounded in $\langle I, w \rangle$.

- Fact. Every Φ -approximable $\langle I, w \rangle$ is representable in $\mathbb{IL}(\Phi)$ by a unique system $\{f(A)\}_{A \in Fin(\Phi)}$ of approximations of $\langle I, w \rangle$ as $f(A) \in (2^A)^*$ at granularity A.
- DAH_s: At granularity A, events within $\langle I, w \rangle$ are representable as substrings of f(A)

an *E*-event occurs in $\langle I, w \rangle$ iff $(\exists s \in L_E)$ $s \sqsubseteq f(A)$ relational intension: $s' \supseteq_E s$ iff $s \in L_E$ and $s \sqsubseteq s'$