Dowty’s aspect hypothesis segmented

Tim Fernando

Trinity College Dublin

Amsterdam Colloquium, December 2013

daviddowty64.JPG 490x613 pixels 17/12/2013 23:55

Word Meaning & Montague Grammar, 1979
statives + DO, BECOME, CAUSE ...

activities
achievements

accomplishments

Where are the events in Dowty'’s aspect calculus?

Word Meaning & Montague Grammar, 1979
statives + DO, BECOME, CAUSE ...

activities
achievements

accomplishments

Where are the events in Dowty'’s aspect calculus?

Word Meaning & Montague Grammar, 1979
statives + DO, BECOME, CAUSE ...

A rough approximation from Rothstein 2004
activities Ae.(DO(¢))(e)
achievements

accomplishments

Where are the events in Dowty'’s aspect calculus?

Word Meaning & Montague Grammar, 1979
statives + DO, BECOME, CAUSE ...

A rough approximation from Rothstein 2004
activities Ae.(DO(¢))(e)
achievements Ae.(BECOME(p))(e)

accomplishments

Where are the events in Dowty'’s aspect calculus?

Word Meaning & Montague Grammar, 1979
statives + DO, BECOME, CAUSE ...

A rough approximation from Rothstein 2004
activities Ae.(DO(¢))(e)
achievements Ae.(BECOME(p))(e)
accomplishments Ae.3e’[(DO(¢))(e’) A e = €’ Us Cul(e)]

Interval world pairs

(lw) =

Interval world pairs

For stative ¢,

(lw) = iff (Veel) {t}w) e

Interval world pairs

For stative ¢,
(lw) =o iff (Veel) ({thw) e
contra ¢ for an event

(I, w) = iff [is the time of a p-event in w

Interval world pairs

For stative ¢,

(w) = iff (Veel) {thw) =
contra ¢ for an event

(I, w) = iff [is the time of a p-event in w

Idea. Bring out events by segmenting [/ to track change in stative ¢'s

Interval world pairs

For stative ¢,

(w) = iff (Veel) {thw) =
contra ¢ for an event

(I, w) = iff [is the time of a p-event in w

Idea. Bring out events by segmenting [/ to track change in stative ¢'s

A segmentation of | is a sequence 1l - I, such that | = U7:1 /;
and for 1 <i<n, [; < I,‘+1 —i.e. (Vt S I,')(th S I,'+1) t<t.

Interval world pairs

For stative ¢,

(w) = iff (Veel) {thw) =
contra ¢ for an event

(I, w) = iff [is the time of a p-event in w

Idea. Bring out events by segmenting [/ to track change in stative ¢'s

A segmentation of | is a sequence 1l - I, such that | = U7:1 /;
and for 1 <i<n, [; < I,‘+1 —i.e. (Vt S I,')(th S I,'+1) t<t.

Interval world pairs

For stative ¢,

(w) = iff (Veel) {thw) =
contra ¢ for an event

(I, w) = iff [is the time of a p-event in w

Idea. Bring out events by segmenting [/ to track change in stative ¢'s

A segmentation of | is a sequence 1l - I, such that | = U7:1 /;
and for 1 <i<n, [; < I,‘+1 —i.e. (Vt S I,')(th S I,'+1) t<t.

Interval world pairs

For stative ¢,
(lw) =o iff (Veel) ({thw) e
contra ¢ for an event

(I, w) = iff [is the time of a p-event in w

Idea. Bring out events by segmenting [/ to track change in stative ¢'s

A segmentation of | is a sequence 1l - I, such that | = U7:1 /;
and for 1 <i<n, [; < I,‘+1 —i.e. (Vt S I,')(th S I,'+1) t<t.

Interval world pairs

For stative ¢,

(w) = iff (Veel) {thw) =
contra ¢ for an event

(I, w) = iff [is the time of a p-event in w

Idea. Bring out events by segmenting [/ to track change in stative ¢'s

A segmentation of | is a sequence 1l - I, such that | = U7:1 /;
and for 1 <i<n, [; < I,‘+1 —i.e. (Vt S I,')(th S I,'+1) t<t.

EEE
bl
S| |6

Tracking ¢

A segmentation Iy - - - I, of | w-tracks ¢ if for all subintervals I’ of I,

(I'wyke iff I'C|J{[1<i<nand (,w) E ¢}

Tracking ¢

A segmentation Iy - - - I, of | w-tracks ¢ if for all subintervals I’ of I,

(I'wyke iff I'C|J{[1<i<nand (,w) E ¢}

Fact. For stative o,

some segmentation of | w-tracks ¢ iff | is (p,w)-a.b.

Tracking ¢

A segmentation Iy - - - I, of | w-tracks ¢ if for all subintervals I’ of I,

(I'wyke iff I'C|J{[1<i<nand (,w) E ¢}
A (o, w, n)-alternation in | is a string tity---t, € I" s.it. t; < tiy1

and ({tj}, w) = ¢ iff i is odd.

Fact. For stative o,

some segmentation of | w-tracks ¢ iff | is (p,w)-a.b.

Tracking ¢

A segmentation Iy - - - I, of | w-tracks ¢ if for all subintervals I’ of I,

(I'wyke iff I'C|J{[1<i<nand (,w) E ¢}
A (o, w, n)-alternation in | is a string tity---t, € I" s.it. t; < tiy1
and ({tj}, w) = ¢ iff i is odd.

I is (p, w)-alternation bounded (a.b.) if for some n >0, no
(¢, w, n)-alternation in [exists.

Fact. For stative o,

some segmentation of | w-tracks ¢ iff | is (p, w)-a.b.

From segmentations to strings

= iff (b, w) =1 and (h,w) E @AY

From segmentations to strings

= iff (b, w) =1 and (h,w) E @AY

h-lhEwar---ay iff n=mandforl<i<nandgpc€aq,

(I, w) =

From segmentations to strings

= iff (h,w) = ¢ and (h,w) = @ A

h-lhEwar---ay iff n=mandforl<i<nandgpc€aq,

(I, w) =

non-durative durative (length > 3)

achieve [~ o[y accomplish’thlfvgo,wlNQO,?,Z)‘Jr

semelfactive I activity +

From segmentations to strings

= iff (b, w) =1 and (h,w) E @AY

h-lhEwar---ay iff n=mandforl<i<nandgpc€aq,

(I, w) =

non-durative durative (length > 3)

telic | achieve [~p[¢ accomplish’waplwg&,wlNQD,?,Z)‘Jr

—tel | semelfactive I activity +

Qi -+ -« is telic if there is some ¢ in a, such that
the negation ~ ¢ of ¢ appearsin a; for 1 <i <n

From segmentations to strings

= iff (b, w) =1 and (h,w) E @AY

h-lhEwar---ay iff n=mandforl<i<nandgpc€aq,

(I, w) =

non-durative durative (length > 3)
telic | achieve [~p[¢]| | accomplish ’NﬁﬂlN@ﬂ/} I ~Q, ‘+
—tel | semelfactive I activity +

Qi -+ -« is telic if there is some ¢ in a, such that
the negation ~ ¢ of ¢ appearsin a; for 1 <i <n

Mary ran to post-office p =at(mary,post-office)
not quantized (Krifka) ... “arrow of time” (Landman & R 2012)

Moens & Steedman 1988 in strings

culm cul proc ’N@|N<p,¢|~¢,¢‘+
point process +

Moens & Steedman 1988 in strings

culm cul proc ’N@INQO,T/}'NQO,@Z)‘JF
point process +

(1) iterate([) = [[e]¢]

Moens & Steedman 1988 in strings

culm cul proc ’N@INQO,T/}'NQO,@Z)‘JF
point process +

(1) iterate([) = [[e]¢]

(2) sB; as’ == s(BUa)s

Moens & Steedman 1988 in strings

culm cul proc ’N@INQO,T/}'NQO,@Z)‘JF
point process +

(1) iterate([) = [[e]¢]

(2) sB; as’ == s(BUa)s

(3) Ll = {s;s’|selL—{e} and s’ € L' —{e}}

Moens & Steedman 1988 in strings

culm cul proc ’N@INQO,T/}'NQO,@Z)‘JF
point process +

(1) iterate([) = [[e]¢]

(2) sB; as’ == s(BUa)s
(3) Ll = {s;s’|selL—{e} and s’ € L' —{e}}

(4) iterate(L) := (least Z D L;L) Z;LC Z

Moens & Steedman 1988 in strings

culm cul proc ’N@INQO,T/}'NQO,@Z)‘JF
point process +

(1) iterate([) = [[e]¢]

(2) sB; as’ == s(BUa)s
(3) Ll = {s;s’|selL—{e} and s’ € L' —{e}}

(4) iterate(L) := (least Z D L;L) Z;LC Z

(5) WJF;W:’N@lNSOﬂ/JIN%MJF mod inertia

Comrie 1976

With a state, unless something happens to change
that state, then the state will continue . ..

With a dynamic situation, on the other hand, the
situation will only continue if it is continually subject
to a new input of energy.

Comrie 1976

With a state, unless something happens to change
that state, then the state will continue . ..

With a dynamic situation, on the other hand, the
situation will only continue if it is continually subject
to a new input of energy.

(I, w) = Prev(y) iff (I’ w) = ¢ for some I” abutting /

Comrie 1976

With a state, unless something happens to change
that state, then the state will continue . ..

With a dynamic situation, on the other hand, the
situation will only continue if it is continually subject
to a new input of energy.

(I, w) = Prev(y) iff (I’ w) = ¢ for some I” abutting /

(I, w) = @ APrev(~y) iff I'l &, for some /'

Comrie 1976

With a state, unless something happens to change
that state, then the state will continue . ..

With a dynamic situation, on the other hand, the
situation will only continue if it is continually subject
to a new input of energy.

(I, w) = Prev(y) iff (I’ w) = ¢ for some I” abutting /

(I, w) = @ APrev(~y) iff I'l &, for some /'

For ¢ := ¢ APrev(~¢), no segmentation w-satisfies any string in

iterate(’ I?/J‘) = ’ |¢|¢‘+

Incremental change and grain

(I,w) = d < p-deg iff (Vtel)d<degl,(t)

Incremental change and grain

(I,w) = d < p-deg iff (Vtel)d<degl,(t)
(I,w) = p-deg < d iff (Vtel)degl,(t)<d

Incremental change and grain

(I,w) = d < p-deg iff (Vtel)d<degl,(t)
(I,w) = p-deg < d iff (Vtel)degl,(t)<d

For ¢ := (3d € D) (d < ¢-deg A Prev(p-deg < d)),

Incremental change and grain

(I,w) = d < p-deg iff (Vtel)d<degl,(t)
(I,w) = p-deg < d iff (Vtel)degl,(t)<d
For ¢ := (3d € D) (d < ¢-deg A Prev(p-deg < d)),
loh -l =w [[0] i (3di,...,dy € D)(Vi€ [1,n])

(Vt € Ii—l)(vtl € /,')
degl (1) < d; < deg? ,(t')

Incremental change and grain

(I,w) = d < p-deg iff (Vtel)d<degl,(t)
(I,w) = p-deg < d iff (Vtel)degl,(t)<d
For ¢ := (3d € D) (d < ¢-deg A Prev(p-deg < d)),
loh -l =w [[0] i (3di,...,dy € D)(Vi€ [1,n])

(Vt € Ii—l)(vtl € /,')
degl (1) < d; < deg? ,(t')

p-deg < di | dh < p-deg, p-deg < &y |-+

dpn—1 < p-deg, p-deg < d, | d, < p-deg

Grain is fixed by the set of propositions we can box.

days in a year

’Jan,dl I Jan,d2“ . ’ Dec,d31 ‘

days in a year ~ months in a year

’Jan,dl I Jan,d2“ . ’ Dec,d31 ‘

[Jan|Feb]|- - -| Dec|

days in a year ~ months in a year

’Jan,dl I Jan,d2 ‘ : ’ Dec,d31 ‘ Pmeats | Jan ‘31’ Feb ‘28 .| Dec ‘31

[Jan|Feb]|- - -| Dec|

pa ‘‘see only A"

days in a year ~ months in a year

’Jan,dl I Jan,d2 ‘ : ’ Dec,d31 ‘ Pmeats | Jan ‘31’ Feb ‘28 .| Dec ‘31

% [Jan[Feb]---[Dec]

pa ‘‘see only A"

bc “no time without change” : compress a™ to «

The projections bca(s) = be(pa(s))

days in a year ~ months in a year

’Jan,dl I Jan,d2 ‘ : ’ Dec,d31 ‘ Pmeats | Jan ‘31’ Feb ‘28 .| Dec ‘31

% [Jan[Feb]---[Dec]

pa ‘‘see only A"

bc “no time without change” : compress a™ to o

The projections bca(s) = be(pa(s))

days in a year ~ months in a year

’Jan,dl I Jan,d2 ‘ : ’ Dec,d31 ‘ Pmeats | Jan ‘31’ Feb ‘28 .| Dec ‘31

% [Jan[Feb]---[Dec]

pa ‘‘see only A"

bc “no time without change” : compress a™ to o

For infinite ®, let Fin(®) be the set of finite subsets of ®.

The projections bca(s) = be(pa(s))

days in a year ~ months in a year

’Jan,dl I Jan,d2 ‘ : ’ Dec,d31 ‘ Pmeats | Jan ‘31’ Feb ‘28 .| Dec ‘31

% [Jan[Feb]---[Dec]

pa ‘‘see only A"

bc “no time without change” : compress a™ to o
For infinite ®, let Fin(®) be the set of finite subsets of ®.
A ®-system is a function f : Fin(®) — (2%)* such that
(VB € Fin(®))(VAC B) f(A) = ba(f(B)).

The projections bca(s) = be(pa(s))

days in a year ~ months in a year

’Jan,dl I Jan,d2 ‘ : ’ Dec,d31 ‘ Pmeats | Jan ‘31’ Feb ‘28 .| Dec ‘31

% [Jan[Feb]---[Dec]

pa ‘‘see only A"

bc “no time without change” : compress a™ to o
For infinite ®, let Fin(®) be the set of finite subsets of ®.
A ®-system is a function f : Fin(®) — (2%)* such that
(VB € Fin(®))(VAC B) f(A) = ba(f(B)).

Fact. The set of ®-systems is the inverse limit IL(®) of
{bcatacFin(e)-

IL(®) branches

sis a prefix of s iff (3s") s’ = ss”

IL(®) branches

For f, " € TL(®),
f <o f' iff f#f and (VA€ Fin(®)) f(A) is a prefix of f'(A)
where

sis a prefix of s iff (3s") s’ = ss”

IL(®) branches

For f, " € TL(®),
f <o f' iff f#f and (VA€ Fin(®)) f(A) is a prefix of f'(A)
where

sis a prefix of s iff (3s") s’ = ss”

Fact. <¢ is transitive and left linear: for all f € IL(®), and
fi,h <o f,

f1-<q>f2 or f2-<q>f1 or fi =h.

Moreover, no ®-system is <¢-maximal.

From intensions to truthmaking & finite-state methods

An interval world pair (I, w) is ®-approximable if every v € ® is
homogeneous and alternation-bounded in (/, w).

From intensions to truthmaking & finite-state methods

An interval world pair (I, w) is ®-approximable if every v € ® is
homogeneous and alternation-bounded in (/, w).

Fact. Every ®-approximable (I, w) is representable in IL(®)
by a unique system {f(A)} acFin(e) of approximations
of (I, w) as f(A) € (24)* at granularity A.

From intensions to truthmaking & finite-state methods

An interval world pair (I, w) is ®-approximable if every v € ® is
homogeneous and alternation-bounded in (/, w).

Fact. Every ®-approximable (I, w) is representable in IL(®)
by a unique system {f(A)} acFin(e) of approximations
of (I, w) as f(A) € (24)* at granularity A.

DAH,: At granularity A, events within (/, w) are representable
as substrings of f(A)

an E-event occurs in (I, w) iff (3s € Lg) s C f(A)

From intensions to truthmaking & finite-state methods

An interval world pair (I, w) is ®-approximable if every v € ® is
homogeneous and alternation-bounded in (/, w).

Fact. Every ®-approximable (I, w) is representable in IL(®)
by a unique system {f(A)} acFin(e) of approximations
of (I, w) as f(A) € (24)* at granularity A.

DAH,: At granularity A, events within (/, w) are representable
as substrings of f(A)

an E-event occurs in (I, w) iff (3s € Lg) s C f(A)

relational intension: s’ Jgs iff s€ LgandsC s

From intensions to truthmaking & finite-state methods

An interval world pair (I, w) is ®-approximable if every v € ® is
homogeneous and alternation-bounded in (/, w).

Fact. Every ®-approximable (I, w) is representable in IL(®)
by a unique system {f(A)} acFin(e) of approximations
of (I, w) as f(A) € (24)* at granularity A.

DAH,: At granularity A, events within (/, w) are representable
as substrings of f(A)

an E-event occurs in (I, w) iff (3s € Lg) s C f(A)

relational intension: s’ Jgs iff s€ LgandsC s

Construe strings as models/segmentations (for completeness)
- a poor man's IL amenable to finite-state methods

