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Where are the events in Dowty’s aspect calculus?

Word Meaning & Montague Grammar , 1979

statives + DO, BECOME, CAUSE . . .

A rough approximation from Rothstein 2004

activities λe.(DO(ϕ))(e)

achievements λe.(BECOME(ϕ))(e)

accomplishments λe.∃e′[(DO(ϕ))(e′) ∧ e = e′ tS Cul(e)]
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Interval world pairs

For stative ϕ,

〈I ,w〉 |= ϕ iff (∀t ∈ I ) 〈{t},w〉 |= ϕ

contra ϕ for an event

〈I ,w〉 |= ϕ iff I is the time of a ϕ-event in w

Idea. Bring out events by segmenting I to track change in stative ϕ’s

A segmentation of I is a sequence I1I2 · · · In such that I =
⋃n

i=1 Ii
and for 1 ≤ i < n, Ii ≺ Ii+1 – i.e. (∀t ∈ Ii )(∀t ′ ∈ Ii+1) t ≺ t ′.

ϕ ∼ϕ

ϕ ϕ ∼ϕ

ϕ ∼ϕ
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Tracking ϕ

A segmentation I1 · · · In of I w-tracks ϕ if for all subintervals I ′ of I ,

〈I ′,w〉 |= ϕ iff I ′ ⊆
⋃
{Ii | 1 ≤ i ≤ n and 〈Ii ,w〉 |= ϕ}.

A (ϕ,w , n)-alternation in I is a string t1t2 · · · tn ∈ I n s.t. ti ≺ ti+1

and 〈{ti},w〉 |= ϕ iff i is odd.

I is (ϕ,w)-alternation bounded (a.b.) if for some n > 0, no
(ϕ,w , n)-alternation in I exists.

Fact. For stative ϕ,

some segmentation of I w-tracks ϕ iff I is (ϕ,w)-a.b.
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From segmentations to strings

I1I2 |=w ψ ϕ,ψ iff 〈I1,w〉 |= ψ and 〈I2,w〉 |= ϕ ∧ ψ

I1 · · · In |=w α1 · · ·αm iff n = m and for 1 ≤ i ≤ n and ϕ ∈ αi ,

〈Ii ,w〉 |= ϕ

non-durative durative (length ≥ 3)

telic achieve ∼ϕ ϕ accomplish ∼ϕ ∼ϕ,ψ ∼ϕ,ψ
+
ϕ

−tel semelfactive ψ activity ψ ψ
+

α1 · · ·αn is telic if there is some ϕ in αn such that
the negation ∼ϕ of ϕ appears in αi for 1 ≤ i < n

Mary ran to post-office ϕ =at(mary,post-office)
not quantized (Krifka) . . . “arrow of time” (Landman & R 2012)
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Moens & Steedman 1988 in strings

culm ∼ϕ ϕ cul proc ∼ϕ ∼ϕ,ψ ∼ϕ,ψ
+
ϕ

point ψ process ψ ψ
+

(1) iterate( ψ ) = ψ ψ
+

(2) sβ ; αs ′ := s(β ∪ α)s ′

(3) L; L′ := {s; s ′ | s ∈ L− {ε} and s ′ ∈ L′ − {ε}}

(4) iterate(L) := (least Z ⊇ L; L) Z ; L ⊆ Z

(5) ψ ψ
+

; ∼ϕ ϕ = ∼ϕ ∼ϕ,ψ ∼ϕ,ψ
+
ϕ mod inertia
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Comrie 1976

With a state, unless something happens to change
that state, then the state will continue . . .
With a dynamic situation, on the other hand, the
situation will only continue if it is continually subject
to a new input of energy.

〈I ,w〉 |= Prev(ϕ) iff 〈I ′,w〉 |= ϕ for some I ′ abutting I

〈I ,w〉 |= ϕ ∧ Prev(∼ϕ) iff I ′I |=w ∼ϕ ϕ for some I ′

For ψ := ϕ∧Prev(∼ϕ), no segmentation w -satisfies any string in

iterate( ψ ) = ψ ψ
+
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Incremental change and grain

〈I ,w〉 |= d < ϕ-deg iff (∀t ∈ I ) d < degDϕ,w (t)

〈I ,w〉 |= ϕ-deg ≤ d iff (∀t ∈ I ) degDϕ,w (t) ≤ d

For ψ := (∃d ∈ D) (d < ϕ-deg ∧ Prev(ϕ-deg ≤ d)),

I0I1 · · · In |=w ψ
n

iff (∃d1, . . . , dn ∈ D)(∀i ∈ [1, n])

(∀t ∈ Ii−1)(∀t ′ ∈ Ii )

degDϕ,w (t) ≤ di < degDϕ,w (t ′)

ϕ-deg ≤ d1 d1 < ϕ-deg, ϕ-deg ≤ d2 · · ·

· · · dn−1 < ϕ-deg, ϕ-deg ≤ dn dn < ϕ-deg

Grain is fixed by the set of propositions we can box.



Incremental change and grain

〈I ,w〉 |= d < ϕ-deg iff (∀t ∈ I ) d < degDϕ,w (t)

〈I ,w〉 |= ϕ-deg ≤ d iff (∀t ∈ I ) degDϕ,w (t) ≤ d

For ψ := (∃d ∈ D) (d < ϕ-deg ∧ Prev(ϕ-deg ≤ d)),

I0I1 · · · In |=w ψ
n

iff (∃d1, . . . , dn ∈ D)(∀i ∈ [1, n])

(∀t ∈ Ii−1)(∀t ′ ∈ Ii )

degDϕ,w (t) ≤ di < degDϕ,w (t ′)

ϕ-deg ≤ d1 d1 < ϕ-deg, ϕ-deg ≤ d2 · · ·

· · · dn−1 < ϕ-deg, ϕ-deg ≤ dn dn < ϕ-deg

Grain is fixed by the set of propositions we can box.



Incremental change and grain

〈I ,w〉 |= d < ϕ-deg iff (∀t ∈ I ) d < degDϕ,w (t)

〈I ,w〉 |= ϕ-deg ≤ d iff (∀t ∈ I ) degDϕ,w (t) ≤ d

For ψ := (∃d ∈ D) (d < ϕ-deg ∧ Prev(ϕ-deg ≤ d)),

I0I1 · · · In |=w ψ
n

iff (∃d1, . . . , dn ∈ D)(∀i ∈ [1, n])

(∀t ∈ Ii−1)(∀t ′ ∈ Ii )

degDϕ,w (t) ≤ di < degDϕ,w (t ′)

ϕ-deg ≤ d1 d1 < ϕ-deg, ϕ-deg ≤ d2 · · ·

· · · dn−1 < ϕ-deg, ϕ-deg ≤ dn dn < ϕ-deg

Grain is fixed by the set of propositions we can box.



Incremental change and grain

〈I ,w〉 |= d < ϕ-deg iff (∀t ∈ I ) d < degDϕ,w (t)

〈I ,w〉 |= ϕ-deg ≤ d iff (∀t ∈ I ) degDϕ,w (t) ≤ d

For ψ := (∃d ∈ D) (d < ϕ-deg ∧ Prev(ϕ-deg ≤ d)),

I0I1 · · · In |=w ψ
n

iff (∃d1, . . . , dn ∈ D)(∀i ∈ [1, n])

(∀t ∈ Ii−1)(∀t ′ ∈ Ii )

degDϕ,w (t) ≤ di < degDϕ,w (t ′)

ϕ-deg ≤ d1 d1 < ϕ-deg, ϕ-deg ≤ d2 · · ·

· · · dn−1 < ϕ-deg, ϕ-deg ≤ dn dn < ϕ-deg

Grain is fixed by the set of propositions we can box.



Incremental change and grain

〈I ,w〉 |= d < ϕ-deg iff (∀t ∈ I ) d < degDϕ,w (t)

〈I ,w〉 |= ϕ-deg ≤ d iff (∀t ∈ I ) degDϕ,w (t) ≤ d

For ψ := (∃d ∈ D) (d < ϕ-deg ∧ Prev(ϕ-deg ≤ d)),

I0I1 · · · In |=w ψ
n

iff (∃d1, . . . , dn ∈ D)(∀i ∈ [1, n])

(∀t ∈ Ii−1)(∀t ′ ∈ Ii )

degDϕ,w (t) ≤ di < degDϕ,w (t ′)

ϕ-deg ≤ d1 d1 < ϕ-deg, ϕ-deg ≤ d2 · · ·

· · · dn−1 < ϕ-deg, ϕ-deg ≤ dn dn < ϕ-deg

Grain is fixed by the set of propositions we can box.



The projections bcA(s) := bc(ρA(s))

days in a year ; months in a year

Jan,d1 Jan,d2 · · · Dec,d31
ρmonths; Jan

31
Feb

28
· · · Dec

31

bc; Jan Feb · · · Dec

ρA “see only A”

bc “no time without change” : compress α+ to α

For infinite Φ, let Fin(Φ) be the set of finite subsets of Φ.

A Φ-system is a function f : Fin(Φ)→ (2Φ)∗ such that

(∀B ∈ Fin(Φ))(∀A ⊆ B) f (A) = bcA(f (B)).

Fact. The set of Φ-systems is the inverse limit IL(Φ) of
{bcA}A∈Fin(Φ).
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IL(Φ) branches

For f , f ′ ∈ IL(Φ),

f ≺Φ f ′ iff f 6= f ′ and (∀A ∈ Fin(Φ)) f (A) is a prefix of f ′(A)

where

s is a prefix of s ′ iff (∃s ′′) s ′ = ss ′′

Fact. ≺Φ is transitive and left linear: for all f ∈ IL(Φ), and
f1, f2 ≺Φ f ,

f1 ≺Φ f2 or f2 ≺Φ f1 or f1 = f2.

Moreover, no Φ-system is ≺Φ-maximal.
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From intensions to truthmaking & finite-state methods

An interval world pair 〈I ,w〉 is Φ-approximable if every ϕ ∈ Φ is
homogeneous and alternation-bounded in 〈I ,w〉.

Fact. Every Φ-approximable 〈I ,w〉 is representable in IL(Φ)
by a unique system {f (A)}A∈Fin(Φ) of approximations

of 〈I ,w〉 as f (A) ∈ (2A)∗ at granularity A.

Dahs : At granularity A, events within 〈I ,w〉 are representable
as substrings of f (A)

an E -event occurs in 〈I ,w〉 iff (∃s ∈ LE ) s v f (A)

relational intension: s ′ wE s iff s ∈ LE and s v s ′

Construe strings as models/segmentations (for completeness)
- a poor man’s IL amenable to finite-state methods
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