Dowty's aspect hypothesis segmented

Tim Fernando
Trinity College Dublin

Amsterdam Colloquium, December 2013

Where are the events in Dowty's aspect calculus?

Word Meaning \& Montague Grammar, 1979 statives + DO, BECOME, CAUSE ...

A rough approximation from Rothstein 2004

activities
achievements

accomplishments

Where are the events in Dowty's aspect calculus?

Word Meaning \& Montague Grammar, 1979 statives + DO, BECOME, CAUSE ...

A rough approximation from Rothstein 2004
activities
achievements
accomplishments
$\lambda e .(\mathrm{DO}(\varphi))(e)$
$\lambda e(\operatorname{BFCOMF}(\varphi))(e)$
$\lambda e . \exists e^{\prime}\left[(\mathrm{DO}(\varphi))\left(e^{\prime}\right) \wedge e=e^{\prime} \sqcup_{S} \operatorname{Cul}(e)\right]$

Where are the events in Dowty's aspect calculus?

Word Meaning \& Montague Grammar, 1979 statives + DO, BECOME, CAUSE ...

A rough approximation from Rothstein 2004 $\begin{array}{ll}\text { activities } & \lambda e .(\operatorname{DO}(\varphi))(e) \\ \text { achievements } & \lambda e .(\operatorname{BECOME}(\varphi))(e) \\ \text { accomplishments } & \lambda e . \exists e^{\prime}\left[(\operatorname{DO}(\varphi))\left(e^{\prime}\right) \wedge e=e^{\prime} \sqcup_{S} \operatorname{Cul}(e)\right]\end{array}$

Where are the events in Dowty's aspect calculus?

Word Meaning \& Montague Grammar, 1979 statives + DO, BECOME, CAUSE ...

A rough approximation from Rothstein 2004

activities	$\lambda e .(\operatorname{DO}(\varphi))(e)$
achievements	$\lambda e .(\operatorname{BECOME}(\varphi))(e)$
accomplishments	$\lambda e . \exists e^{\prime}\left[(\operatorname{DO}(\varphi))\left(e^{\prime}\right) \wedge e=e^{\prime} \bigsqcup_{S} \operatorname{Cul}(e)\right]$

Where are the events in Dowty's aspect calculus?

Word Meaning \& Montague Grammar, 1979 statives + DO, BECOME, CAUSE ...

A rough approximation from Rothstein 2004

```
activities \lambdae.(DO(\varphi))(e)
    achievements \lambdae.(BECOME (\varphi))(e)
    accomplishments }\lambdae.\exists\mp@subsup{e}{}{\prime}[(\textrm{DO}(\varphi))(\mp@subsup{e}{}{\prime})\wedgee=\mp@subsup{e}{}{\prime}\mp@subsup{\sqcup}{S}{}\operatorname{Cul}(e)
```

Interval world pairs
For stative φ,

$$
\langle I, w\rangle \models \varphi \quad \text { iff } \quad(\forall t \in I)\langle\{t\}, w\rangle \mid=\varphi
$$

contra φ for an event

$$
\langle I, w\rangle \models \varphi \quad \text { iff } \quad I \text { is the time of a } \varphi \text {-event in } w
$$

Idea. Bring out events by segmenting / to track change in stative φ 's
A segmentation of I is a sequence $I_{1} 1_{2} \ldots I_{n}$ such that $I=\bigcup_{i=1}^{n} I_{i}$ and for $1 \leq i<n, I_{i} \prec I_{i+1}-$ i.e. $\left(\forall t \in I_{i}\right)\left(\forall t^{\prime} \in I_{i+1}\right) t \prec t^{\prime}$.

φ	$\sim \varphi$

$\varphi|\varphi| \sim \varphi$

φ	$\sim \varphi$

Interval world pairs
For stative φ,

$$
\langle I, w\rangle \models \varphi \quad \text { iff } \quad(\forall t \in I)\langle\{t\}, w\rangle \models \varphi
$$

contra φ for an event

$$
\langle I, w\rangle \models \varphi \quad \text { iff } \quad I \text { is the time of a } \varphi \text {-event in } w
$$

Idea. Bring out events by segmenting / to track change in stative φ 's
A segmentation of I is a sequence $I_{1} 1_{2} \ldots I_{n}$ such that $!=\bigcup_{i=1}^{n} I_{i}$ and for $1 \leq i<n, I_{i} \prec I_{i+1}-i . e . ~\left(\forall t \in I_{i}\right)\left(\forall t^{\prime} \in I_{i+1}\right) t \prec t^{\prime}$.

Interval world pairs
For stative φ,

$$
\langle I, w\rangle \models \varphi \quad \text { iff } \quad(\forall t \in I)\langle\{t\}, w\rangle \models \varphi
$$

contra φ for an event

$$
\langle I, w\rangle \models \varphi \quad \text { iff } \quad I \text { is the time of a } \varphi \text {-event in } w
$$

Idea. Bring out events by segmenting / to track change in stative φ 's A segmentation of I is a sequence $I_{1} I_{2} \ldots I_{n}$ such that $I=\bigcup_{i=1}^{n} I^{\prime}$.
and for $1 \leq i<n, I_{i} \prec I_{i+1}-i . e .\left(\forall t \in I_{i}\right)\left(\forall t^{\prime} \in I_{i+1}\right) t \prec t^{\prime}$.

Interval world pairs
For stative φ,

$$
\langle I, w\rangle \models \varphi \quad \text { iff } \quad(\forall t \in I)\langle\{t\}, w\rangle \models \varphi
$$

contra φ for an event

$$
\langle I, w\rangle \models \varphi \quad \text { iff } \quad I \text { is the time of a } \varphi \text {-event in } w
$$

Idea. Bring out events by segmenting I to track change in stative φ 's

Interval world pairs
For stative φ,

$$
\langle I, w\rangle \models \varphi \quad \text { iff } \quad(\forall t \in I)\langle\{t\}, w\rangle \models \varphi
$$

contra φ for an event

$$
\langle I, w\rangle \models \varphi \quad \text { iff } \quad I \text { is the time of a } \varphi \text {-event in } w
$$

Idea. Bring out events by segmenting I to track change in stative φ 's
A segmentation of I is a sequence $I_{1} I_{2} \cdots I_{n}$ such that $I=\bigcup_{i=1}^{n} I_{i}$ and for $1 \leq i<n, I_{i} \prec I_{i+1}$ - i.e. $\left(\forall t \in I_{i}\right)\left(\forall t^{\prime} \in I_{i+1}\right) t \prec t^{\prime}$.

Interval world pairs
For stative φ,

$$
\langle I, w\rangle \models \varphi \quad \text { iff } \quad(\forall t \in I)\langle\{t\}, w\rangle \models \varphi
$$

contra φ for an event

$$
\langle I, w\rangle \models \varphi \quad \text { iff } \quad I \text { is the time of a } \varphi \text {-event in } w
$$

Idea. Bring out events by segmenting I to track change in stative φ 's
A segmentation of I is a sequence $I_{1} I_{2} \cdots I_{n}$ such that $I=\bigcup_{i=1}^{n} I_{i}$ and for $1 \leq i<n, I_{i} \prec I_{i+1}$ - i.e. $\left(\forall t \in I_{i}\right)\left(\forall t^{\prime} \in I_{i+1}\right) t \prec t^{\prime}$.

Interval world pairs
For stative φ,

$$
\langle I, w\rangle \models \varphi \quad \text { iff } \quad(\forall t \in I)\langle\{t\}, w\rangle \models \varphi
$$

contra φ for an event

$$
\langle I, w\rangle \models \varphi \quad \text { iff } \quad I \text { is the time of a } \varphi \text {-event in } w
$$

Idea. Bring out events by segmenting I to track change in stative φ 's
A segmentation of I is a sequence $I_{1} I_{2} \cdots I_{n}$ such that $I=\bigcup_{i=1}^{n} I_{i}$ and for $1 \leq i<n, I_{i} \prec I_{i+1}$ - i.e. $\left(\forall t \in I_{i}\right)\left(\forall t^{\prime} \in I_{i+1}\right) t \prec t^{\prime}$.

Interval world pairs
For stative φ,

$$
\langle I, w\rangle \models \varphi \quad \text { iff } \quad(\forall t \in I)\langle\{t\}, w\rangle \models \varphi
$$

contra φ for an event

$$
\langle I, w\rangle \models \varphi \quad \text { iff } \quad I \text { is the time of a } \varphi \text {-event in } w
$$

Idea. Bring out events by segmenting I to track change in stative φ 's
A segmentation of I is a sequence $I_{1} I_{2} \cdots I_{n}$ such that $I=\bigcup_{i=1}^{n} I_{i}$ and for $1 \leq i<n, I_{i} \prec I_{i+1}$ - i.e. $\left(\forall t \in I_{i}\right)\left(\forall t^{\prime} \in I_{i+1}\right) t \prec t^{\prime}$.

φ	$\sim \varphi$

φ	φ	$\sim \varphi$

Interval world pairs
For stative φ,

$$
\langle I, w\rangle \models \varphi \quad \text { iff } \quad(\forall t \in I)\langle\{t\}, w\rangle \models \varphi
$$

contra φ for an event

$$
\langle I, w\rangle \models \varphi \quad \text { iff } \quad I \text { is the time of a } \varphi \text {-event in } w
$$

Idea. Bring out events by segmenting I to track change in stative φ 's
A segmentation of I is a sequence $I_{1} I_{2} \cdots I_{n}$ such that $I=\bigcup_{i=1}^{n} I_{i}$ and for $1 \leq i<n, I_{i} \prec I_{i+1}$ - i.e. $\left(\forall t \in I_{i}\right)\left(\forall t^{\prime} \in I_{i+1}\right) t \prec t^{\prime}$.

φ	$\sim \varphi$
φ	φ
$\sim \varphi$	
φ	$\sim \varphi$

Tracking φ

A segmentation $I_{1} \cdots I_{n}$ of $I w$-tracks φ if for all subintervals I^{\prime} of I,

$$
\left\langle I^{\prime}, w\right\rangle \models \varphi \quad \text { iff } \quad I^{\prime} \subseteq \bigcup\left\{I_{i} \mid 1 \leq i \leq n \text { and }\left\langle I_{i}, w\right\rangle \models \varphi\right\} .
$$

A (φ, w, n)-alternation in I is a string $t_{1} t_{2} \cdots t_{n} \in I^{n}$ s.t. $t_{i} \prec t_{i+1}$
and $\left\langle\left\{t_{i}\right\}, w\right\rangle \mid=\varphi$ iff i is odd.
I is (φ, w)-alternation bounded (a.b.) if for some $n>0$, no
(φ, w, n)-alternation in I exists.
Fact. For stative φ,
some segmentation of I w-tracks φ iff I is (φ, w)-a.b.

Tracking φ

A segmentation $I_{1} \cdots I_{n}$ of I-tracks φ if for all subintervals I^{\prime} of I,

$$
\left\langle I^{\prime}, w\right\rangle \models \varphi \quad \text { iff } \quad I^{\prime} \subseteq \bigcup\left\{I_{i} \mid 1 \leq i \leq n \text { and }\left\langle I_{i}, w\right\rangle \models \varphi\right\} .
$$

Fact. For stative φ, some segmentation of I w-tracks φ iff I is (φ, w)-a.b.

Tracking φ

A segmentation $I_{1} \cdots I_{n}$ of I-tracks φ if for all subintervals I^{\prime} of I,

$$
\left\langle I^{\prime}, w\right\rangle \models \varphi \quad \text { iff } \quad I^{\prime} \subseteq \bigcup\left\{I_{i} \mid 1 \leq i \leq n \text { and }\left\langle I_{i}, w\right\rangle \models \varphi\right\} .
$$

A (φ, w, n)-alternation in I is a string $t_{1} t_{2} \cdots t_{n} \in I^{n}$ s.t. $t_{i} \prec t_{i+1}$ and $\left\langle\left\{t_{i}\right\}, w\right\rangle \models \varphi$ iff i is odd.

I is (φ, w)-alternation bounded (a.b.) if for some $n>0$, no (φ, w, n)-alternation in $/$ exists.

Fact. For stative φ, some segmentation of I w-tracks φ iff I is (φ, w)-a.b.

Tracking φ

A segmentation $I_{1} \cdots I_{n}$ of I-tracks φ if for all subintervals I^{\prime} of I,

$$
\left\langle I^{\prime}, w\right\rangle \models \varphi \quad \text { iff } \quad I^{\prime} \subseteq \bigcup\left\{I_{i} \mid 1 \leq i \leq n \text { and }\left\langle I_{i}, w\right\rangle \models \varphi\right\} .
$$

A (φ, w, n)-alternation in I is a string $t_{1} t_{2} \cdots t_{n} \in I^{n}$ s.t. $t_{i} \prec t_{i+1}$ and $\left\langle\left\{t_{i}\right\}, w\right\rangle \vDash \varphi$ iff i is odd.

I is (φ, w)-alternation bounded (a.b.) if for some $n>0$, no (φ, w, n)-alternation in I exists.

Fact. For stative φ, some segmentation of I w-tracks φ iff I is (φ, w)-a.b.

From segmentations to strings

$$
I_{1} I_{2}=_{w} \quad \psi \mid \varphi, \psi \quad \text { iff } \quad\left\langle I_{1}, w\right\rangle \models \psi \text { and }\left\langle I_{2}, w\right\rangle \models \varphi \wedge \psi
$$

$\alpha_{1} \cdots \alpha_{n}$ is telic if there is some φ in α_{n} such that the negation $\sim \varphi$ of φ appears in α_{i} for $1 \leq i<r$

Mary ran to post-office $\quad \varphi=$ at(mary,post-office)

From segmentations to strings

$\alpha_{1} \cdots \alpha_{n}$ is telic if there is some φ in α_{n} such that the negation $\sim \varphi$ of φ appears in α_{i} for $1 \leq i<r$

From segmentations to strings

$$
\begin{array}{rll}
I_{1} I_{2} \models_{w} \psi \mid \varphi, \psi & \text { iff } & \left\langle I_{1}, w\right\rangle \models \psi \text { and }\left\langle l_{2}, w\right\rangle \models \varphi \wedge \psi \\
I_{1} \cdots I_{n} \models_{w} \alpha_{1} \cdots \alpha_{m} & \text { iff } \quad n=m \text { and for } 1 \leq i \leq n \text { and } \varphi \in \alpha_{i},
\end{array}
$$

$$
\left\langle I_{i}, w\right\rangle \models \varphi
$$

	non-durative	durative (length ≥ 3)			
telic	achieve $\sim \sim \varphi \mid$	accomplish $\sim \varphi$	$\sim \varphi, \psi \mid$	$\sim \varphi, \psi{ }^{+}$	φ
-tel	semelfactive ψ	activity			

$\alpha_{1} \cdots \alpha_{n}$ is telic if there is some φ in α_{n} such that

From segmentations to strings

$$
\begin{aligned}
I_{1} I_{2}={ }_{w} \psi \mid \varphi, \psi & \text { iff } \quad\left\langle I_{1}, w\right\rangle \models \psi \text { and }\left\langle I_{2}, w\right\rangle \models \varphi \wedge \psi \\
I_{1} \cdots I_{n}=_{w} \alpha_{1} \cdots \alpha_{m} & \text { iff } \quad n=m \text { and for } 1 \leq i \leq n \text { and } \varphi \in \alpha_{i},
\end{aligned}
$$

$$
\left\langle l_{i}, w\right\rangle \models \varphi
$$

	non-durative		durative (length ≥ 3)				
telic	achieve $\sim \sim$	φ	accomplish	$\sim \varphi$	$\sim \varphi, \psi$	$\sim \varphi, \psi$	φ
-tel	semelfactive	ψ	ac	tivity	㥩 ψ		

$\alpha_{1} \cdots \alpha_{n}$ is telic if there is some φ in α_{n} such that the negation $\sim \varphi$ of φ appears in α_{i} for $1 \leq i<n$

From segmentations to strings

$$
\begin{aligned}
I_{1} I_{2}={ }_{w} \psi \mid \varphi, \psi & \text { iff } \quad\left\langle I_{1}, w\right\rangle \models \psi \text { and }\left\langle I_{2}, w\right\rangle \models \varphi \wedge \psi \\
I_{1} \cdots I_{n}=_{w} \alpha_{1} \cdots \alpha_{m} & \text { iff } \quad n=m \text { and for } 1 \leq i \leq n \text { and } \varphi \in \alpha_{i},
\end{aligned}
$$

$$
\left\langle I_{i}, w\right\rangle \models \varphi
$$

	non-durative		durative		(length ≥ 3)		
telic	achieve $\sim \varphi$	φ	accomplish	$\sim \varphi$	$\sim \varphi, \psi$	$\sim \varphi, \psi$	φ
-tel	semelfactive	ψ	ac	tivity	ψ		

$\alpha_{1} \cdots \alpha_{n}$ is telic if there is some φ in α_{n} such that the negation $\sim \varphi$ of φ appears in α_{i} for $1 \leq i<n$

Mary ran to post-office $\quad \varphi=$ at(mary,post-office) not quantized (Krifka) ... "arrow of time" (Landman \& R 2012)

Moens \& Steedman 1988 in strings

(2) $s \beta$; $\alpha s^{\prime}:=$ $s(\beta \cup \alpha) s^{\prime}$
(3) $L ; L^{\prime}:=\left\{s ; s^{\prime} \mid s \in L-\{\epsilon\}\right.$ and $\left.s^{\prime} \in L^{\prime}-\{\epsilon\}\right\}$
(4) iterate $(L):=($ least $Z \supseteq L ; L) Z ; L \subseteq Z$

Moens \& Steedman 1988 in strings

(1) iterate $\left(\begin{array}{|}\mid \psi\end{array}\right)=\square_{|\psi| \psi}{ }^{+}$
(2) $s \beta ; \alpha s^{\prime}:=s(\beta \cup \alpha) s^{\prime}$
(3) $L ; L^{\prime}:=\left\{s ; s^{\prime} \mid s \in L-\{\epsilon\}\right.$ and $\left.s^{\prime} \in L^{\prime}-\{\epsilon\}\right\}$
(4) iterate(L) $:=$ (least $Z \supseteq L ; L) Z ; L \subseteq Z$

Moens \& Steedman 1988 in strings

(1) iterate $\left(\begin{array}{|}\mid \psi\end{array}\right)=\square_{|\psi| \psi}{ }^{+}$
(2) $s \beta ; \alpha s^{\prime}:=s(\beta \cup \alpha) s^{\prime}$
(3) $L ; L^{\prime}:=\left\{s ; s^{\prime} \mid s \in L-\{\epsilon\}\right.$ and $\left.s^{\prime} \in L^{\prime}-\{\epsilon\}\right\}$
(4) iterate $(L):=$ (least $Z \supseteq L ; L) Z ; L \subseteq Z$

Moens \& Steedman 1988 in strings

(1) iterate $\left(\begin{array}{|}\mid \psi\end{array}\right)=\boxed{|\psi| \psi}^{+}$
(2) $s \beta ; \alpha s^{\prime}:=s(\beta \cup \alpha) s^{\prime}$
(3) $L ; L^{\prime}:=\left\{s ; s^{\prime} \mid s \in L-\{\epsilon\}\right.$ and $\left.s^{\prime} \in L^{\prime}-\{\epsilon\}\right\}$
(4) iterate $(L):=$ (least $Z \supseteq L ; L) Z ; L \subseteq Z$

Moens \& Steedman 1988 in strings

(1) iterate $\left(\begin{array}{|}\mid \psi\end{array}\right)=\boxed{|\psi| \psi}^{+}$
(2) $s \beta ; \alpha s^{\prime}:=s(\beta \cup \alpha) s^{\prime}$
(3) $L ; L^{\prime}:=\left\{s ; s^{\prime} \mid s \in L-\{\epsilon\}\right.$ and $\left.s^{\prime} \in L^{\prime}-\{\epsilon\}\right\}$
(4) iterate $(L):=($ least $Z \supseteq L ; L) Z ; L \subseteq Z$

Moens \& Steedman 1988 in strings

(1) iterate $\left(\begin{array}{|}\mid \psi\end{array}\right)=\boxed{|\psi| \psi}^{+}$
(2) $s \beta ; \alpha s^{\prime}:=s(\beta \cup \alpha) s^{\prime}$
(3) $L ; L^{\prime}:=\left\{s ; s^{\prime} \mid s \in L-\{\epsilon\}\right.$ and $\left.s^{\prime} \in L^{\prime}-\{\epsilon\}\right\}$
(4) iterate $(L):=($ least $Z \supseteq L ; L) Z ; L \subseteq Z$

Comrie 1976

With a state, unless something happens to change that state, then the state will continue... With a dynamic situation, on the other hand, the situation will only continue if it is continually subject to a new input of energy.
 $:=\varphi \wedge \operatorname{Prev}(\sim \varphi)$ no segmentation w-satisfies any string in

Comrie 1976

With a state, unless something happens to change that state, then the state will continue... With a dynamic situation, on the other hand, the situation will only continue if it is continually subject to a new input of energy.
$\langle I, w\rangle \models \operatorname{Prev}(\varphi) \quad$ iff $\quad\left\langle I^{\prime}, w\right\rangle \models \varphi$ for some I^{\prime} abutting I $\langle I, w\rangle \models \varphi \wedge \operatorname{Prev}(\sim \varphi) \quad$ iff $\quad I^{\prime} I \models_{w} \sim \varphi \mid \varphi$ for some I^{\prime} For \% : $=$ $=\varphi \wedge \operatorname{Prev}(\sim \varphi)$ no segmentation w-satisfies any string in

$$
\text { iterate }\left(\begin{array}{|}
\mid \psi
\end{array}\right)=\boxed{\psi \mid \psi}
$$

Comrie 1976

With a state, unless something happens to change that state, then the state will continue... With a dynamic situation, on the other hand, the situation will only continue if it is continually subject to a new input of energy.
$\langle I, w\rangle \models \operatorname{Prev}(\varphi) \quad$ iff $\quad\left\langle I^{\prime}, w\right\rangle \models \varphi$ for some I^{\prime} abutting I

$$
\langle I, w\rangle \models \varphi \wedge \operatorname{Prev}(\sim \varphi) \quad \text { iff } \quad I^{\prime} I \models_{w} \sim \sim \mid \varphi \text { for some } I^{\prime}
$$

Comrie 1976

With a state, unless something happens to change that state, then the state will continue... With a dynamic situation, on the other hand, the situation will only continue if it is continually subject to a new input of energy.
$\langle I, w\rangle \models \operatorname{Prev}(\varphi) \quad$ iff $\quad\left\langle I^{\prime}, w\right\rangle \models \varphi$ for some I^{\prime} abutting I

$$
\langle I, w\rangle \models \varphi \wedge \operatorname{Prev}(\sim \varphi) \quad \text { iff } \quad I^{\prime} I \models_{w} \sim \varphi \mid \varphi \text { for some } I^{\prime}
$$

For $\psi:=\varphi \wedge \operatorname{Prev}(\sim \varphi)$, no segmentation w-satisfies any string in

Incremental change and grain

$$
\langle I, w\rangle \models d<\varphi \text {-deg } \quad \text { if } \quad(\forall t \in I) d<\operatorname{deg}_{\varphi, w}^{D}(t)
$$

$$
\langle I, w\rangle \models \varphi-\operatorname{deg} \leq d \quad \text { ff } \quad(\forall t \in I) \operatorname{deg}_{\varphi, w}^{D}(t) \leq d
$$

Grain is fixed by the set of propositions we can box.

Incremental change and grain

$$
\begin{array}{lll}
\langle I, w\rangle \models d<\varphi \text {-deg } & \text { iff } \quad(\forall t \in I) d<\operatorname{deg}_{\varphi, w}^{D}(t) \\
\langle I, w\rangle \models \varphi \text {-deg } \leq d \quad \text { iff } \quad(\forall t \in I) \operatorname{deg}_{\varphi, w}^{D}(t) \leq d
\end{array}
$$

$\left(\forall t \in I_{i-1}\right)\left(\forall t^{\prime} \in I_{i}\right)$

\square

Incremental change and grain

$$
\begin{array}{lll}
\langle I, w\rangle \models d<\varphi \text {-deg } \quad \text { iff } \quad(\forall t \in I) d<\operatorname{deg}_{\varphi, w}^{D}(t) \\
\langle I, w\rangle \models \varphi \text {-deg } \leq d \quad \text { iff } \quad(\forall t \in I) \operatorname{deg}_{\varphi, w}^{D}(t) \leq d
\end{array}
$$

For $\psi:=(\exists d \in D)(d<\varphi-\operatorname{deg} \wedge \operatorname{Prev}(\varphi-\operatorname{deg} \leq d))$,

Grain is fixed by the set of propositions we can box.

Incremental change and grain

$$
\begin{aligned}
& \langle I, w\rangle \models d<\varphi \text {-deg } \quad \text { iff } \quad(\forall t \in I) d<\operatorname{deg}_{\varphi, w}^{D}(t) \\
& \langle I, w\rangle \models \varphi \text {-deg } \leq d \quad \text { iff } \quad(\forall t \in I) \operatorname{deg}_{\varphi, w}^{D}(t) \leq d
\end{aligned}
$$

For $\psi:=(\exists d \in D)(d<\varphi-\operatorname{deg} \wedge \operatorname{Prev}(\varphi-\operatorname{deg} \leq d))$,

$$
\begin{aligned}
I_{0} I_{1} \cdots I_{n} \models_{w}|\psi|^{n} \quad \text { iff } \quad & \left(\exists d_{1}, \ldots, d_{n} \in D\right)(\forall i \in[1, n]) \\
& \left(\forall t \in I_{i-1}\right)\left(\forall t^{\prime} \in I_{i}\right) \\
& \operatorname{deg}_{\varphi, w}^{D}(t) \leq d_{i}<\operatorname{deg}_{\varphi, w}^{D}\left(t^{\prime}\right)
\end{aligned}
$$

Incremental change and grain

$$
\begin{aligned}
& \langle I, w\rangle \models d<\varphi \text {-deg } \quad \text { iff } \quad(\forall t \in I) d<\operatorname{deg}_{\varphi, w}^{D}(t) \\
& \langle I, w\rangle \models \varphi \text {-deg } \leq d \quad \text { iff } \quad(\forall t \in I) \operatorname{deg}_{\varphi, w}^{D}(t) \leq d
\end{aligned}
$$

For $\psi:=(\exists d \in D)(d<\varphi-\operatorname{deg} \wedge \operatorname{Prev}(\varphi-\operatorname{deg} \leq d))$,

$$
\begin{aligned}
I_{0} I_{1} \cdots I_{n} \models_{w}|\psi|^{n} \quad \text { iff } \quad & \left(\exists d_{1}, \ldots, d_{n} \in D\right)(\forall i \in[1, n]) \\
& \left(\forall t \in I_{i-1}\right)\left(\forall t^{\prime} \in I_{i}\right) \\
& \operatorname{deg}_{\varphi, w}^{D}(t) \leq d_{i}<\operatorname{deg}_{\varphi, w}^{D}\left(t^{\prime}\right)
\end{aligned}
$$

$$
\begin{array}{|l|l|}
\hline \varphi \text {-deg } \leq d_{1} & d_{1}<\varphi \text {-deg, } \varphi \text {-deg } \leq d_{2} \\
\cdots \cdots & d_{n-1}<\varphi \text {-deg, } \varphi \text {-deg } \leq d_{n} \\
& d_{n}<\varphi \text {-deg } \\
\hline
\end{array}
$$

Grain is fixed by the set of propositions we can box.

The projections $b c_{A}(s):=b c\left(\rho_{A}(s)\right)$

days in a year \sim months in a year

$$
\begin{array}{|l|l|l|}
\hline \text { Jan,d1 } & \text { Jan, d2 } & \cdots \\
\hline
\end{array}
$$

ρ_{A} "see only A "
$b c$ "no time without change" : compress α^{+}to α
For infinite Φ, let Fin (Φ) be the set of finite subsets of Φ.
A Φ-system is a function $f: \operatorname{Fin}(\Phi) \rightarrow\left(2^{\phi}\right)^{*}$ such that

$$
(\forall B \subset \operatorname{Fin}(\phi))(\forall A \subseteq B) \quad f(A)=b c_{A}(f(B))
$$

Fact. The set of Φ-systems is the inverse limit $\mathbb{I L}(\Phi)$ of

$$
\left\{b c_{A}\right\}_{A \in \operatorname{Fin}(\Phi)}
$$

The projections $b c_{A}(s):=b c\left(\rho_{A}(s)\right)$

days in a year \sim months in a year

Jan, d1	Jan, d2	\cdots Dec, d31

$$
\begin{array}{|l|l|}
\hline \text { Jan } & \text { Feb }
\end{array} \cdots \begin{array}{|l|}
\hline \text { Dec } \\
\hline
\end{array}
$$

ρ_{A} "see only A "
$b c$ "no time without change" : compress α^{+}to α
For infinite Φ, let Fin (Φ) be the set of finite subsets of Φ.
A Φ-system is a function $f: \operatorname{Fin}(\Phi) \rightarrow\left(2^{\phi}\right)^{*}$ such that

$$
(\forall B \subset \operatorname{Fin}(\phi))(\forall A \subseteq B) \quad f(A)=b c_{A}(f(B))
$$

Fact. The set of Φ-systems is the inverse limit $\mathbb{I L}(\Phi)$ of

The projections $b c_{A}(s):=b c\left(\rho_{A}(s)\right)$

days in a year \sim months in a year

$$
\begin{aligned}
& \begin{array}{|l|l|l|}
\hline \text { Jan, d1 } & \text { Jan, d2 } & \cdots \text { Dec, d31 } \\
\hline
\end{array} \\
& \rho_{\text {months }}^{\sim} \\
& \mathrm{Jan}^{31} \mathrm{Feb}^{28} \cdots \mathrm{Dec}^{31} \\
& \begin{array}{|l|l|l|}
\hline \text { Jan } & \text { Feb } \cdots & \text { Dec } \\
\hline
\end{array}
\end{aligned}
$$

ρ_{A} "see only A "
bc "no time without change" : compress α^{+}to α
For infinite Φ, let Fin (Φ) be the set of finite subsets of Φ.
A Φ-system is a function $f: \operatorname{Fin}(\Phi) \rightarrow\left(2^{\Phi}\right)^{*}$ such that

$$
(\forall B \in \operatorname{Fin}(\Phi))(\forall A \subseteq B) \quad f(A)=b c_{A}(f(B))
$$

Fact. The set of Φ-systems is the inverse limit $\mathbb{I L}(\Phi)$ of

The projections $b c_{A}(s):=b c\left(\rho_{A}(s)\right)$

days in a year \sim months in a year

$$
\begin{aligned}
& \begin{array}{|l|l|l|}
\hline \text { Jan, d1 } & \text { Jan, d2 } & \cdots \text { Dec, d31 } \\
\hline
\end{array} \\
& \rho_{\text {months }} \\
& \mathrm{Jan}^{31} \mathrm{Feb}^{28} \cdots \mathrm{Dec}^{31} \\
& \stackrel{b c}{\sim} \quad \begin{array}{|l|l|l|}
\hline \text { Jan } & \text { Feb } & \cdots \\
& & \text { Dec } \\
\hline
\end{array}
\end{aligned}
$$

ρ_{A} "see only A "
bc "no time without change" : compress α^{+}to α
For infinite Φ, let Fin (Φ) be the set of finite subsets of ϕ.
A Φ-system is a function $f: \operatorname{Fin}(\Phi) \rightarrow\left(2^{\Phi}\right)^{*}$ such that

$$
(\forall B \in \operatorname{Fin}(\phi))(\forall \Delta \subseteq B) \quad f(\Delta)=b c_{A}(f(B))
$$

Fact. The set of Φ-systems is the inverse limit $\mathbb{I L}(\Phi)$ of

The projections $b c_{A}(s):=b c\left(\rho_{A}(s)\right)$
days in a year \sim months in a year

$$
\begin{aligned}
& \stackrel{b c}{\sim} \quad \begin{array}{|l|l|l|}
\hline & \text { Jan } & \text { Feb } \\
& \cdots & \text { Dec } \\
\hline
\end{array}
\end{aligned}
$$

ρ_{A} "see only $A "$
bc "no time without change" : compress α^{+}to α
For infinite Φ, let Fin (Φ) be the set of finite subsets of Φ.
A Φ-system is a function $f: \operatorname{Fin}(\Phi) \rightarrow\left(2^{\Phi}\right)^{*}$ such that

$$
(\forall B \in \operatorname{Fin}(\phi))(\forall \Delta \subseteq B) \quad f(\Delta)=b c_{A}(f(B))
$$

Fact. The set of Φ-systems is the inverse limit $\mathbb{I L}(\Phi)$ of

The projections $b c_{A}(s):=b c\left(\rho_{A}(s)\right)$
days in a year \sim months in a year

$$
\begin{aligned}
& \stackrel{b c}{\sim} \quad \begin{array}{|l|l|l|}
& \text { Jan } & \text { Feb } \\
& & \text { Dec } \\
\hline
\end{array}
\end{aligned}
$$

ρ_{A} "see only $A "$
bc "no time without change" : compress α^{+}to α
For infinite Φ, let Fin (Φ) be the set of finite subsets of Φ.
A Φ-system is a function $f: \operatorname{Fin}(\Phi) \rightarrow\left(2^{\Phi}\right)^{*}$ such that

$$
(\forall B \in \operatorname{Fin}(\Phi))(\forall A \subseteq B) \quad f(A)=b c_{A}(f(B))
$$

Fact. The set of Φ-systems is the inverse limit $\mathbb{I L}(\Phi)$ of

The projections $b c_{A}(s):=b c\left(\rho_{A}(s)\right)$
days in a year \sim months in a year

$$
\begin{array}{|l|l|ll|l|l|}
\hline \text { Jan, d1 } & \text { Jan, d2 } & \cdots \text { Dec, d31 } & \stackrel{\rho_{\text {moonths }}}{\sim} & \mathrm{Jan}^{31} \mathrm{Feb}^{28} \cdots \mathrm{Dec}^{31} \\
& \stackrel{b c}{\sim} & \mathrm{Jan} & \mathrm{Feb} & \cdots & \text { Dec } \\
\end{array}
$$

ρ_{A} "see only $A "$
bc "no time without change" : compress α^{+}to α
For infinite Φ, let Fin (Φ) be the set of finite subsets of Φ.
A Φ-system is a function $f: \operatorname{Fin}(\Phi) \rightarrow\left(2^{\Phi}\right)^{*}$ such that

$$
(\forall B \in \operatorname{Fin}(\Phi))(\forall A \subseteq B) \quad f(A)=b c_{A}(f(B))
$$

Fact. The set of Φ-systems is the inverse limit $\mathbb{I}(\Phi)$ of

The projections $b c_{A}(s):=b c\left(\rho_{A}(s)\right)$
days in a year \sim months in a year

$$
\begin{array}{|l|l|ll|l|l|}
\hline \text { Jan, d1 } & \text { Jan, d2 } & \cdots \text { Dec, d31 } & \stackrel{\rho_{\text {moonths }}}{\sim} & \mathrm{Jan}^{31} \mathrm{Feb}^{28} \cdots \mathrm{Dec}^{31} \\
& \stackrel{b c}{\sim} & \mathrm{Jan} & \mathrm{Feb} & \cdots & \mathrm{Dec} \\
\hline
\end{array}
$$

ρ_{A} "see only A "
bc "no time without change" : compress α^{+}to α
For infinite Φ, let Fin (Φ) be the set of finite subsets of Φ.
A Φ-system is a function $f: \operatorname{Fin}(\Phi) \rightarrow\left(2^{\Phi}\right)^{*}$ such that

$$
(\forall B \in \operatorname{Fin}(\Phi))(\forall A \subseteq B) \quad f(A)=b c_{A}(f(B))
$$

Fact. The set of Φ-systems is the inverse limit $\mathbb{I} \mathbb{L}(\Phi)$ of

$$
\left\{b c_{A}\right\}_{A \in F i n(\Phi)}
$$

$\mathbb{I L}(\Phi)$ branches

For $f, f^{\prime} \in \mathbb{I L}(\Phi)$,
$f \prec_{\phi} f^{\prime} \quad$ iff $f \neq f^{\prime}$ and $(\forall A \in \operatorname{Fin}(\phi)) f(A)$ is a prefix of $f^{\prime}(A)$
where

$$
s \text { is a prefix of } s^{\prime} \text { iff }\left(\exists s^{\prime \prime}\right) s^{\prime}=s s^{\prime \prime}
$$

Fact. \prec_{Φ} is transitive and left linear: for all $f \in \mathbb{L}(\Phi)$, and $f_{1}, f_{2} \prec_{\Phi} f$,

$$
f_{1} \prec_{\Phi} f_{2} \text { or } f_{2} \prec_{\Phi} f_{1} \text { or } f_{1}=f_{2} .
$$

Moreover, no Φ-system is $\prec_{\Phi \text {-maximal. }}$
$\mathbb{L}(\Phi)$ branches

For $f, f^{\prime} \in \mathbb{I L}(\Phi)$,
$f \prec_{\Phi} f^{\prime} \quad$ iff $\quad f \neq f^{\prime}$ and $(\forall A \in \operatorname{Fin}(\Phi)) f(A)$ is a prefix of $f^{\prime}(A)$
where

$$
s \text { is a prefix of } s^{\prime} \text { iff }\left(\exists s^{\prime \prime}\right) s^{\prime}=s s^{\prime \prime}
$$

Fact. \prec_{Φ} is transitive and left linear: for all $f \in \mathbb{L}(\Phi)$, and

$$
f_{1} \prec_{\Phi} f_{2} \text { or } f_{2} \prec_{\Phi} f_{1} \text { or } f_{1}=f_{2} .
$$

Moreover, no Φ-system is \prec_{Φ}-maximal.
$\mathbb{I L}(\Phi)$ branches

For $f, f^{\prime} \in \mathbb{I L}(\Phi)$,
$f \prec_{\Phi} f^{\prime} \quad$ iff $\quad f \neq f^{\prime}$ and $(\forall A \in \operatorname{Fin}(\Phi)) f(A)$ is a prefix of $f^{\prime}(A)$
where

$$
s \text { is a prefix of } s^{\prime} \text { iff }\left(\exists s^{\prime \prime}\right) s^{\prime}=s s^{\prime \prime}
$$

Fact. \prec_{Φ} is transitive and left linear: for all $f \in \mathbb{I L}(\Phi)$, and $f_{1}, f_{2} \prec_{\Phi} f$,

$$
f_{1} \prec_{\Phi} f_{2} \text { or } f_{2} \prec_{\Phi} f_{1} \text { or } f_{1}=f_{2} .
$$

Moreover, no Φ-system is \prec_{Φ}-maximal.

From intensions to truthmaking \& finite-state methods

An interval world pair $\langle I, w\rangle$ is Φ-approximable if every $\varphi \in \Phi$ is homogeneous and alternation-bounded in $\langle I, w\rangle$.

Fact. Every Φ-approximable $\langle I, w\rangle$ is representable in $\mathbb{L}(\Phi)$ by a unique system $\{f(A)\}_{A \in \operatorname{Fin}(\Phi)}$ of approximations of $\langle I, w\rangle$ as $f(A) \in\left(2^{A}\right)^{*}$ at granularity A.
DAH_{s} : At granularity A, events within $\langle I, W\rangle$ are representable as substrings of $f(A)$
an E-event occurs in $\langle l, w\rangle$ iff $\left(\exists s \in L_{E}\right) s \sqsubseteq f(A)$ relational intension: $s^{\prime} \sqsupseteq_{E} s$ iff $s \in L_{E}$ and $s \sqsubseteq s^{\prime}$

Construe strings as models/segmentations (for completeness) a poor man's IL amenable to finite-state methods

From intensions to truthmaking \& finite-state methods

An interval world pair $\langle I, w\rangle$ is Φ-approximable if every $\varphi \in \Phi$ is homogeneous and alternation-bounded in $\langle I, w\rangle$.

Fact. Every Φ-approximable $\langle I, w\rangle$ is representable in $\mathbb{I L}(\Phi)$ by a unique system $\{f(A)\}_{A \in \operatorname{Fin}(\Phi)}$ of approximations of $\langle I, w\rangle$ as $f(A) \in\left(2^{A}\right)^{*}$ at granularity A.
DAH_{s} : At granularity A, events within $\langle I, w\rangle$ are representable as substrings of $f(A)$
an E-event occurs in $\langle\ell, w\rangle$ iff $\left(\exists s \in L_{E}\right) s \sqsubseteq f(A)$ relational intension: $s^{\prime} \sqsupseteq_{E} s$ iff $s \in L_{E}$ and $s \sqsubseteq s^{\prime}$

Construe strings as models/segmentations (for completeness) a poor man's IL amenable to finite-state methods

From intensions to truthmaking \& finite-state methods

An interval world pair $\langle I, w\rangle$ is Φ-approximable if every $\varphi \in \Phi$ is homogeneous and alternation-bounded in $\langle I, w\rangle$.

Fact. Every Φ-approximable $\langle I, w\rangle$ is representable in $\mathbb{I L}(\Phi)$ by a unique system $\{f(A)\}_{A \in \operatorname{Fin}(\Phi)}$ of approximations of $\langle I, w\rangle$ as $f(A) \in\left(2^{A}\right)^{*}$ at granularity A.
DAH_{s} : At granularity A, events within $\langle I, w\rangle$ are representable as substrings of $f(A)$

$$
\text { an } E \text {-event occurs in }\langle I, w\rangle \text { iff }\left(\exists s \in L_{E}\right) s \sqsubseteq f(A)
$$

Construe strings as models/segmentations (for completeness) - a poor man's IL amenable to finite-state methods

From intensions to truthmaking \& finite-state methods

An interval world pair $\langle I, w\rangle$ is Φ-approximable if every $\varphi \in \Phi$ is homogeneous and alternation-bounded in $\langle I, w\rangle$.

Fact. Every Φ-approximable $\langle I, w\rangle$ is representable in $\mathbb{I L}(\Phi)$ by a unique system $\{f(A)\}_{A \in \operatorname{Fin}(\Phi)}$ of approximations of $\langle I, w\rangle$ as $f(A) \in\left(2^{A}\right)^{*}$ at granularity A.
DAH_{s} : At granularity A, events within $\langle I, w\rangle$ are representable as substrings of $f(A)$
an E-event occurs in $\langle I, w\rangle$ iff $\left(\exists s \in L_{E}\right) s \sqsubseteq f(A)$ relational intension: $s^{\prime} \sqsupseteq_{E} s$ iff $s \in L_{E}$ and $s \sqsubseteq s^{\prime}$

Construe strings as models/segmentations (for completeness) a poor man's IL amenable to finite-state methods

From intensions to truthmaking \& finite-state methods

An interval world pair $\langle I, w\rangle$ is Φ-approximable if every $\varphi \in \Phi$ is homogeneous and alternation-bounded in $\langle I, w\rangle$.

Fact. Every Φ-approximable $\langle I, w\rangle$ is representable in $\mathbb{I L}(\Phi)$ by a unique system $\{f(A)\}_{A \in \operatorname{Fin}(\Phi)}$ of approximations of $\langle I, w\rangle$ as $f(A) \in\left(2^{A}\right)^{*}$ at granularity A.
DAH_{s} : At granularity A, events within $\langle I, w\rangle$ are representable as substrings of $f(A)$
an E-event occurs in $\langle I, w\rangle$ iff $\left(\exists s \in L_{E}\right) s \sqsubseteq f(A)$ relational intension: $s^{\prime} \sqsupseteq_{E} s$ iff $s \in L_{E}$ and $s \sqsubseteq s^{\prime}$

Construe strings as models/segmentations (for completeness)

- a poor man's IL amenable to finite-state methods

