Prior probabilities of Allen interval relations over finite orders

Tim Fernando and Carl Vogel (Dublin, Ireland)

Prague, 19 February 2019

Prior probabilities of Allen interval relations

 over finite ordersTim Fernando and Carl Vogel (Dublin, Ireland)

$$
\text { Prague, } 19 \text { February } 2019
$$

$\mathcal{A R}$: a widely used basis for relating (temporal) intervals (e.g., Liu et al 2018, Verhagen et al 2009)

Prior probabilities of Allen interval relations over finite orders

Tim Fernando and Carl Vogel (Dublin, Ireland)

$$
\text { Prague, } 19 \text { February } 2019
$$

$\mathcal{A R}$: a widely used basis for relating (temporal) intervals (e.g., Liu et al 2018, Verhagen et al 2009)

Hans Kamp: discourse time (from events)
when we interpret a piece of discourse - or a single sentence in the context in which it is being used we build something like a model of the episode or situation described; and an important part of that model are its event structure, and the time structure that can be derived from that event structure

Prior probabilities of Allen interval relations over finite orders

Tim Fernando and Carl Vogel (Dublin, Ireland)

Prague, 19 February 2019

$\mathcal{A R}$: a widely used basis for relating (temporal) intervals (e.g., Liu et al 2018, Verhagen et al 2009)

Hans Kamp: discourse time (from events)
when we interpret a piece of discourse - or a single sentence in the context in which it is being used we build something like a model of the episode or situation described; and an important part of that model are its event structure, and the time structure that can be derived from that event structure

Prior probabilities of Allen interval relations over finite orders

Tim Fernando and Carl Vogel (Dublin, Ireland)
Prague, 19 February 2019
$\mathcal{A R}$: a widely used basis for relating (temporal) intervals (e.g., Liu et al 2018, Verhagen et al 2009)

Hans Kamp: discourse time (from events)
when we interpret a piece of discourse - or a single sentence in the context in which it is being used we build something like a model of the episode or situation described; and an important part of that model are its event structure, and the time structure that can be derived from that event structure

ISO-TimeML (Pustejovsky, Lee, Bunt, ...): TLINK tags

Plan

§1 Allen interval relations
§1 Allen interval relations
§2 Probabilities over n ordered points
§1 Allen interval relations
§2 Probabilities over n ordered points
§3 Probabilities over n interval names

Plan

§1 Allen interval relations
§2 Probabilities over n ordered points
§3 Probabilities over n interval names
§4 Conclusion

Plan

§1 Allen interval relations
§2 Probabilities over n ordered points
§3 Probabilities over n interval names
§4 Conclusion

Allen relations

$$
a \approx(I(a), r(a)] \approx\{x \mid I(a)<x \leq r(a)\}
$$

$$
a m a^{\prime}: \quad I(a)<r(a)=I\left(a^{\prime}\right)<r\left(a^{\prime}\right)
$$

$$
a b a^{\prime}: \quad I(a)<r(a)<I\left(a^{\prime}\right)<r\left(a^{\prime}\right)
$$

Allen relations as strings (SchwER, Durand)

$$
a \approx(I(a), r(a)] \approx\{x \mid I(a)<x \leq r(a)\}
$$

$$
\begin{array}{lr}
a m a^{\prime}: I(a)<r(a)=I\left(a^{\prime}\right)<r\left(a^{\prime}\right) & \begin{array}{|l|l|l|}
& I(a) & r(a), I\left(a^{\prime}\right) \\
r\left(a^{\prime}\right) \\
\hline & \\
a b a^{\prime}: \quad I(a)<r(a)<I\left(a^{\prime}\right)<r\left(a^{\prime}\right) & I(a) & r(a) \\
\hline & I\left(a^{\prime}\right) & r\left(a^{\prime}\right) \\
\hline
\end{array}
\end{array}
$$

Allen relations as strings (SchwER, Durand)

$$
a \approx(I(a), r(a)] \approx\{x \mid I(a)<x \leq r(a)\}
$$

\[

\]

Allen relations as strings (Schwer, Durand)

$$
a \approx(I(a), r(a)] \approx\{x \mid I(a)<x \leq r(a)\}
$$

$$
\begin{aligned}
a m a^{\prime}: \quad I(a)<r(a)=I\left(a^{\prime}\right)<r\left(a^{\prime}\right) & I(a)\left|r(a), I\left(a^{\prime}\right)\right| r\left(a^{\prime}\right) \\
\mathfrak{s}_{\mathrm{m}}\left(a, a^{\prime}\right): & : a\left|a, a^{\prime}\right| a^{\prime} \\
a b a^{\prime}: \quad I(a)<r(a)<I\left(a^{\prime}\right)<r\left(a^{\prime}\right) & I(a)|r(a)| I\left(a^{\prime}\right) r\left(a^{\prime}\right) \\
&
\end{aligned}
$$

R	$\mathfrak{s}_{R}\left(a, a^{\prime}\right)$	R	$\mathfrak{s}_{R}\left(a, a^{\prime}\right)$	R	$\mathfrak{s}_{R}\left(a, a^{\prime}\right)$			
b	a\| a	$a^{\prime} \mid a^{\prime}$	m	a $a \mid a, a^{\prime} a^{\prime}$	-		\|a	a^{\prime}
d		s	$a^{\text {a }} \mathrm{a}^{\prime} \mid a^{\prime} a^{\prime}$	f	${ }^{\prime}$	a a, a^{\prime}		
e	$a, a^{\prime} \mid a, a^{\prime}$							

$$
\mathfrak{s}_{R^{-1}}\left(a, a^{\prime}\right)=\mathfrak{s}_{R}\left(a^{\prime}, a\right)
$$

Allen's transitivity table

$t\left(R_{1}, R_{2}\right):=\left\{R \in \mathcal{A R} \mid\right.$ for some order with intervals $a, a^{\prime}, a^{\prime \prime}$, $a R_{1} a^{\prime}, a^{\prime} R_{2} a^{\prime \prime}$ and $\left.a R a^{\prime \prime}\right\}$
e.g. $t(\mathrm{~b}, \mathrm{~b})=\{\mathrm{b}\} \quad t(\mathrm{o}, \mathrm{d})=\{\mathrm{d}, \mathrm{o}, \mathrm{s}\} \quad t(\mathrm{~b}, \mathrm{bi})=\mathcal{A R}$

Allen's transitivity table

$t\left(R_{1}, R_{2}\right):=\left\{R \in \mathcal{A R} \mid\right.$ for some order with intervals $a, a^{\prime}, a^{\prime \prime}$, $a R_{1} a^{\prime}, a^{\prime} R_{2} a^{\prime \prime}$ and $\left.a R a^{\prime \prime}\right\}$
e.g. $t(\mathrm{~b}, \mathrm{~b})=\{\mathrm{b}\} \quad t(\mathrm{o}, \mathrm{d})=\{\mathrm{d}, \mathrm{o}, \mathrm{s}\} \quad t(\mathrm{~b}, \mathrm{bi})=\mathcal{A R}$
$\#(R):=\sum_{R^{\prime} \in \mathcal{A R}} \operatorname{card}\left(t\left(R, R^{\prime}\right)\right)$

Allen's transitivity table

$t\left(R_{1}, R_{2}\right):=\left\{R \in \mathcal{A R} \mid\right.$ for some order with intervals $a, a^{\prime}, a^{\prime \prime}$, $a R_{1} a^{\prime}, a^{\prime} R_{2} a^{\prime \prime}$ and $\left.a R a^{\prime \prime}\right\}$
e.g. $t(\mathrm{~b}, \mathrm{~b})=\{\mathrm{b}\} \quad t(\mathrm{o}, \mathrm{d})=\{\mathrm{d}, \mathrm{o}, \mathrm{s}\} \quad t(\mathrm{~b}, \mathrm{bi})=\mathcal{A R}$
$\#(R):=\sum_{R^{\prime} \in \mathcal{A R}} \operatorname{card}\left(t\left(R, R^{\prime}\right)\right)=\sum_{R^{\prime} \in \mathcal{A R}} \operatorname{card}\left(t\left(R^{\prime}, R\right)\right)$

Allen's transitivity table

$t\left(R_{1}, R_{2}\right):=\left\{R \in \mathcal{A R} \mid\right.$ for some order with intervals $a, a^{\prime}, a^{\prime \prime}$, $a R_{1} a^{\prime}, a^{\prime} R_{2} a^{\prime \prime}$ and $\left.a R a^{\prime \prime}\right\}$
e.g. $t(\mathrm{~b}, \mathrm{~b})=\{\mathrm{b}\} \quad t(\mathrm{o}, \mathrm{d})=\{\mathrm{d}, \mathrm{o}, \mathrm{s}\} \quad t(\mathrm{~b}, \mathrm{bi})=\mathcal{A R}$
$\#(R):=\sum_{R^{\prime} \in \mathcal{A R}} \operatorname{card}\left(t\left(R, R^{\prime}\right)\right)=\sum_{R^{\prime} \in \mathcal{A R}} \operatorname{card}\left(t\left(R^{\prime}, R\right)\right)$
$=\left\{\begin{array}{lll}41 & \text { if length }\left(\mathfrak{s}_{R}\right)=4 & \text { (long: b,d,o,bi,di,oi) } \\ 25 & \text { if length }\left(\mathfrak{s}_{R}\right)=3 & \text { (medium: } \mathrm{m}, \mathrm{s}, \mathrm{f}, \mathrm{mi}, \mathrm{si}, \mathrm{fi}) \\ 13 & \text { if length }\left(\mathfrak{s}_{R}\right)=2 & \text { (short: e) }\end{array}\right.$

Plan

§1 Allen interval relations
§2 Probabilities over n ordered points
§3 Probabilities over n interval names
§4 Conclusion

Probabilities defined

$$
\begin{aligned}
{[n] } & :=\{1,2, \ldots, n\} \\
\Omega_{n} & :=\left\{f:\left\{x, y, x^{\prime}, y^{\prime}\right\} \rightarrow[n] \mid f(x)<f(y) \text { and } f\left(x^{\prime}\right)<f\left(y^{\prime}\right)\right\}
\end{aligned}
$$

Probabilities defined

$$
\begin{aligned}
{[n] } & :=\{1,2, \ldots, n\} \\
\Omega_{n} & :=\left\{f:\left\{x, y, x^{\prime}, y^{\prime}\right\} \rightarrow[n] \mid f(x)<f(y) \text { and } f\left(x^{\prime}\right)<f\left(y^{\prime}\right)\right\}
\end{aligned}
$$

$$
f \text { satisfies } R \Longleftrightarrow(f(x), f(y)] R\left(f\left(x^{\prime}\right), f\left(y^{\prime}\right)\right]
$$

$$
p_{n}(R)=\frac{\operatorname{card}\left(\left\{f \in \Omega_{n} \mid f \text { satisfies } R\right\}\right)}{\operatorname{card}\left(\Omega_{n}\right)}
$$

Probabilities defined

$$
\begin{aligned}
{[n] } & :=\{1,2, \ldots, n\} \\
\Omega_{n} & :=\left\{f:\left\{x, y, x^{\prime}, y^{\prime}\right\} \rightarrow[n] \mid f(x)<f(y) \text { and } f\left(x^{\prime}\right)<f\left(y^{\prime}\right)\right\}
\end{aligned}
$$

f satisfies $R \Longleftrightarrow(f(x), f(y)] R\left(f\left(x^{\prime}\right), f\left(y^{\prime}\right)\right]$

$$
p_{n}(R)=\frac{\operatorname{card}\left(\left\{f \in \Omega_{n} \mid f \text { satisfies } R\right\}\right)}{\operatorname{card}\left(\Omega_{n}\right)}
$$

where for $n \geq 4, \operatorname{card}\left(\left\{f \in \Omega_{n} \mid f\right.\right.$ satisfies $\left.\left.R\right\}\right)$ is

$$
\begin{aligned}
& \binom{n}{2}=\frac{n(n-1)}{2} \quad \text { if } R \text { is e } \\
& \binom{n}{3}=\binom{n}{2} \frac{n-2}{3} \quad \text { if } R \text { is medium } \\
& \binom{n}{4}=\binom{n}{3} \frac{n-3}{4} \quad \text { if } R \text { is long }
\end{aligned}
$$

Probabilities calculated

For $n \geq 4$ and $R, R^{\prime} \in \mathcal{A R}$,

$$
p_{n}(R)=p_{n}\left(R^{\prime}\right) \text { if length }\left(\mathfrak{s}_{R}\right)=\operatorname{length}\left(\mathfrak{s}_{R^{\prime}}\right)
$$

Probabilities calculated

For $n \geq 4$ and $R, R^{\prime} \in \mathcal{A R}$,

$$
p_{n}(R)=p_{n}\left(R^{\prime}\right) \text { if length }\left(\mathfrak{s}_{R}\right)=\operatorname{length}\left(\mathfrak{s}_{R^{\prime}}\right)
$$

and

$$
\operatorname{card}\left(\Omega_{n}\right)=\binom{n}{2} \cdot\binom{n}{2}
$$

Probabilities calculated

For $n \geq 4$ and $R, R^{\prime} \in \mathcal{A R}$,

$$
p_{n}(R)=p_{n}\left(R^{\prime}\right) \text { if length }\left(\mathfrak{s}_{R}\right)=\operatorname{length}\left(\mathfrak{s}_{R^{\prime}}\right)
$$

and

$$
\operatorname{card}\left(\Omega_{n}\right)=\binom{n}{2} \cdot\binom{n}{2}
$$

whence

$$
\begin{aligned}
p_{n}(\mathrm{e}) & =\frac{2}{n(n-1)} \\
p_{n}(R) & =\frac{2(n-2)}{3 n(n-1)} \\
p_{n}(R) & =\frac{(n-3)(n-2)}{6 n(n-1)} \quad \text { for medium } R
\end{aligned} \quad \text { for long } R
$$

Some probabilities

$$
\lim _{n \rightarrow \infty} p_{n}(R)= \begin{cases}0 & \text { if } R \text { is short or medium } \\ 1 / 6 & \text { otherwise }\end{cases}
$$

Some probabilities

$$
\lim _{n \rightarrow \infty} p_{n}(R)= \begin{cases}0 & \text { if } R \text { is short or medium } \\ 1 / 6 & \text { otherwise }\end{cases}
$$

n	$p_{n}(\mathrm{e})$	$p_{n}(\mathrm{~m})$	$p_{n}(\mathrm{~b})$
4	$1 / 6$	$1 / 9$	$1 / 36$
5	$1 / 10$	$1 / 10$	$1 / 20$
6	$1 / 15$	$4 / 45$	$1 / 15$
8	$1 / 28$	$1 / 14$	$5 / 56$

Plan

§1 Allen interval relations
§2 Probabilities over n ordered points
§3 Probabilities over n interval names
§4 Conclusion

Consistent interval labelings as strings

$$
\begin{aligned}
\mathcal{L}_{n} & :=\left\{s \in\left(2^{[n]}-\{\square\}\right)^{+} \mid \text {each } i \in[n] \text { occurs exactly twice in } s\right\} \\
\mathcal{L}_{2} & =\left\{\mathfrak{s}_{R}(1,2) \mid R \in \mathcal{A R}\right\}
\end{aligned}
$$

Consistent interval labelings as strings

$$
\begin{aligned}
\mathcal{L}_{n} & :=\left\{s \in\left(2^{[n]}-\{\square\}\right)^{+} \mid \text {each } i \in[n] \text { occurs exactly twice in } s\right\} \\
\mathcal{L}_{2} & =\left\{\mathfrak{s}_{R}(1,2) \mid R \in \mathcal{A R}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \pi_{A}\left(\alpha_{1} \cdots \alpha_{n}\right):=\left(\alpha_{1} \cap A\right) \cdots\left(\alpha_{n} \cap A\right) \text { and then delete any } \square \\
& \pi_{\{2,3\}}\left(\begin{array}{l|l|l|l|l|l|}
\hline 1,2,4 & 1 & 2,3 & 3 & 4 \\
\hline 2 & 2,3 & \\
\hline
\end{array}\right.
\end{aligned}
$$

Consistent interval labelings as strings

$$
\begin{aligned}
\mathcal{L}_{n} & :=\left\{s \in\left(2^{[n]}-\{\square\}\right)^{+} \mid \text {each } i \in[n] \text { occurs exactly twice in } s\right\} \\
\mathcal{L}_{2} & =\left\{\mathfrak{s}_{R}(1,2) \mid R \in \mathcal{A R}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \pi_{A}\left(\alpha_{1} \cdots \alpha_{n}\right):=\left(\alpha_{1} \cap A\right) \cdots\left(\alpha_{n} \cap A\right) \text { and then delete any } \square \\
& \pi_{\{2,3\}}\left(\begin{array}{l|l|l|l|l|l|}
\hline 1,2,4 & 1 & 2,3 & 3 & 4 \\
\hline 2 & 2,3 & \\
\hline
\end{array}\right.
\end{aligned}
$$

i occurs exactly twice in $s \Longleftrightarrow \pi_{\{i\}}(s)=i(i$

$$
s \vDash i R i^{\prime} \Longleftrightarrow \pi_{\left\{i, i^{\prime}\right\}}=\mathfrak{s}_{R}\left(i, i^{\prime}\right)
$$

Consistent interval labelings as strings

$\mathcal{L}_{n}:=\left\{s \in\left(2^{[n]}-\{\square\}\right)^{+} \mid\right.$each $i \in[n]$ occurs exactly twice in $\left.s\right\}$ $\mathcal{L}_{2}=\left\{\mathfrak{s}_{R}(1,2) \mid R \in \mathcal{A R}\right\}$
$\pi_{\boldsymbol{A}}\left(\alpha_{1} \cdots \alpha_{n}\right):=\quad\left(\alpha_{1} \cap A\right) \cdots\left(\alpha_{n} \cap A\right)$ and then delete any \square \(\pi_{\{2,3\}}\left(\begin{array}{|l|l|l|l|l|}\hline 1,2,4 \& 1 \& 2,3 \& 3 \& 4

\hline\end{array}\right)=\)	2	2,3	3

i occurs exactly twice in $s \Longleftrightarrow \pi_{\{i\}}(s)=i(i$

$$
s \models i R i^{\prime} \Longleftrightarrow \pi_{\{i, i,\}}=\mathfrak{s}_{R}\left(i, i^{\prime}\right)
$$

$f:[n] \times[n] \rightarrow \mathcal{A R}$ is consistent if for some $s \in \mathcal{L}_{n}$,

$$
\left.(\forall i \in[n])\left(\forall i^{\prime} \in[n]\right) \pi_{\{i, i} i^{\prime}\right\}(s)=\mathfrak{s}_{f\left(i, i i^{\prime}\right)}\left(i, i^{\prime}\right)
$$

Probabilities defined

Fact.

(i) For all $s \in \mathcal{L}_{n}$ and $\left(i, i^{\prime}\right) \in[n] \times[n]$, there is a unique $R \in \mathcal{A R}$ s.t. $\pi_{\left\{i, i^{\prime}\right\}}(s)=\mathfrak{s}_{R}\left(i, i^{\prime}\right)$.

Probabilities defined

Fact.

(i) For all $s \in \mathcal{L}_{n}$ and $\left(i, i^{\prime}\right) \in[n] \times[n]$, there is a unique $R \in \mathcal{A R}$ s.t. $\pi_{\left\{i, i^{\prime}\right\}}(s)=\mathfrak{s}_{R}\left(i, i^{\prime}\right)$.
(ii) The map $s \mapsto \omega_{s}$ is a bijection from \mathcal{L}_{n} onto the set of consistent labellings from $[n] \times[n]$ to $\mathcal{A R}$, where $\omega_{s}:[n] \times[n] \rightarrow \mathcal{A R}$ sends $\left(i, i^{\prime}\right)$ to the unique $R \in \mathcal{A R}$ s.t. $\pi_{\left\{i, i^{\prime}\right\}}(s)=\mathfrak{s}_{R}\left(i, i^{\prime}\right)$.

Probabilities defined

Fact.

(i) For all $s \in \mathcal{L}_{n}$ and $\left(i, i^{\prime}\right) \in[n] \times[n]$, there is a unique $R \in \mathcal{A R}$ s.t. $\pi_{\left\{i, i^{\prime}\right\}}(s)=\mathfrak{s}_{R}\left(i, i^{\prime}\right)$.
(ii) The map $s \mapsto \omega_{s}$ is a bijection from \mathcal{L}_{n} onto the set of consistent labellings from $[n] \times[n]$ to $\mathcal{A R}$, where $\omega_{s}:[n] \times[n] \rightarrow \mathcal{A R}$ sends $\left(i, i^{\prime}\right)$ to the unique $R \in \mathcal{A} \mathcal{R}$ s.t. $\pi_{\left\{i, i^{\prime}\right\}}(s)=\mathfrak{s}_{R}\left(i, i^{\prime}\right)$.

$$
\mathcal{L}_{n}(R):=\left\{s \in \mathcal{L}_{n} \mid \pi_{\{1,2\}}(s)=\mathfrak{s}_{R}(1,2)\right\}
$$

$$
p_{n}(R):=\frac{\operatorname{card}\left(\mathcal{L}_{n}(R)\right)}{\operatorname{card}\left(\mathcal{L}_{n}\right)}
$$

Probabilities defined

Fact.

(i) For all $s \in \mathcal{L}_{n}$ and $\left(i, i^{\prime}\right) \in[n] \times[n]$, there is a unique $R \in \mathcal{A R}$ s.t. $\pi_{\left\{i, i^{\prime}\right\}}(s)=\mathfrak{s}_{R}\left(i, i^{\prime}\right)$.
(ii) The map $s \mapsto \omega_{s}$ is a bijection from \mathcal{L}_{n} onto the set of consistent labellings from $[n] \times[n]$ to $\mathcal{A R}$, where $\omega_{s}:[n] \times[n] \rightarrow \mathcal{A R}$ sends $\left(i, i^{\prime}\right)$ to the unique $R \in \mathcal{A} \mathcal{R}$ s.t. $\pi_{\left\{i, i^{\prime}\right\}}(s)=\mathfrak{s}_{R}\left(i, i^{\prime}\right)$.

$$
\mathcal{L}_{n}(R):=\left\{s \in \mathcal{L}_{n} \mid \pi_{\{1,2\}}(s)=\mathfrak{s}_{R}(1,2)\right\}
$$

$$
p_{n}(R):=\frac{\operatorname{card}\left(\mathcal{L}_{n}(R)\right)}{\operatorname{card}\left(\mathcal{L}_{n}\right)}
$$

Calculate $\operatorname{card}\left(\mathcal{L}_{n}(R)\right)$ and $\operatorname{card}\left(\mathcal{L}_{n}\right)$ through superposition

Superposition

$$
\&\left(i\left|i, i^{\prime}\right| i^{\prime}, s\right) \Longleftrightarrow s \in\left\{\mathfrak{s}_{R}\left(i, i^{\prime}\right) \mid R \in \mathcal{A R}\right\} .
$$

(i0) $\overline{\&(\epsilon, \epsilon, \epsilon)}$
(i1) $\frac{\&\left(s, s^{\prime}, s^{\prime \prime}\right)}{\&\left(s \alpha, s^{\prime} \alpha^{\prime}, s^{\prime \prime}\left(\alpha \cup \alpha^{\prime}\right)\right)}$
(i2) $\frac{\&\left(s, s^{\prime}, s^{\prime \prime}\right)}{\&\left(s \alpha, s^{\prime}, s^{\prime \prime} \alpha\right)}$
(i3) $\frac{\&\left(s, s^{\prime}, s^{\prime \prime}\right)}{\&\left(s, s^{\prime} \alpha^{\prime}, s^{\prime \prime} \alpha^{\prime}\right)}$

Superposition

$$
\begin{array}{ll}
\&\left(i\left|i, i^{\prime}\right| i^{\prime}, s\right) & \Longleftrightarrow s \in\left\{\mathfrak{s}_{R}\left(i, i^{\prime}\right) \mid R \in \mathcal{A R}\right\} . \\
\text { (i0) } \frac{}{\&(\epsilon, \epsilon, \epsilon)} & \text { (i1) } \frac{\&\left(s, s^{\prime}, s^{\prime \prime}\right)}{\&\left(s \alpha, s^{\prime} \alpha^{\prime}, s^{\prime \prime}\left(\alpha \cup \alpha^{\prime}\right)\right)} \\
\text { (i2) } \frac{\&\left(s, s^{\prime}, s^{\prime \prime}\right)}{\&\left(s \alpha, s^{\prime}, s^{\prime \prime} \alpha\right)} & \text { (i3) } \frac{\&\left(s, s^{\prime}, s^{\prime \prime}\right)}{\&\left(s, s^{\prime} \alpha^{\prime}, s^{\prime \prime} \alpha^{\prime}\right)}
\end{array}
$$

(io)

Superposition

$$
\begin{aligned}
& \&\left(i\left|i, i^{\prime}\right| i^{\prime}, s\right) \Longleftrightarrow s \in\left\{\mathfrak{s}_{R}\left(i, i^{\prime}\right) \mid R \in \mathcal{A R}\right\} \text {. } \\
& \text { (i0) } \overline{\&(\epsilon, \epsilon, \epsilon)} \\
& \text { (i2) } \frac{\&\left(s, s^{\prime}, s^{\prime \prime}\right)}{\&\left(s \alpha, s^{\prime}, s^{\prime \prime} \alpha\right)} \\
& \text { (i1) } \frac{\&\left(s, s^{\prime}, s^{\prime \prime}\right)}{\&\left(s \alpha, s^{\prime} \alpha^{\prime}, s^{\prime \prime}\left(\alpha \cup \alpha^{\prime}\right)\right)} \\
& \text { (i3) } \frac{\&\left(s, s^{\prime}, s^{\prime \prime}\right)}{\&\left(s, s^{\prime} \alpha^{\prime}, s^{\prime \prime} \alpha^{\prime}\right)} \\
& \text { (io) }
\end{aligned}
$$

$$
\begin{aligned}
& L \& L^{\prime}:=\left\{s^{\prime \prime} \mid(\exists s \in L)\left(\exists s^{\prime} \in L^{\prime}\right) \&\left(s, s^{\prime}, s^{\prime \prime}\right)\right\}
\end{aligned}
$$

A commutative monoid

$$
\begin{aligned}
\mathcal{L}_{1} & =\begin{array}{l|l|l}
1 & 1 \\
\mathcal{L}_{n+1} & =\mathcal{L}_{n} \& n+1 & n+1
\end{array} \quad \text { for } n \geq 1
\end{aligned}
$$

A commutative monoid

$$
\begin{array}{rlr}
\mathcal{L}_{1} & =111 \\
\mathcal{L}_{n+1} & =\mathcal{L}_{n} \& n+1 \mid n+1 & \text { for } n \geq 1 \\
\mathcal{L}_{2}(R) & =\mathfrak{s}_{R}(1,2) \\
\mathcal{L}_{n+1}(R) & =\mathcal{L}_{n}(R) \& n+1 n+1 & \text { for } n \geq 2
\end{array}
$$

A commutative monoid

$$
\begin{array}{rlr}
\mathcal{L}_{1} & =1 \mid 1 \\
\mathcal{L}_{n+1} & =\mathcal{L}_{n} \& n+1 \mid n+1 & \text { for } n \geq 1 \\
& \\
\mathcal{L}_{2}(R) & =\mathfrak{s}_{R}(1,2) & \\
\mathcal{L}_{n+1}(R) & =\mathcal{L}_{n}(R) \& n+1 n+1 & \text { for } n \geq 2
\end{array}
$$

Given a string s of length $k>1$, the set $s \& \Delta n n$ consists of

- $\binom{k}{2}$ strings of length k,
- $\quad k(k+1)$ strings of length $k+1$, and
- $\binom{k+1}{2}+k+1$ strings of length $k+2$

Cardinalities of $\mathcal{L}_{n}(R)$ and \mathcal{L}_{n}

$$
\begin{gathered}
c_{n}(R ; k):=\operatorname{card}\left(\left\{s \in \mathcal{L}_{n}(R) \mid \text { length }(s)=k\right\}\right) \\
c_{2}(R ; k)= \begin{cases}1 & \text { if length }\left(s_{R}\right)=k \\
0 & \text { otherwise }\end{cases} \\
c_{n+1}(R ; k)=\frac{k(k-1)}{2}\left(c_{n}(R ; k)+2 c_{n}(R ; k-1)+c_{n}(R ; k-2)\right)
\end{gathered}
$$

Cardinalities of $\mathcal{L}_{n}(R)$ and \mathcal{L}_{n}

$$
\begin{aligned}
& c_{n}(R ; k):=\operatorname{card}\left(\left\{s \in \mathcal{L}_{n}(R) \mid \text { length }(s)=k\right\}\right) \\
& c_{2}(R ; k)= \begin{cases}1 & \text { if length }\left(\mathfrak{s}_{R}\right)=k \\
0 & \text { otherwise }\end{cases} \\
& c_{n+1}(R ; k)=\frac{k(k-1)}{2}\left(c_{n}(R ; k)+2 c_{n}(R ; k-1)+c_{n}(R ; k-2)\right) \\
& \operatorname{card}\left(\mathcal{L}_{n}(\mathrm{e})\right)=\sum_{k=2}^{2 n-2} c_{n}(\mathrm{e} ; k) \\
& \operatorname{card}\left(\mathcal{L}_{n}(R)\right)=\sum_{k=3}^{2 n-1} c_{n}(R ; k) \text { for medium } R \\
& \operatorname{card}\left(\mathcal{L}_{n}(R)\right)=\sum_{k=4}^{2 n} c_{n}(R ; k) \quad \text { for long } R \\
& \operatorname{card}\left(\mathcal{L}_{n}\right)=\operatorname{card}\left(\mathcal{L}_{n}(\mathrm{e})\right)+6\left(\operatorname{card}\left(\mathcal{L}_{n}(\mathrm{~m})\right)+\operatorname{card}\left(\mathcal{L}_{n}(\mathrm{~b})\right)\right)
\end{aligned}
$$

$\operatorname{card}\left(\mathcal{L}_{n}(R)\right) / \operatorname{card}\left(\mathcal{L}_{n}\right)$ for some n

n	$p_{n}(\mathrm{e})$	$p_{n}(\mathrm{~m})$	$p_{n}(\mathrm{~b})$	$1-6 p_{n}(\mathrm{~b})$
2	$1 / 13$	$1 / 13$	$1 / 13$	$7 / 13 \approx 0.5384615$
3	0.031784841	0.061124694	0.100244499	0.398533007
10	0.002527761	0.021841026	0.144404347	0.133573915
100	0.000023782	0.002283051	0.164379652	0.013722086
500	0.000000959	0.000460405	0.166206102	0.002763387
1000	0.000000240	0.0000308840	0.166435786	0.001385281
1500	0.000000107	0.000153893	0.166512755	0.000923468

$\operatorname{card}\left(\mathcal{L}_{n}(R)\right) / \operatorname{card}\left(\mathcal{L}_{n}\right)$ for some n

n	$p_{n}(\mathrm{e})$	$p_{n}(\mathrm{~m})$	$p_{n}(\mathrm{~b})$	$1-6 p_{n}(\mathrm{~b})$
2	$1 / 13$	$1 / 13$	$1 / 13$	$7 / 13 \approx 0.53846153$
3	0.031784841	0.061124694	0.100244499	0.398533007
10	0.002527761	0.021841026	0.144404347	0.133573915
100	0.000023782	0.002283051	0.164379652	0.013722086
500	0.000000959	0.000460405	0.166206102	0.002763387
1000	0.000000240	0.000230840	0.166435786	0.001385281
1500	0.000000107	0.000153893	0.166512755	0.000923468

$$
\begin{aligned}
& p_{2}(R)=\frac{1}{13} \quad \text { uniform distribution } \\
& p_{3}(R)=\frac{\#(R)}{\sum_{R^{\prime} \in \mathcal{A R}} \#\left(R^{\prime}\right)} \quad \text { transitivity table }
\end{aligned}
$$

Plan

§1 Allen interval relations
§2 Probabilities over n ordered points
§3 Probabilities over n interval names
§4 Conclusion

Models and probabilities

Hans Kamp: discourse time (from events)
when we interpret a piece of discourse - or a single sentence in the context in which it is being used we build something like a model of the episode or situation described; and an important part of that model are its event structure, and the time structure that can be derived from that event structure

Models and probabilities

Hans Kamp: discourse time (from events)
when we interpret a piece of discourse - or a single sentence in the context in which it is being used we build something like a model of the episode or situation described; and an important part of that model are its event structure, and the time structure that can be derived from that event structure

$$
p(x)=\frac{1}{Z} \exp \left(\sum_{\varphi \in I} w_{\varphi} n_{\varphi}(x)\right)
$$

- finite set $/$ of f -o formulas φ and weights $w_{\varphi} \in \mathbb{R}$
- $n_{\varphi}(x)$ is the number of x-groundings satisfying φ uniform if $\left\{\varphi \in I \mid w_{\varphi} \neq 0\right\}=\emptyset$ (data-free)

Models and probabilities

Hans Kamp: discourse time (from events)
when we interpret a piece of discourse - or a single sentence in the context in which it is being used we build something like a model of the episode or situation described; and an important part of that model are its event structure, and the time structure that can be derived from that event structure

$$
p(x)=\frac{1}{Z} \exp \left(\sum_{\varphi \in I} w_{\varphi} n_{\varphi}(x)\right)
$$

- finite set $/$ of f -o formulas φ and weights $w_{\varphi} \in \mathbb{R}$
- $n_{\varphi}(x)$ is the number of x-groundings satisfying φ uniform if $\left\{\varphi \in I \mid w_{\varphi} \neq 0\right\}=\emptyset$ (data-free)
(Here) probability of $a \mathrm{Ra}^{\prime}$, for arbitrary intervals $a, a^{\prime} \quad(R \in \mathcal{A R})$

Models and probabilities

Hans Kamp: discourse time (from events)
when we interpret a piece of discourse - or a single sentence in the context in which it is being used we build something like a model of the episode or situation described; and an important part of that model are its event structure, and the time structure that can be derived from that event structure by means of Russell's construction.

$$
p(x)=\frac{1}{Z} \exp \left(\sum_{\varphi \in I} w_{\varphi} n_{\varphi}(x)\right)
$$

- finite set $/$ of f -o formulas φ and weights $w_{\varphi} \in \mathbb{R}$
- $n_{\varphi}(x)$ is the number of x-groundings satisfying φ uniform if $\left\{\varphi \in I \mid w_{\varphi} \neq 0\right\}=\emptyset$ (data-free)
(Here) probability of $a \mathrm{Ra}^{\prime}$, for arbitrary intervals $a, a^{\prime} \quad(R \in \mathcal{A R})$

Stretches of time

Russell-instant $=$ maximal subset of overlapping events

$$
\begin{array}{|l|l|l|}
\hline a, a^{\prime} \\
\hline a & a^{\prime} \\
\hline a^{\prime} & a \\
\hline
\end{array}
$$

$$
\begin{aligned}
& \begin{array}{|l|l|l|}
\hline a & a, & a^{\prime} \\
\hline
\end{array} \\
& \begin{array}{|l|l|}
\hline a & a^{\prime} \\
\hline
\end{array}
\end{aligned}
$$

Stretches of time

Russell-instant $=$ maximal subset of overlapping events

$$
\begin{array}{|l|l|l|}
\hline a, a^{\prime} \\
\hline a & a^{\prime} \\
\hline a^{\prime} & a \\
\hline
\end{array}
$$

+ pre, post for all Allen relations on $a, a^{\prime}-$ e.g.,

$$
\begin{aligned}
& \begin{array}{|l|l|l|l|l|}
\hline a & a, a^{\prime} & a^{\prime} & \begin{array}{ll}
\text { a, } \\
\hline
\end{array} \\
\hline
\end{array} \\
&
\end{aligned}
$$

Stretches of time

Russell-instant $=$ maximal subset of overlapping events

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline a, a^{\prime} & a^{\prime} \\
\hline
\end{array}
$$

+ pre, post for all Allen relations on $a, a^{\prime}-$ e.g.,

$$
\begin{array}{l|l|l|l|l|}
\hline a & a, a^{\prime} & a^{\prime} \\
\hline \begin{array}{|l|l|l|l|}
\hline a & a^{\prime} \\
\hline
\end{array} & \begin{array}{|l|l|l|}
\hline a, \operatorname{pre}\left(a^{\prime}\right) & a, a^{\prime} & \operatorname{post}(a), a^{\prime} \\
\hline
\end{array} & \begin{array}{|l|l|l|}
\hline a, \operatorname{pre}\left(a^{\prime}\right) & \operatorname{post}(a), \operatorname{pre}\left(a^{\prime}\right) & \operatorname{post}(a), a^{\prime} \\
\hline
\end{array}
\end{array}
$$

Stretches of time vs moments of change

Russell-instant $=$ maximal subset of overlapping events

$$
\begin{array}{|l|l|l|}
\hline a, a^{\prime} \\
\hline a & a^{\prime} \\
\hline
\end{array} a^{\prime}|a|
$$

+ pre, post for all Allen relations on $a, a^{\prime}-$ e.g.,

$$
\begin{array}{rl}
\hline a & a, a^{\prime} \\
\hline & a^{\prime} \\
\hline & \rightsquigarrow||l| l| l \mid \\
\hline a & a^{\prime} \\
\hline
\end{array} \begin{array}{|l|l|l|}
\hline a, \operatorname{pre}\left(a^{\prime}\right) & a, a^{\prime} & \operatorname{post}(a), a^{\prime} \\
\hline
\end{array}
$$

- analyze in Monadic Second-Order Logic (MSO) over strings

Leibniz' law (identity of indiscernibles)

$$
\begin{equation*}
x \neq y \supset(\exists P) \neg(P(x) \equiv P(y)) \tag{LL}
\end{equation*}
$$

Leibniz' law (identity of indiscernibles)

$$
\begin{equation*}
x \neq y \supset(\exists P) \neg(P(x) \equiv P(y)) \tag{LL}
\end{equation*}
$$

- take P from a finite set A

$$
\begin{aligned}
x \not \equiv A y & : \\
& \equiv \bigvee_{a \in A} \neg\left(P_{a}(x) \equiv P_{a}(y)\right) \\
& \equiv \bigvee_{a \in A}\left(\neg P_{a}(x) \wedge P_{a}(y)\right) \vee\left(P_{a}(x) \wedge \neg P_{a}(y)\right)
\end{aligned}
$$

Leibniz' law (identity of indiscernibles)

$$
\begin{equation*}
x \neq y \supset(\exists P) \neg(P(x) \equiv P(y)) \tag{LL}
\end{equation*}
$$

- take P from a finite set A

$$
\begin{aligned}
x \not \equiv_{A} y & :=\bigvee_{a \in A} \neg\left(P_{\mathrm{a}}(x) \equiv P_{\mathrm{a}}(y)\right) \\
& \equiv \bigvee_{a \in A}\left(\neg P_{\mathrm{a}}(x) \wedge P_{\mathrm{a}}(y)\right) \vee\left(P_{\mathrm{a}}(x) \wedge \neg P_{\mathrm{a}}(y)\right)
\end{aligned}
$$

- replace \neq by adjacency S

$$
\begin{equation*}
x S y \supset x \not \equiv_{A} y \tag{S,A}
\end{equation*}
$$

Leibniz' law (identity of indiscernibles) \& projections

$$
\begin{equation*}
x \neq y \supset(\exists P) \neg(P(x) \equiv P(y)) \tag{LL}
\end{equation*}
$$

- take P from a finite set A

$$
\begin{aligned}
& x \not \equiv 三_{A} y:=\bigvee_{a \in A} \neg\left(P_{a}(x) \equiv P_{a}(y)\right) \\
& \equiv \bigvee_{a \in A}\left(\neg P_{a}(x) \wedge P_{a}(y)\right) \vee\left(P_{a}(x) \wedge \neg P_{a}(y)\right) \\
& \quad P_{l(a)}(x)
\end{aligned}
$$

"time steps S_{S} only with change A_{A} "

$$
\begin{equation*}
x S y \supset x \not \equiv A y \tag{S,A}
\end{equation*}
$$

$$
\text { Thank } \quad \text { You }
$$

