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Allen relations

L

~ (I(a), r(a)] = {x | I(a) < x < r(a)}

ama’ : I(a) < r(a) = 1(d") < r(d)

aba’ . I(a) < r(a) < I(d) < r(d)
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Allen relations as strings (SCHWER, DURAND)

a ~ (I(a),r(a)] = {x | I(a) < x < r(a)}

ama ¢ I(a) < r(a) = (a) < r(d)  |I(a)]r(a),I(@)] ()]

aba : l(a) < r(a) < () <r(@) |Na)|r(a)|1(2)]|r(a)
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Allen relations as strings (SCHWER, DURAND)

a ~ (I(a),r(a)] = {x | I(a) < x < r(a)}

ama ¢ I(a) < r(a) = (a) < r(d)  |I(a)]r(a),I(@)] ()]
an(0.4) = [[27]7]

aba : l(a) < r(a) < () <r(@) |Na)|r(a)|1(2)]|r(a)
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Allen relations as strings (SCHWER, DURAND)

a ~ (I(a),r(a)] = {x | I(a) < x < r(a)}

amd’ ¢ () <r(a) =1(@) <r(@)  |I(a)]r(a),((2') | r(2)]
an(0.4) = [[27]7]

aba : l(a) < r(a) < () <r(@) |Na)|r(a)|1(2)]|r(a)

R| sr(ad) || R| sr(aad) || R| sr(ad)
b|lalalad|d m ala,a’ a’ o ||al|ad|ald
d||a]|alalad s aa’la a f H
e a,a|aad
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Allen’s transitivity table

t(R1, R2) := {R € AR | for some order with intervals a, a’, a",

aR1a', a'Rxa" and aRa"}

e.g. t(b,b)={b} t(o,d) = {d,o0,s} t(b,bi) = AR
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Allen’s transitivity table

t(R1, R2) := {R € AR | for some order with intervals a, a’, a",

aR1a', a'Rxa" and aRa"}
e.g. t(b,b)={b} t(o,d) = {d,0,s} t(b,bi) = AR
#(R) = Y card(t(R,R)) = Y card(t(R,R))

R'€AR R'€e AR
{ 41 if length(sg) =4  (long: b,d,o0,bi,di,oi)

25 if length(sg) =3  (medium: m,s,f,mi,si,fi)
13  if length(sg) =2  (short: e)
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Probabilities defined

[n] :={1,2,...,n}
Qn = {f:{x,y,x,y"} = [n] | f(x) < f(y) and f(x) < f(y)}
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Probabilities defined

[n] :={1,2,...,n}

Qn = {f:{x,y,x,y"} = [n] | f(x) < f(y) and f(x) < f(y)}

f satisfies R <= (f(x),f(y)] R (F(xX),f(y")]
pa(R) = card({f € Q, | f satisfies R})

card(2,)
where for n > 4, card({f € Q, | f satisfies R}) is

n\  n(n-1) . .

<2>— > if Rise

" = (M) 222 i Ris medium
3) = \2) 3 !
n n\n-—3 . .

<4>— <3> 2 if R is long
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Probabilities calculated
Forn>4and R,R' € AR,

pn(R) = pn(R') if length(sg) = length(sg/)
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Probabilities calculated
Forn>4and R,R' € AR,

pn(R) = pn(R') if length(sg) = length(sg/)

and
card(Q,) = <2> . <2>
whence
2
pale) = n(n—1)
pa(R) = 32”((""__21)) for medium R
pa(R) = (n=3)(n—2) for long R

6n(n—1)
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Some probabilities

lim pn(R) =

n—o0

0 if R is short or medium
1/6 otherwise
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Some probabilities

lim py(R) =

n—o0

{

0
1/6

if R is short or medium
otherwise

‘ pn(e) ‘ pn(m) ‘ pn(b)

o OOl S

1/6
1/10
1/15
1/28

1/9 | 1/36
1/10 | 1/20
4/45 | 1/15

1/14 | 5/56
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Consistent interval labelings as strings

L, = {se (2" —{O})* | each i € [n] occurs exactly twice in s}
Lo ={sr(1,2) | R€ AR}

10 | 20



Consistent interval labelings as strings

L, = {se (2" —{O})* | each i € [n] occurs exactly twice in s}
Lo ={sr(1,2) | R€ AR}

malar--an) == (a1 NA)---(anNA) and then delete any O
Ty (124]1]23]3]4]) = [2]23]3]

10 | 20



Consistent interval labelings as strings

L, = {se (2" —{O})* | each i € [n] occurs exactly twice in s}
Lo ={sr(1,2) | R€ AR}

malar--an) == (a1 NA)---(anNA) and then delete any O
Ty (124]1]23]3]4]) = [2]23]3]

i occurs exactly twice in s <= m(i(s) = HA
S ’: iR — i it} :BR(i, I,)

10 | 20



Consistent interval labelings as strings

L, = {se (2" —{O})* | each i € [n] occurs exactly twice in s}
Lo ={sr(1,2) | R€ AR}

malar--an) == (a1 NA)---(anNA) and then delete any O
Ty (124]1]23]3]4]) = [2]23]3]

i occurs exactly twice in s <= m(i(s) = HA
S ’: iR — i it} :BR(i, I,)
f:[n] x [n] = AR is consistent if for some s € L,
(Vi € [n))(Vi" € [n]) 7iin(s) = s(i,iny (i, 1)

10 | 20



Probabilities defined

Fact.
(i) Forall s € L, and (i,i") € [n] x [n],
there is a unique R € AR s.t. 7 in(s) = sr(i, ).
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(i) Forall s € L, and (i,i") € [n] x [n],
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Probabilities defined

Fact.
(i) Forall s € L, and (i,i") € [n] x [n],
there is a unique R € AR s.t. 7 in(s) = sr(i, ).
(ii) The map s — ws is a bijection from L, onto the set
of consistent labellings from [n] x [n] to AR,
where ws : [n] x [n] = AR sends (i, i’) to
the unique R € AR s.t. 7y in(s) = sr(i, ).

La(R) = {s € Lo | T12)(s) = 5r(L,2))

card(L,(R))

Pa(R) = card(Lp)

Calculate card(L,(R)) and card(L,) through superposition
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Superposition

&(, , s) < se{sg(i,i") | R€ AR}.

. . &(5,5/’ 5//)
) gl (1) gGsa s, s"(a Ua)
) &(s,s’,s") _ &(s,s’,s")

(i2) &(sa, s, s" ) (i3) &(s,s'a/,s"a’)

12 1 20
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Superposition

&(, , s) < se{sg(i,i") | R€ AR}.

. . &(5,5/’ 5//)
) gl (1) gGsa s, s"(a Ua)
) &(s,s’,s") _ &(s,s’,s")

(i2) &(sa, s, s" ) (i3) &(s,s'a/,s"a’)

@ (e, €,€) @ (, 6,) o (7 ’ )

L& = {s" | (Fse L)(3s' € L") &(s,5,s")}

12 1 20



A commutative monoid

£y =[1[1]
£n+1:£n& forn>1
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A commutative monoid

£y =[1[1]
£n+1:£n& forn>1

EQ(R) = ER(]., 2)

n(R) & for n > 2

131 20



A commutative monoid

£y =|1]1]
Loji = Lo &[n+1[n+1]  forn>1

EQ(R) = ER(]., 2)

Loni(R) = Lo(R) &[n 4 1[0t 1]  forn>2

Given a string s of length k > 1, the set s& consists of

k
° ( ) strings of length k,

e k(k+1) strings of length k + 1, and
k+1
2

N

°
7N

) + k + 1 strings of length k + 2

131 20



Cardinalities of £,(R) and L,

cn(R; k) = card({s € L,(R) | length(s) = k})

.y _ | 1 iflength(sg) =k
(R k) = { 0 otherwise

cri1(Ri k) = k(kz_ 1)(c,,(R; k) 4 2cn(Ri k — 1) + ca(R; k — 2))

14 | 20



Cardinalities of £,(R) and L,

cn(R; k) = card({s € L,(R) | length(s) = k})

.y _ | 1 iflength(sg) =k
c2(Rik) = { 0 otherwise
cri1(Ri k) = "("2‘ D (6o(R: k) + 260(R: k — 1) + co(R: k — 2))

2n—-2

card(Lp(e)) = Z cn(e; k)
k=2
2n—1

card(Ln(R)) = cn(R; k) for medium R
k=3

4
card(L,) = card(L,(e)) + 6(card(L,(m)) + card(L,(b)))
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card(L,(R))/card(L,) for some n
n Pn(e) pn(m) pn(b) 1 — 6pn(b)
2 1/13 1/13 1/13 7/13 ~ 0.5384615
3 0.031784841 | 0.061124694 | 0.100244499 0.398533007
10 | 0.002527761 | 0.021841026 | 0.144404347 0.133573915
100 | 0.000023782 | 0.002283051 | 0.164379652 0.013722086
500 | 0.000000959 | 0.000460405 | 0.166206102 0.002763387
1000 | 0.000000240 | 0.000230840 | 0.166435786 0.001385281
1500 | 0.000000107 | 0.000153893 | 0.166512755 0.000923468
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card(L,(R))/card(L,) for some n
n Pn(e) Pn(m) Pn(b) 1 — 6pn(b)
2 1/13 1/13 1/13 7/13 =~ 0.5384615:
3 0.031784841 | 0.061124694 | 0.100244499 0.398533007
10 | 0.002527761 | 0.021841026 | 0.144404347 0.133573915
100 | 0.000023782 | 0.002283051 | 0.164379652 0.013722086
500 | 0.000000959 | 0.000460405 | 0.166206102 0.002763387
1000 | 0.000000240 | 0.000230840 | 0.166435786 0.001385281
1500 | 0.000000107 | 0.000153893 | 0.166512755 0.000923468
p2(R) = 3 uniform distribution
R
p3(R) = #(R) transitivity table

- Lrear #(R)
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Models and probabilities

HaNs KamP: discourse time (from events)

when we interpret a piece of discourse — or a single
sentence in the context in which it is being used —
we build something like a model of the episode or
situation described; and an important part of that
model are its event structure, and the time structure
that can be derived from that event structure
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Models and probabilities
HaNs KamP: discourse time (from events)
when we interpret a piece of discourse — or a single
sentence in the context in which it is being used —
we build something like a model of the episode or
situation described; and an important part of that
model are its event structure, and the time structure

that can be derived from that event structure
by means of Russell’s construction.

(MLN) p(x) = L exp(S e wona(x)
- finite set / of f-o formulas ¢ and weights w, € R
- ny(x) is the number of x-groundings satisfying ¢

uniform if {¢ € I | w, # 0} = () (data-free)

(Here)  probability of aRa’, for arbitrary intervals a,a’ (R € AR)
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Stretches of time
Russell-instant = maximal subset of overlapping events

[2.']+[a]#]+[]]
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Stretches of time
Russell-instant = maximal subset of overlapping events

‘a,a’ —i—‘a‘a"—i—‘a"a‘

+ pre, post for all Allen relations on a,a’ — e.g.,

/

‘ala, a’la" ~ ‘a, pre(a’)la, a’lpost(a),a

all|a'| ~ ‘a,pre(a’)lpost(a),pre(a’)|post(a),a’

18 | 20



Stretches of time
Russell-instant = maximal subset of overlapping events

[2.']+[a]#]+[]]

+ pre, post for all Allen relations on a,a’ — e.g.,

/

‘ala, a’la" ~ ‘a, pre(a) | a, a’lpost(a),a

alla'| ~ ‘a,pre(a’)lpost(a),pre(a’)|post(a),a’

( interior ]
— ——

/ r
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Stretches of time vs moments of change
Russell-instant = maximal subset of overlapping events

[2.']+[a]#]+[]]

+ pre, post for all Allen relations on a,a’ — e.g.,

/

‘ala, a’la" ~ ‘a, pre(a) | a, a’lpost(a),a

alla'| ~ ‘a,pre(a’)lpost(a),pre(a’)|post(a),a’

( interior ]
—~ —~—

/ r

open-ended interiors vs bounding borders

-~

states events (dynamic)

- analyze in Monadic Second-Order Logic (MSO) over strings

18 | 20



Leibniz’ law (identity of indiscernibles)

x#y 2 (3P)~(P(x) = P(y)) (LL)
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Leibniz’ law (identity of indiscernibles)

x#y 2 (3P)~(P(x) = P(y))

- take P from a finite set A

x#ay =\ ~(Ps(x) = Pa(y))

acA

= \/ (5Pa(x) A Pa(y)) V (Palx) A =Ps(y))
acA
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Leibniz’ law (identity of indiscernibles)

x#y 2 (3P)~(P(x) = P(y)) (LL)

- take P from a finite set A

x#zay =\ ~(Pa(x) = Pa(y))

- replace # by adjacency S

xSy D x#ay (LLs,A)
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Leibniz' law (identity of indiscernibles) & projections

x#y D (3P)~(P(x) = P(y)) (LL)
- take P from a finite set A
XEpyY = \/_‘(Pa(X)EPa(Y)) be
acA
= \/ (_‘Pa(X) A Pa()/)) v (Pa(x) A _‘Pa()/))
acA
Pl(a)(X) 'Dr(a)(X) do
- replace # by adjacency S “time stepss only with change,”

xSy D x#ay (LLs,a)
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Thank You



