Intensions, Types and Finite-State
Truthmaking

Tim Fernando

Abstract Intensions are formulated as non-deterministic relations computed by
finite-state transducers, and types as regular languages in an account at bounded
but refinable granularity of the temporal structure of events. Strings representing
timelines are linked to deterministic finite automata encoding argument structure
and truthmakers, based on many notions of part.

1 Introduction

Formal investigations of natural language semantics descending from Carnap (1947)
and Montague (1974) analyze an expression e as its (Carnap-Montague) intension
CMI,, a function mapping an index i for evaluating e to the denotation (extension or
value) CMI, (i) of e at i. For a declarative statement e, the Fregean tradition is that
at a suitable index i, the denotation of e is one of two truth values, differentiating
truth from falsity. Truth values are replaced by types for more refined denotations in
type-theoretic approaches such as Ranta (1994), Cooper (2005) and Luo (2012) that
equate the truth of e at i with inhabitation of the type CMI, (i)

eistrueati <= the type CMI,(i) is non-empty. ()

The biconditional (T) suggests that an object of type CMI, (i) is, to borrow a term
from Mulligan et al. (1984) (MSS84), a truthmaker of e at i. Under the celebrated
propositions-as-types principle identifying logical forms with types, truthmakers of
conjunctions are pairs, truthmakers of implications are functions, and, in general, a
sentence’s logical form shapes the form of its truthmakers. This constraint on the
form of truthmakers is an instance of what MSS84 calls “the dogma of logical form.”
MSS84 rejects the dogma, advocating instead

T. Fernando ()
Trinity College, Dublin, Ireland
e-mail: Tim.Fernando@tcd.ie

© Springer International Publishing AG 2017 223
S. Chatzikyriakidis and Z. Luo (eds.), Modern Perspectives

in Type-Theoretical Semantics, Studies in Linguistics

and Philosophy 98, DOI 10.1007/978-3-319-50422-3_9

tim.fernando@tcd.ie

224 T. Fernando

the independence of ontological from logical complexity: ontologically complex objects
(those having proper parts) are not for that reason also in some way logically complex, any
more than there is reason to suppose that to every logically complex (true) sentence there
corresponds an ontologically complex entity which makes it true. [page 298]

Smith (1999) argues further that

there is no superficial feature (for example the logical form of the corresponding sentence)
which will allow us to determine in some quasi-automatic fashion the totality of all of that
to which reference is made in a given judgment. [page 286]

Calling a sentence’s logical form a “superficial feature” is disparaging; if work on
natural language semantics has shown anything, it is the non-triviality of constructing
logical forms for everyday language. Apart from what is explicit in the expression
e, there is typically information implicit in an utterance u crucial to understanding
e, as part of u. If that implicit information is to find its way into the type CMI, (i),
it is through the representation of u by the index i (serving as the context for asso-
ciating e with the logical form CMI, (i)). Insofar as i leaves out information about u
relevant to e (falling short of “the totality of all of that to which reference is made”),
CMI, (i) cannot be anything more than a “superficial feature” of e relative to u.
The importance of representing u is arguably the key insight of Discourse Repre-
sentation Theory (DRT, Kamp and Reyle 1993), which formulates i and CMI, (i)
alike as discourse representation structures, DRSs. From the perspective of Ranta
(1994), Cooper (2005) and Luo (2012), DRSs are just types. The common practice in
DRT, however, is to interpret DRSs model-theoretically (following the Montagovian
custom), rather than proof-theoretically (as in constructive type theories). Indeed, a
model for interpreting the DRS formulating the denotation CMI, (i) of e at i might
be incorporated into the index i, alongside, if not replacing, the DRS formulating i.

In the present paper, models are used as truthmakers inhabiting types, while indices
specify varying levels of bounded granularity, relative to which the models are under-
stood as approximations and can be assumed to be finite. The focus is widened from
a single index to many, approached bottom-up from their various parts that serve as
truthmakers. Refining the granularity may sharpen the approximations, but bounds
on any fixed level of granularity keep an approximation finite. More concretely, we
proceed in Sect. 2 from the example of truthmakers as events (Davidson 1967, page
91), analyzing Davidson’s sentence (1) as the attribute value structure (2), which we
reduce to the set (3) of six strings, against which to interpret the modal formula (4).

(1) Jones did it slowly, deliberately, in the bathroom with a knife, at midnight

[agent = jones [agent jones,
slow how slow,
how = i :
2) deliberate 3) how deliberate,
where = bathroom where bathroom,
with = knife with knife,
| when = midnight | when midnight |

(4) (agent) jones A (how) slow A (how) deliberate A (where) bathroom A
(with) knife A (when) midnight

tim.fernando@tcd.ie

Intensions, Types and Finite-State Truthmaking 225

Temporal relations between events (including speech events useful in accounts of
tense) are specified by locating them in a string s that encodes a timeline. Toward
this end, we associate an event ¢ with a set .Z(q) of strings characterizing ¢ in that
for all positions i and j in s withi < j,

g occurs at (i, j) withins < sij e Z(q)

where sl.j is the substring of s from position i to j (given, for s = oy - - - «,, by
a;o41 - - - oj). For example, we might represent ¢ by symbols b, and ¢, specifying
where ¢ begins and ends if we let .Z’(g) be the set of strings where b, and e, occur
exactly once, namely, at the first and last string positions. More interesting examples
of Z(q) are described in Sect. 3, locating an arbitrary finite set of events within a
single string s through a satisfaction relation = with formulas ¢. For many formulas
@, there exist a binary “part” relation <, between strings, and a set T (¢) of strings
that serve as truthmakers according to the biconditional (%)

sEe = @G <,9) 5 €T(p). (%)

(1) says: s satisfies ¢ precisely when s has a part that is a truthmaker of ¢. For
instance, (1) holds with

e ¢ as the formula occurs(q)
e T(p) as the aforementioned language .#’(¢), and
e <, as the factor relation, summing over substrings s/ of s

s' factors = s’ = sij for some positions i, j in s.
Implicit in (¥) is a set C,, of strings, to which s is assumed to belong, corresponding
to the domain of the intension CMI,, of ¢, understood as a function mapping s € C,,
to the set of parts of s that are truthmakers of ¢
CMl,(s) = {s" € T(p)|s" <, s}
so that
s =@ <= CMlI,(s) is non-empty.

The intuition is C,, represents the presuppositions of ¢, while T (¢) represents the
assertion at issue in @, linked to C, by a part relation <. A variety of part relations
is handy in, for example, differentiating sentences made up of the same words, such

as

John loves Mary # Mary loves John

tim.fernando@tcd.ie

226 T. Fernando
analyzed in Sect. 2 through various notions of part for the inequivalence
love A (agent)john A (patient)mary = love A (agent)mary A (patient)john.

Beyond multiple notions of part, it will prove useful in Sects.2 and 3 to work with
many sets C,, of constraints, as well as sets 7 (¢) of truthmakers. While varying these
notions, care will be taken to keep them finite-state so that the relation

{(s,5) € Cy x T(p) | s" <, s}

encoding CMI,, is computed by some finite-state transducer (in the interest of com-
putational tractability and cognitive plausibility).

2 Attribute Value Structures as Events and States

Recalling lines (1)—(4) from the Introduction, the attribute value structure (2) for
Davidson’s example (1) of event modification/predication follows an established
tradition in computational linguistics that has received renewed attention with the
interestin frames (e.g., Fillmore 1982; Petersen 2007; Cooper 2016) as well as linking
semantics (Beaver and Condoravdi 2007; Champollion 2015). The connection with
modal logic illustrated by (4) is studied at length in, for example, Blackburn (1993).
The interpretation against a language (i.e., set of strings) such as (3) is emphasized
in Fernando (2016), from which the present section borrows freely.

2.1 Derivatives

A key idea is that given a language L and a string s, the s-derivative of L is the set
Ly = {s'|ss" €L}
of strings that put after s belong to L (Brzozowski 1964). The chain of equivalences

ajay---ap, €L < ay---a, € L,
& az---ap € Ly,
—
& €€ Ly .y,

from a string aj - - - a, to the empty/null string & means that L is accepted by the
deterministic automaton with

tim.fernando@tcd.ie

Intensions, Types and Finite-State Truthmaking 227

s-derivatives L as states

initial state L = L,

a-transitions from L; to Ly, (for every symbol a), and
final states L, such that ¢ € L.

The Myhill-Nerode theorem says that a language L over a finite alphabet A is regular
iff the set {L; | s € A*} of derivatives of L is finite (e.g., Hopcroft and Ullman
1979); indeed, the Myhill-Nerode equivalence ~; between strings with the same
continuations in L is just equality of derivatives

s~.§ <<= L,=1Ly.
Note that L is non-empty precisely if s is the prefix of some string in L. Moreover,
if L, is empty then so is L, for every symbol a. That is,) is a sink state that we
may safely exclude from the states of the automaton above, at the cost of making
the transition function partial. Let us define an A-state to be a non-empty subset g

of A* that is prefix-closed (i.e., for all sa € g, s € g). An A-state g can then make
an a-transition to its a-derivative g, precisely if a € q.

2.2 Satisfaction

Now, for any set X, let Fin(X) be the set of finite subsets of X. Fix an infinite set Lab
of labels, and for A € Fin(Lab), let sen(A) be the set of formulas generated from
a € A according to

o= Tl-plenrg|(ay
(Hennessy and Milner 1985). We interpret these formulas over A-states g, treating T

as a tautology, — as negation, A as conjunction, and (a) as a diamond modal operator
for a-transitions

g Ef{a)p < aecqgandq, F ¢.

We extend (a)¢ from a € A to strings s € A*, setting ()¢ to ¢, and inductively,

{as)p = (a)(s)¢

from which it follows that

(ap---ap)p = (a1)---{an)o.

tim.fernando@tcd.ie

228 T. Fernando
and for every A-state ¢,

gE)e < seqandgs = o.

Next, given a string s € Lab™ and a set A € Fin(Lab), we compute the longest
prefix of s that belongs to A* by the function 74 : Lab® — A* defined by

mwale) = ¢

[anA(s) ifae A

ma(as) =)
alas) g otherwise.

The A-restriction of alanguage g C Lab™ is the image of g under 74

gl A = {ma(s)|se€q}.

If g is an Lab-state, then its A-restriction, g [A, is an A-state and is just the intersec-
tiong N A* with A*. A-restrictions are interesting because satisfaction = of formulas
in sen(A) can be reduced to them.

Proposition 1 For every A € Fin(Lab), ¢ € sen(A) and Lab-state q,
g9 < qlAFEyg

and if, moreover, s € q | A, then

gkE e < @A E=o.

Proposition 1 is proved by a routine induction on ¢ € sen(A) ands € g | A. Thereis
structure lurking in Proposition 1, taken up in Fernando (2016). To see the relevance
to lines (1)—(4) above, let Lab contain the finite set

A := {agent, how, where, with, when,

jones, slow, deliberate, bathroom, knife, midnight}

so that if g is the A-state {agent, how, where, with, when,e}, then the union of g
with (3) can be construed as the attribute value structure (2) of type ¢ inasmuch as
for every s € g, its s-derivative is non-empty. For an account of record types (which
have proved useful in linguistic semantics; e.g., Cooper and Ginzburg 2015), it is
helpful to close the set sen(A) of sentences ¢ under the construct [1z¢, for every
B C A, with

gEOpp < (seqNnNB)qg =g

for every A-state g. Proposition 1 holds with this modification to sen(A) and |=.

tim.fernando@tcd.ie

Intensions, Types and Finite-State Truthmaking 229

To accommodate open-ended descriptions suggested by Davidson’s sentence (1),
we have left open exactly what the set Lab of labels is, allowing it to be infinite so
that it may have arbitrarily large finite subsets. In particular, we may include in Lab
any number of names such as jones that picks out a state

q = (jones) T <= ¢ is named ’jones’

just as world variables in Prior (1967) and nominals in Hybrid Logic (e.g. Blackburn
1993).

3 Timelines as Strings

For temporal relations between events belonging to some set Q, it will be convenient
to fix a linear order (7', <) such as the real line and assume each event g € Q 1is
assigned an interval t(g) € T. (We will weaken this assumption later.) Let us map
each t € T to the function f; : Q — {0, 1, 2} comparing ¢ to each interval t(g) as
follows

0if (V' et(g)t <t
filg) == 11 ift e1(q)

2 otherwise (i.e., (Vt' € t(g)) t' < t).

We partially order functions f, f': QO — {0, 1, 2} componentwise
f=f & (g0 fl@ =@
The map t — f; preserves <
t <t implies f; < fy

whilst respecting the intervals 7(q) in that whenever f;, = f, and g € Q,

ret(q) < t €1(qg).
Now, assuming Q is finite, then so is the set

I, .= {filteT}

and there is a unique string a1a; - - - a, € T, such that

tim.fernando@tcd.ie

230 T. Fernando

(where a < a’ abbreviates the conjunction a < a’ and a # a’). Moreover, within
ap ---ay, we can locate each g € Q in the image of t(g) under t — f;

Trlg]l == {fi |t € 1(q)}

and agree that
g occurs at (i, j) withinay ---a, <<= {a|i <k =<j} = t/lql.

The existence of the string a; - - - a, depends on the finiteness of Q. The length n of
the string grows as we expand Q to a larger finite set, increasing the cardinality of a
function f; : Q — {0, 1, 2}, construed as a subset of the finite set Q x {0, 1, 2}. For
anyg € Qand f: Q — {0, 1, 2}, if f is the subset {(g, f(q))} of f, then clearly,

al ---al € {(q,0}*{(g, D} {(g,2)}".

3.1 Fluents and Monadic Second-Order Logic

Moving away from the particular functions f; in T;, let us encode a finite timeline
as a string, using temporal propositions, called fluents for short (generalizing over
the pairs (g, i) in f;). We work with finite sets X' of fluents for bounded granularity,
enlarging X' to lengthen the strings (refining the grain). The idea is familiar from the
representations of a calendar year at various granularities. The set X' = {Jan, Feb,
..., Dec} of months suggests the string

Sy = |Jan|Feb|---|Dec|

of length 12; enlarging X' with days d1,d2,...,d31 refines sy to the string

Jan,d1 | Jan,d2 |- --|Jan,d31 | Feb,dl |- - -| Dec,d31

of length 366 for a leap year (drawing boxes instead of the usual curly braces
{ and } around sets qua symbols to suggest a film strip). While it is irresistible
to call the boxes snapshots, a change in X' can cause a box to split, as insy
does (30 times) on adding days

~» |Jan,d1 |Jan,d2|---|Jan,d31 |

Similarly, a common Reichenbachian account of the progressive puts a reference
time R inside the event time E, splitting into 3 boxes

[E] ~ [E[ER][E

tim.fernando@tcd.ie

Intensions, Types and Finite-State Truthmaking 231

(one before, one simultaneous, and one after R). We can also encode runs of a finite
automaton as strings. Take, for example, the finite automaton .27 with three transitions

a b
a

over the initial state g¢ and final (or accepting) state ¢;. A run of 7 is a sequence of

transitions that .27 makes, such as ¢ 4 q> 2 q1, in the course of which, the finite
automaton ./ changes its current state from g to g, to ¢;. We can encode this run
as|a, gz | b, q |, leaving out the automaton’s initial state go.

Encoding runs as strings is useful for expressing the languages accepted by finite
automata in Monadic Second-Order logic (MSO), one half of Biichi’s theorem (e.g.,
(Libkin 2004), Theorem 7.21, pp 124-126). Strings are construed as models of
predicate logic, associating a finite set X' with a signature Xg specifying a unary
relation symbol P,, for eacha € ¥, alongside a binary relation symbol S. The intent
is that § express the successor relation between string positions, and P, pick out the
positions where a occurs. For instance,

IxJy(S(x, y) A P,(x))

says a occurs before the end of the string. Confining our attention to finite models
of size n > 0, we write [n] for the set of integers from 1 to n

[n] == {1,2,...,n}
(with [0] = @) and S,, for the successor relation on [7]
S, = {G,i+1)]i €[n]andi < n}
(with S} = Sy =). A Xg-model is a tuple
M = ([n], $y{P," }aex)

(for some n > 0) mapping each a € X' to a subset PaM of [n]. For each i € [n], let
us collect all a € X such thati € PM in

o = lae X |iePM).

There is a bijection between Xg-models M and strings «; - - - «,, over the powerset
2% of ¥, as the equivalence

ieP/ < aecq

tim.fernando@tcd.ie

232 T. Fernando

goes from M to «; - - - «, and back. That is, a string o - - - o, € (2%)* can serve as a
Y's-model against which to interpret predicate logic formulas such as 3x3y (S(x, y) A
P,(x)). We can add any finite number of fluents to X', working with the set Fin(®) of
finite subsets of some fixed large set @ of fluents, including second-order and first-
order variables (the latter of which are constrained to occur at exactly one position
in strings representing MSO-models and valuations). A string «; - - - &, of subsets «;
of ® has a natural projection in (2%)" given by componentwise intersection with X

pr(ay---ay) = (¢; NY) - (a, N)

defining a function pyx : (2)* — (2¥)*. For example,

p{a,b}(a,c a,b c,d) = lala,b

We can reduce satisfaction of an MSO-formula ¢ to ¢’s vocabulary
voc(p) = {a € ® | a occurs in @}

using the function pyoc(e)-

Proposition 2 For all X € Fin(®), s e (2%)*, and MSO-formula ¢ with
voc(p) € X,

N |: % — :Ovoc(go)(s) |: Q.

3.2 Subsumption and Superposition

It will often be convenient to put aside the subscript X' on py and work with a non-
deterministic generalization of py given by componentwise containment 2 between
equally long strings of sets «; and B;, called subsumption >

ay -, > BB, < n=mandp; Cq; fori € [n]

(Fernando 2004). Note that s > px (s) for all s € (29)* and ¥ € Fin(©®). A useful
accompaniment to subsumption > is superposition &, which, given two strings of
the same length n, returns their componentwise union

(23] "'an&IBI ,Bn = (o Uﬁl)"'(anuﬁn)
so that for strings s and s’ of the same length

s> = s&s' =s.

tim.fernando@tcd.ie

Intensions, Types and Finite-State Truthmaking 233

To extend superposition and subsumption to languages L and L', we collect the
superpositions of strings of the same length from L and L’ for

L&L := {s&s'|s €L, s’ € L' and length(s) = length(s)}
and agree that L subsumes L' if L is contained in the superposition L&L’
L>L < LCL&L.

The intuition is that strings in a language describe possibilities which combine dis-
junctively so that conflating (as usual) a string s with the language {s},

s> L & @Gsel)s>ys.
The previously mentioned association of a language -Z’(¢) with an event ¢ such that
g occurs at (i, j) withins <= sij e Z(q)
(for any string s) can often be put as
g occurs at (i, j) withins < sij > Z.(q)

with £ (q) taking the form (>).Z,(g), where for any relation R between strings and
any language L, we write (R) L for the preimage of L under R

(RYL := {s| (3s" € L) sRs'}.

For example, to mark the beginning of g by b, and its end by e,, let

sk

Z(q) = |b, ’“&U“eq = |by.e, |+]bg] [|e, |

Generalizing from an event ¢ and a particular choice of .Z(¢), consider the problem
of attaching brackets to a string s at positions i and j such that s subsumes a
particular language M of interest (e.g. -Z,(q)), assuming that neither [nor | occurs
in 5. We use the language of brackets

2y = [L]+[1][]1]

to attach a pair of brackets to a language L (of strings s) via the superposition

L& [T AT

which we then intersect with the superposition of L with[['(M&Z)[|

tim.fernando@tcd.ie

234 T. Fernando
L& [T(M&AT
to ensure the substring bracketed subsumes M, yielding the language
LiM] = (L& [T A[]) N L& [J(M&L)[]).

To mark any number of occurrences of an M-string in L (and not just one, as in
L\[M]), we modify the superpositions in L,[M] slightly for

L[M] = L&(i”[])* N L&(M&ﬁ])*

where for any language L’, the language L', consists of any number of occurrences
of strings in L’ glued together with empty boxes

L, = [TW*

To require that at least one occurrence of M be marked, we intersect L[M] with
(hf) (E), where the relation hf (for “has factor”) is the inverse of the factor relation

shfs" < ' =s/ forsomei, j.

For at least n occurrences of M, intersect L[M] with (hf)(>)([*)”. But how do

we make sure that all occurrences of M in an s € L are bracketed?

As the bracket pairs in .Z}; do not cross (i.e., a left bracket [cannot appear after
a [that has not yet been closed by a matching]), there is no hope catching crossing
occurrences of M in L by superposition with £};. But suppose

(1) any two crossing occurrences of M in L are covered by a larger occurrence of
M in L.

(g) holds, for example, if for all a;---a, in L and integers i, j, i, j* such that
l<i<i’"<j<nandi <j <n,

aj---a;j>M and a;---ap > M implies a;---amax(j,j) > M

— a property familiar in the literature on statives, illustrated by the inference in (5).!

(5) Al was asleep from midnight to 3 am. He was also asleep from 2 to 4 am.
.. Al was asleep from midnight to 4am.

Under (f), we can bracket maximal M-occurrences in L as follows. First, we revise
7} by adding an auxiliary symbol e to fill in boxes between [and]

n terms of temporal traces 7(q), the idea is that if ¢ and ¢’ are Q-states such that t(g) and t(g’)
intersect, then there is a Q-state with trace t(g) U t(g’).

tim.fernando@tcd.ie

Intensions, Types and Finite-State Truthmaking 235

Lo = 3{]&(+ 'D) = [L]+[t]«][1]

and turn L[M] into
LiM] = L&(Zu)s N L&(M&Lu))..

To ensure that every substring of L subsuming M is contained between brackets, we
then intersect L,[M] with the set of strings s such that every factor of s that subsumes
M also subsumes a factor of .Z},). Next, we provide a finite-state method to form
such a language and more.

3.3 Constraints and Compression

For any languages L; and L,, let L = L, be the set of strings s such that every
factor of s subsuming L; also subsumes L,. The counter-examples to the constraint
L, = L, form the language

cEX[L = L'l = (hf)((>)L, N (>)Ly)

of strings with factors that subsume L but not L,, which we negate for

L= L, = cEx[L| = L;]

(showing L| = L, is aregular language if L and L, are). Now, assuming (]) above,
we can bracket all maximal M -strings in L by intersecting L,[M] with the constraint

M = Marked

where Marked is the set of factors of strings in .Z{,)

Marked := (+ 8) |E|* (+ 8) .

For example, if a is a fluent representing a stative, then for M = @+’ the brackets
in
LJM]N (M = Marked)

pick out the intervals of the stative’s so-called pofective (Galton 1984. page 81).
Recall from the beginning of this section, the functions f; : 0 — {0, 1, 2} con-
structed from intervals t(g) C T assigned to events g € Q. This construction gen-
eralizes to the situation where g € Q is replaced by a fluent a € ¥, and 7(q) by a
union 7 (a) of < m intervals of T, for some fixed positive integer m. We map a point
t e Ttoafunctiong; : ¥ — {0,1,...,2m} where foralla € X, g;(a) is chosen to

tim.fernando@tcd.ie

236 T. Fernando
be the smallest integer in {0, 1, ..., 2m} such that
g:(a)yisodd <= tert(a) (%)

and whenevert’ < t, g, (a) < g,(a). Now suppose X is finite. Then so is the function

space X — {0, 1, ..., 2m} into which the linearly ordered set T is projected by the
mapping ¢ — g;. And as with the f;’s for finite Q, there is a string b - - - b, of
functions from X to {0, 1, ..., 2m} such that

{g;|teT}y={b;|ie[n]} and b < by <--- < b,

where < on functions g, g’ : ¥ — {0, 1,...,2m} is defined componentwise as
before

§<g = (VaeX)ga) =g (.

The string by - - - b, belongs to (22')*, where X is the product ¥ x {0, 1, ..., 2m},
making it natural to construe a pair (a,i) € X' as a fluent. Under the biconditional
(§) above, the fluent a is essentially the disjunction \/{(a, i) | i € [2m] and i is odd}.
In practice, however, the extra information i that (a, i) provides over a is not always
available, and it is useful to leave m and i € {0, 1, ..., 2m} unspecified with strings
over the alphabet 2%, as opposed to the function space ¥ — {0, 1, ..., 2m}.

Behind the reduction of 7' to by - - - b, 1s “McTaggart’s dictum that ‘there could be
no time if nothing changed™ (Prior 1967, page 85), which we can implement over
the alphabet 2% by working with strings oy - - - o € (2%)7 that are stutter-free in
that o; # o; 11 fori from 1 to k — 1. An equivalent way of characterizing stutter-free
strings is through the biconditional

s is stutter-free <= s = bc(s)

where the block compression bc(s) of s compresses blocks a/ of j > 1 consecutive
occurrences in s of the same symbol « to a single «, leaving s otherwise unchanged

ke(as’) if s = aas’

e(s) = a be(Bs') if s = afs’ witha # B
s otherwise.
For example,
ke ([TTefefelev[ev]e)) = [Te[ev]e)

Apart from applying bc, we can make a string s stutter-free by introducing a fresh
fluent, say tic, superposing s with

tim.fernando@tcd.ie

Intensions, Types and Finite-State Truthmaking 237

Table 1 A minimal picture of +durativity and ¢-telicity

—durative +durative
—telic Semelfactive Activity
ap(f) | ef(f) ap(f) | ap(f), ef(f) | | ef(f)
+telic Achievement Accomplishment
o[y —~p.ap(/) [~¢. ap(f). el (/) | 0. el (f)

(lieT])" (Tl +e)

to turn, for instance, |a | a | a |into | a,tic | a | a,tic | Similarly, to extend the string

Sy = |Jan|Feb|---|Dec|

of length 12, we add days d1,. .., d31 to X' := {Jan,. . .,Dec} for

Jan,d1 [Jan,d2 |- - -|Jan,d31 | Feb,d1 |- - -| Dec,d31

which py maps to

|Jan |31---|Dec |31

and which &c maps back to sx. The crucial point is that stutter-freeness ensures the
vocabulary is large enough to express the distinctions of interest.

The choice of vocabulary is key to the Vendler classes described in Dowty (1979)
and variants thereof (e.g. Moens et al. 1988). Given a representation of an event g at
granularity X as a string strs(q) € (2*)*, we define g to be

o Y-telicif stry(q) > | —¢p + for some fluent ¢ € X' (marking the culmination

of q)
e Y -dynamic if be(strx(g)) has length > 2
e Y -durative if be(strx(q)) has length > 3

(Fernando 2015). Apart from transitions | —¢ | ¢ | in which a fluent ¢ representing a

state becomes true, we form transitions | ap(f) | ef (f) |recording an effectual appli-
cation of a force f, with the intuition that

ap(f) says “aforce f is applied”

ef(f) says “a(previous application of) force f was effectual.”

The transitions |ap(f) |ef(f) | and | —¢ | ¢ | describe semelfactives and achieve-

ments, respectively, together forming the non-durative column in Table 1.

tim.fernando@tcd.ie

238

Iterating the transitions

ap(f)

ef(f)

Z(f)

yields the language

= |ap(f)

ap(f), et (f) || ef (f)

which we superpose with D]]+ for the language

ap(f)

ap(f). et(f) | [ef(f)

in Table 1’s activity entry (—telic, +durative), and superpose further with

T. Fernando

%

a2

for Table 1’s accomplishment entry (+telic, +durative). Note that the block com-
pression of the +durative strings in Table 1 have length 3 (as required). Moreover,
the four languages in Table 1 can be obtained from .Z(f) and [D using the three

operators

if we let

force(¢) be ap(f) for some force f withef(f) :=¢

then

e the constraint

dur(L) =
non-dur(L) :=

cul(L,) =

says @ persists backward unless a force was applied making it true

e the constraint

@

o] = ([v

:>(§0

L& (17

L — dur(L)

L& —mp

that pick out the durative, non-durative and ¢-telic strings in L, respectively. The
notion of force alluded to in .Z(f) is linked to fluents ¢ that persist forward and
backward in the absence of the application of a force against or for ¢. More precisely,

+

force(yp))

+

force(—yp))

says @ persists forward unless opposed by a force, and

e the constraint

force(p)

says an application of a force for ¢ is effectual unless opposed.

=

%

+ | force(—g)

)

tim.fernando@tcd.ie

Intensions, Types and Finite-State Truthmaking 239

We do not assume that for every force f, there is a fluent ¢ with ef (f) := ¢ that is
subject to the three constraints above. The first two constraints (i.e. inertia) may fail
to apply when the change described is incremental; for example, an increase in the
degree deg[y] associated with a claim

tdegly] == \/ (d <degly)) A Previous(degly] < d))
deD[y]

over some set D[] of {r-degrees (such as temperatures, for the claim i that “the
soup is hot”). It is understood above that Previous is the obvious temporal operator
which, in the case of 1 deg[v], unwinds to the language

tdeglyl| & D |degly] <d|d < degly]

deDly]

where L < L’ abbreviates the intersection of L = L’ and L' = L. To keep the
alphabet of the language finite, the set D[¢] must be assumed finite, and indefinitely
refinable, as any finite set chosen for D[¢] can be expanded (with a larger vocabulary
Y € Fin(©®)).

4 Conclusion

Attribute value structures are formulated as states of deterministic finite automata
serving as models of Hennessy-Milner logic in Sect. 2. States are located in strings
encoding timelines in Sect. 3, based on a mapping of a state g to a language -Z(q)
and a satisfaction relation = such that for any string s and string positions i, j,

s,i, j = occurs(q) <= Sij e Z(q) (%)

(where (ay --- an){ :=a; ---a;). The language .Z(q) typically has the form of a set
(>).Z,(q) of strings that subsume some language .Z,(q) C (2%)*, in which case
two notions of part, s — s; and s > s’, take 5 in () to an element s’ € Z,(q)

s,i, j Eoccurs(q) < @35’ € % (q)) sij > s
= se(HE)L@.

By contrast, truthmaking in Fine (2015) is based on a single part relation C for a state
space (S, C), on top of which a subset S¢ C S of possible states is introduced for
a modalized state space (S, S 0, C). Of course, just as SO might be constructed by
intersecting any number of constraints, so too might = be composed from any number
of part relations — for example (switching to the converse 1), the composition ,’ : >

of l] followed by >, under which the preimage of a language L can be calculated

tim.fernando@tcd.ie

240 T. Fernando

through two successive preimages

figuring in (x) above. The question then, however, is whether it is helpful to keep the
various constraints and part relations distinct, or whether undifferentiated lumps S
and C suffice. The present work proceeds from the hypothesis that the former is the
case.

A simple sentence such as (6) may well be made true by an event of Brutus
stabbing Caesar, but noteworthy too is the past tense in stabbed.

(6) Brutus stabbed Caesar.

The approach above analyzes tense by grounding an attribute-value account of events
in a timeline, encoded by a string. In particular, a Hennessy-Milner formula ¢ can
be interpreted relative to a string s and string positions i, j as the disjunction

\/ {occurs(q) | g € domain(£) and q =")

over states g satisfying v (in the sense of Hennessy-Milner), setting

s, I, EYV — s,-j € U (L(q) | q € domain(ZL) and g =™)
and treating a state ¢ as part of a string s according to .Z
g <ygs < q €domain(Z)ands € L (q)

so that

s jEV &= @Gq<zs)qE™y.
The reference interval (i, j) is manipulable through modal operators

s,i,j E(R)¢ << Gk, j)IRNk,l)ands, k,l =g

with, for example, (i, j) shifted back, assuming

@, DIRIGKk,) <— l=k=<l=<i=<].
Each of the parameters i, j (alongside s, to the left of =) is akin to a free variable

in an MSO-formula, and can be absorbed into a string by attaching fresh fluents
[and] to the ith and jth positions of s for the string

sij = s& Di_] [& Dj_]] y

tim.fernando@tcd.ie

Intensions, Types and Finite-State Truthmaking 241

The fluents [and] are fresh insofar as they do not already occur in s. While we might
require [and] to have unique occurrences in s; ;, it is not obvious that whenever
s, i, j = ¢, a truthmaker for ¢ must be part of the factor sij of s. Indeed, if (i, j)
marks the speech time, then reports in the past tense describe events prior to (i, j).

The satisfaction relation = above is not exact in the way (Fine 2015) understands
truthmaking to be. That is, the string s; ; need not be wholly relevant to a formula ¢
thatis =-satisfied by s, i, j (Fernando 2015b). Of course, one may well challenge the
presupposition here of a string s. A more common starting point is a linearly ordered
set 7' of temporal moments (such as the real line; e.g., Kamp and Reyle 1993). For
any such 7', Sect.3 shows how to extract a string of

e functions from a set Q of events to {0, 1, 2}, based on projections of events g € Q
as intervals 7(q) of T (treating g’s as particulars), or

e functions from a set X' of fluents to {0, 1, ..., 2m}, from projecting fluents a € ¥
to unions 7 (a) of < m intervals (treating a’s as finitely repeatable universals).

Both constructions depend on the choice of a finite set; in the former case, Q; in the
latter, . The aforementioned languages . (q) € (2%)* bring these constructions
together (through the alphabet 2% of #(g)). We come back to a formula ¢ and the
language

ZL(p) = {sij|s, i,] F ¢}

it defines. .2 (¢) is regular precisely if ¢ can be formulated in MSO. Such formula-
bility (in principle) need not mean restricting the practice of finite-state methods to
MSO (any more than say, to regular expressions). For declarative (as opposed to pro-
cedural) perspectives, there is an abstract notion of an institution due to Goguen et al.
1992), covering MSO and Hennessy-Milner logics on deterministic finite automata
(Fernando 2015a). Propositions 1 and 2 (in §§2.2 and 3.1 above) establish the sat-
isfaction condition characteristic of institutions, highlighting certain projections,
q > (q [A)s and pyoc(y), that return parts dependent on the bounded granularity
chosen, A and voc(¢). For this reason, Propositions 1 and 2 have been singled out
from the other assertions made above. In line with the bias towards logical pluralism
and heterogeneity in Goguen and Burstall (1992), the intention is not to downplay
other notions of part or of truthmaking. The point rather is to illustrate the diversity
of such notions, and the usefulness in lifting a notion 7' (¢) of truthmaking to a set
C of constraints and a part relation = (analogous to a modalized state space in Fine
(2015) for a language

ZLp) = CN{IZT ()

that is regular, provided T (¢) and C are regular and = is computed by a finite-state
transducer.

tim.fernando@tcd.ie

242 T. Fernando

References

Beaver, D., & Condoravdi, C. (2007). On the logic of verbal modification. In M. Aloni, P. Dekker
& F. Roelofsen (Eds.), Proceedings of the 16th Amsterdam Colloquium (pp. 3-9). Amsterdam.
Blackburn, P. (1993). Modal logic and attribute value structures. In M. de Rijke (Ed.), Diamonds

and Defaults (pp. 19-65). Netherland: Kluwer.

Brzozowski, J. A. (1964). Derivatives of regular expressions. Journal of the ACM, 11, 481-494.

Carnap, R. (1947). Meaning and Necessity (2nd ed.). Chicago: University of Chicago Press.

Champollion, Lucas. (2015). The interaction of compositional semantics and event semantics.
Linguistics and Philosophy, 38, 31-66.

Cooper, R. (2005). Records and record types in semantic theory. Journal of Logic and Computation,
15(2),99-112.

Cooper, R. (2016). Frames as records. In A. Foret et al. (Ed.), Formal Grammar (Vol. 9804). LNCS
Heidelberg: Springer.

Cooper, R., & Ginzburg, J. (2015). TTR for natural language semantics. In S. Lappin & C. Fox, et
al. (Eds.), Handbook of Contemporary Semantic Theory (pp. 375—407), (2nd ed.). New Jersey:
Wiley-Blackwell.

Davidson, D. (1967). The logical form of action sentences. In N. Rescher (Ed.), The Logic of
Decision and Action (pp. 81-95). Pennsylvania: University of Pittsburgh Press.

Dowty, D. R. (1979). Word Meaning and Montague Grammar. Boston: Reidel.

Fernando, Tim. (2004). A finite-state approach to events in natural language semantics. Journal of
Logic and Computation, 14(1), 79-92.

Fernando, T. (2015). The semantics of tense and aspect: A finite-state perspective. In S. Lappin
& C. Fox. (Eds.), Handbook of Contemporary Semantic Theory (pp 203-236), (2nd ed.). New
Jersey: Wiley-Blackwell.

Fernando, T. (2015a). Two perspectives on change and institutions. Formal Ontologies for Al http://
ceur-ws.org/Vol-1517/JOWO-15_FOfAI_paper_2.pdf.

Fernando, T. (2015b). Negation and events as truthmakers. 20th Amsterdam Colloquium, pp 109-
118, http://semanticsarchive.net/ Archive/mVkOTk2N/AC2015-proceedings.pdf.

Fernando, T. (2016). Types from frames as finite automata. In A. In Foret, et al. (Eds.), Formal
Grammar (Vol. 9804), LNCS (pp. 19-40). Heidelberg: Springer.

Fillmore, C. J. (1982). Frame semantics. In Linguistics in the Morning Calm (pp 111-137) Seoul:
(Hanshin Publishing Co.)

Fine, K. (2015). Truthmaker semantics. Draft chapter for the Blackwell Philosophy of Language
Handbook. New Jersey: Wiley-Blackwell.

Galton, A. (1984). The Logic of Aspect: An Axiomatic Approach. Oxford: Clarendon Press.

Goguen, Joseph A., & Burstall, Rod M. (1992). Institutions: Abstract model theory for specification
and programming. Journal ACM, 39, 95-146.

Hennessy, M., & Milner, R. (1985). Algebraic laws for non-determinism and concurrency. Journal
ACM, 32(1): 137-161.

Hopcroft, J., & Ullman, J. (1979). Introduction to Automata Theory, Languages, and Computation.
Boston: Addison-Wesley.

Kamp, H., & Reyle, U. (1993). From Discourse to Logic. Netherland: Kluwer.

Libkin, L. (2004). Elements of Finite Model Theory. Heidelberg: Springer.

Luo, Z. (2012). Formal semantics in modern type theories with coercive subtyping. Linguistics and
Philosophy, 35(6), 491-513.

Moens, M., & Steedman, M. (1988). Temporal ontology and temporal reference. Computational
Linguistics, 14(2), 15-28.

Montague, R. (1974). Formal Philosophy. London: Yale University Press.

Mulligan, K., Simons, P., & Smith, B. (1984). Truth-Makers. Philosophy and Phenomenological
Research, 44(3), 287-321.

Petersen, W. (2007). Representation of concepts as frames. In Complex Cognition and Qualitative
Science. The Baltic International (pp. 151- 170). Riga: University of Latvia.

tim.fernando@tcd.ie

Intensions, Types and Finite-State Truthmaking 243

Prior, Arthur N. (1967). Past, Present and Future. Oxford: Clarendon Press.
Ranta, A. (1994). Type-Theoretical Grammar. New York: Oxford University Press.
Smith, B. (1999). Truthmaker realism. Australasian Journal of Philosophy, 77(3), 274-291.

tim.fernando@tcd.ie

