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BISIMULATIONS AND PREDICATE LOGIC
TIM FERNANDO

Abstract. Elementary (first-order) and nonelementary (set-theoretic) aspects of the largest bisimulation
are considered with a view toward analyzing operational semantics from the perspective of predicate
logic. The notion of a bisimulation is employed in two distinct ways: (i) as an extensional notion
of equivalence on programs (or processes) generalizing input/output equivalence (at a cost exceeding
H} over certain transition predicates computable in log space). and (ii) as a tool for analyzing the
dependence of transitions on data (which can be shown to be elementary or nonelementary. depending
on the formulation of the transitions).

Bisimulations (Park [29]) provide a notion of equivalence on states undergoing
transitions. This equivalence, called bisimilarity and denoted <, has proved to
be of interest both to theoretical investigations into the semantics of programs
and to more practical work directed toward the automatic verification of cer-
tain specifications. In employing bisimilarity as a computational tool, one is
understandably concerned that bisimilarity fall within the realm of mechanical
decidability, isolating, if necessary, conditions (on transitions) pushing down its
complexity (see Christensen, Hirshfeld, and Moller [13] and the references cited
therein). From a theoretical standpoint, however, it makes sense to analyze the
notion of a bisimulation in its fullest generality and glory, keeping in mind that
the greater the scope of a notion the more potentially interesting it is as an object
of study. In particular, given the proliferation of various notions of equivalence
on programs, the question arises as to whether these notions can be reduced to
bisimilarity under suitable translations of the underlying transition systems (the
intuition being that a transition system represents a fixed level of abstraction).
Insofar as the logical complexity of bisimilarity is measured by the existence of
some such translations, there is interest from the theoretical side in investigating the
(full) logical complexity of bisimilarity (however astronomical that may be, relative
to mechanical computation) and not only, as already mentioned, in introducing
assumptions that lower its complexity. A shift in perspective may be necessary for
some, but the perspective that is advocated belongs, in fact, to a well-established
logical tradition—namely, predicate logic and generalized notions of computation
(exceeding the reach of machines) developed to analyze it.

A consideration crucial to such an analysis is the question of approximating
bisimilarity finitarily (which is of particular significance if recursion is analyzed in
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terms of these approximations). Such approximations are usually given according
to the coinductive construction of bisimilarity (e.g., Milner [28]), the finitary frag-
ment < ,, of which is called observational equivalence in Hennessy and Milner
[24]. (Precise definitions are reviewed in §1 below.) A (modal) logical characteriza-
tion of <, is provided in Hennessy and Milner [24], which is developed further in
Abramsky [1] to construct processes topologically. It is well known, however, that
bisimilarity and < ,, do not coincide over the simplest cases of infinite branching,
in response to which, the modal language might be closed under infinitary disjunc-
tion and conjunction. But a free-wheeling appeal to such infinitary constructs begs
the problem of analyzing the effectiveness of the notion of infinity introduced and
also poses a problem for the machinery of Stone duality employed in Abramsky
[1] (spoiling, as it does, the compactness of the logic and topological space derived
from it). Avoiding any connective whatsoever, one might opt (as in the textbook
by Baeten and Weijland [5]) for an equational logic with an (infinitary) inference
rule called the Approximation Induction Principle (AIP), carrying, in cases where
bisimilarity is not r.e., a good deal of the burden of logical completeness (e.g.,
Aceto, Bloom, and Vaandrager [2]). But under an interpretation of equality as
bisimilarity, AIP simply formalizes the assertion that bisimilarity is <, (which,
as already noted, fails when branching can be infinite) and is therefore not a
sound rule. The relationship between bisimilarity and <, is analyzed below in
terms of compactness, an essential feature of which, transparent in the setting of
predicate logic (in contrast to the modal propositional logics of Hennessy and
Milner [24] and Abramsky [1]), is the generation of “nonstandard” models (a la
Abraham Robinson). This point is brought out concretely by Theorem A’ (in
§2) which establishes the nonelementary character of bisimilarity via a first-order
compactness argument. The author suspects that there is more to be mined in
compactness, especially in its generalized form involving admissible sets (Barwise
[7]). Making this suspicion plausible is one of the aims of the present paper which
proceeds as follows.

After reviewing some preliminary definitions and facts in §1. we present some
basic results in §2 concerning (respectively) the coinductive characterization of
bisimilarity and the back-and-forth nature of the operator defining the notion
of a bisimulation. The first result is the aforementioned Theorem A’, while the
second (Theorem B’) concerns certain transitions defined from data models and
analyzes how these transitions depend on data by turning a bisimulation (back-
and-forth) into an isomorphism between the data models. The data dependence
of transitions is studied further in §3, where it is shown (through an omitting
types argument) to be first-order (Theorem 4, Corollary 5) by internalizing non-
determinism in states given as sets (following the well-known construction of a
deterministic finite automaton from a nondeterministic one). In §4. we study
bisimilarity as an extensional notion of equivalence on programs, generalizing
input/output equivalence (a ]—[g-notion) into an equivalence that may fall outside

of H} (Theorem 9, Corollary 10). This explosion in logical complexity is a measure
of the scope of bisimilarity resting heavily on infinite branching. Accordingly, some
motivation for considering infinite nondeterminism might be in order. Beyond the
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mere fact that an r.e. transition predicate can support infinite branching (which,
after all, is the natural limit of unbounded finite branching), there is the point made
(for example) in Vaandrager [32] that “if the machines. ..are not in control of all
their transitions, then one can argue that. .. the requirement of finite branching is
too restrictive” to analyze, for instance, inputs and random assignments.

§1. Fundamental definitions and facts. In this section we review some well-known
material found, for example, in Milner [28]. A (labeled ) transition system is a triple
(L.S,—), where — C S x L x S. L is said to be the set of labels, S the set of

states, — the transition predicate, and a transition (s, [, s') € — is written s L,
Given transition systems (L. S, —) and (L, S’, —') over the same label set L, a
relation R C S x S’ is a bisimulation if whenever sRs’, then for all [ € L,

vt & $)3 L s")eRe and (VY L@t L s)eRe.

States s and s’ are said to be bisimilar, which we write as s < s’, if there is a
bisimulation relating s to s’. Note that the relation < of bisimilarity is a bisim-
ulation and is the largest bisimulation (in the sense of C). Moreover, « admits
the following useful characterization based on the “back-and-forth” operator -/
on binary relations defined by
RY = {(s.s")| (V] € L)((vt & $)3 & 's")eRY
and (V' <& 's")(3r & s)tRe)}

according to which R is a bisimulation iff R C R?/. Because R occurs only
positively in R®/, the operator -*/ is (C-)monotone

RCR' implies R* C R"/,
and the largest bisimulation < can be calculated coinductively as
ﬂ{_‘_la |a < card(S x S)*},

where

f<a

Observe that S X S' = <92 & D+ D oy D Sgpl D -+ 2 <, Where
o = [yew &n is a conjunction of “finitary” predicates < ,. That is to say,
<, can be captured by a finitary formal language, as spelled out in Hennessy
and Milner [24]. The equivalence <, need not, however, coincide with <, as
demonstrated in Figure 1 (where |L| = 1).



BISIMULATIONS AND PREDICATE LOGIC 927

| |

FIGURE 1

This notorious pair is surely too trivial to ignore! (Confusing them is problematic
inasmuch as the infinite branch can be interpreted as a failure of termination or,
say, an unfair merging of an infinite stream 1°° of 1’s with 0.) It is easy enough to
repair the Hennessy-Milner characterization above (so as to apply to < in general)
by allowing infinitary disjunctions (and conjunctions), but then the question arises
as to what is taken for granted by building these infinitary constructs into the
logic. (The measures studied in §4 yield, among other information, bounds on
the infinitary constructs required.)

Transition systems typically have obvious “initial” states sp € S and s; €
S’, in which case we express the assertion sy« s, by saying that the pointed
transition systems ((L.S.—).so) and ((L,S’, —').s{) are bisimilar, again writing
((L.S,—).50) < (L.S".="). s{).

§2. Some basic results and related work. A transition system (L, S —) can be
viewed as the first-order model (L U S, L, —) over the signature {L, ~} consisting
of a unary relation symbol L (for the labels) and a ternary relation symbol ~» (for
—). Passing to the case where L is a singleton {/}, it is standard practice in modal
logic (e.g., van Benthem [9]) to study the transition system ({/}, S, —) as the first-

order model (S, {(s.s")|s - s'}) over the signature {R} consisting of a binary
relation symbol R. Such { R}-models are called Kripke frames and can be expanded
into Kripke models for a propositional modal language over propositional letters
p-q.... by introducing interpretations for unary predicate symbols U,, U, ...
(marking the states on which the corresponding letters p, ¢, ... are interpreted to
be true). The framework of Kripke semantics then specifies a translation mapping
a formula of the propositional modal language into a first-order {R. U,. U,. ... }-
formula over some fixed free variable x (standing for a state)—e.g.,

O(p & 00q) — (VyR™'x) U,(y) & FzR™'p)(VuR ™ 'z)U, (u).

Now for a suitable notion of bisimulation invariance, it turns out that
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TueorEM A (van Benthem [9]). A first-order {R, U,, U,, ... }-formula with one
free variable is invariant for bisimulation iff it is logically equivalent to the translation
of some modal formula.

Looking thore closely at the translation of modal formulas, we see that variables
can be “re-used” so that, for example, the translation of O(p & OOg) can be
rewritten as

(WRT'X)  U) & BxR™Y) (R U, O).

requiring only two variables x, y, free or bound. The notion of a bisimulation can
be generalized to that of an n-simulation to establish

TueoREM B (e.g., van Benthem [10]). A first-order {R, U,, U, ... }-formula with
free variables xi, . .., x, is invariant for n-simulation iff it can be written using only
the n variables x, ..., x, free or bound.

Whatever satisfaction Theorems A and B may give, the reader is entitled to ask
what does propositional modal logic have to do with our present concerns? Quite a
bit, according to Stirling [31]. The Hennessy-Milner [24] characterization of <,
is based on what is essentially a propositional modal logic, the only difference
(beyond notation) being that many labels are required (and in fact, one proposi-
tional letter will suffice). The theorems above adapt easily to this case, suggesting
(together) that the propositional modal language corresponds, via the notion of
a bisimulation, to a restricted 2-variable fragment of the first-order language over
{L.~,U,. U,....}.

Setting aside, however, the propositional modal language and examining the
first-order language {L,~+} of transition systems directly, we can easily see that
bisimilarity, in fact, exceeds first-order logic. As pointed out in van Benthem and
Bergstra [8], bisimilarity cannot be defined by an infinite set of first-order sentences.
This is strengthened by the following theorem which considers bisimulations on a
transition system (rather than on a pair of different ones) viewed as a first-order
{L, ~}-model.

THEOREM A’. Bisimilarity is not preserved under elementary substructures. That
is, there is a transition system with nonbisimilar states a and b such that an elemen-
tary extension of that transition system can be constructed over which a and b are
bisimilar.

Proor. We use the following easy facts.

FACT 0. o, is the conjunction of an infinite set of first-order { L, ~}-definable
predicates ~, (for every n < w) expressing < ,.

Fact 1. Fix a transition system (L, S, —), and let s,s' € S.

(i) s & oS’ iff whenever s’ L4, the set of ({L.~}U{s.i,1})-formulas
D ,0(x) = {3 A xtU{i ~, x|n <o}

is finitely satisfiable in the ({L.~} U {s.7,1})-model ((L U S.L,—),s.t,1), and
symmetrically, whenever s L
(ii) 5 = a1 iff whenever s' 5 t. the set of ({L.~} U {s.,1})-formulas

D, (x) ={s KA xpU{i~, x|n <o}
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is satisfiable in the ({L.~}U{s,.1})-model ((LUS.L,—),s.t.1), and symmet-

rically, whenever s L.

Fact 2. Every transition system has an elementary extension over which — =
“w (i.e., o0 C ﬁw+1)~

By Fact 0, it follows that the transition system described by the theorem cannot
validate «» = <, (and, in particular, the transition system must support infinite
branching). Accordingly, take a transition system with &, — < # & (e.g.. Figure
1). Now choose (a,b) € <, — <, and appeal to Fact 2 (a consequence of Fact
1 and compactness) and Fact 0 to obtain the required elementary extension. -

Theorem A’ is technically similar to Theorem A in that the proofs of both
involve saturation (well known to close off suitable forms of induction—or in this
case, coinduction—at w; see the discussion of Gandy’s theorem in the concluding
section). Returning to Figure 1, we note that the transition system to the left fails
to realize the set

{y ~ x.(Fx1 )x o x,

i 7 7
(Fx1.x2. x3,1)x ~ x1 & X1 ~ X2 & X2~ X3,... }

of formulas in x,y, even though it is finitely satisfiable there. The significance
of Fact 2 (in the proof of Theorem A’) is limited by the failure of an elementary
extension to respect (in general) <, for @ > w. (The stronger notion of an “end”
extension is needed to preserve bisimilarity.) Put plainly, if a process is understood
to be given by its set of transitions, then it is hardly surprising that a process
becomes a second-order concept not preserved under elementary extensions.

Turning next to Theorem B, we will show that the partial isomorphisms (and
Ehrenfeucht-Fraisse games) lying behind the n-simulations can, under a modified
setting, be employed to build an isomorphism (rather than merely to establish
elementary equivalence). The modification is based on introducing individuals
(packaged in a first-order model) rather than abstracting them away as in propo-
sitional modal logic. More precisely,

ExaMmpLE 1. Fix an infinite set X of variables and a signature o. Let A, be the
set of “atomic programs” x :=? and ¢?, where x € X and ¢ is an atomic o-formula
(or an equation) with free variables from X. Given a g-model M with universe
M, let Sjs be the set of functions—henceforth called M -valuations—from finite
subsets of X into M and [M] be the pointed transition system ((4,. Sas. [-1)- 2).
with initial state the empty function &, and where for d.d’ € Sy,

df[x :=7d’ iff x € dom(d) and d = d’ except possibly on x,
dlp?d’ iff d = d’ and M E ¢[d]

(the intuition being that the random assignment x :=? reads input, and the test
? checks, without side-effects, that ¢ holds at the present state). As observed in
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Fernando [17], a bisimulation between [M] and [IN] is simply a partial isomor-
phism set (defined, for example, on page 97 of Keisler [26]) between M and N.
Thus, for countable M and N,

Ml <[N] iff M=N (iff [M] = [N]).

Or in case M = N is countable, w-homogeneity (again, see, for example, Keisler
[26]) turns a bisimulation into an automorphism. More generally, an elementary
“back-and-forth” construction from model theory yields

THEOREM B'. For all c-models M and N, if an [M]-state dys is bisimilar to an
[N]-state dy. then dom(dys) = dom(dy ), and moreover, if M and N are countable,
then the correspondence

dy(x) = dy(x)

(for all x € dom(dyy)) extends to an isomorphism between M and N.

Hence, in the terminology of van Benthem [11], the rather meager “program-
ming repertoire” A, guarantees safety for bisimulations—i.e., any expansion of
the label set A, in which the transitions are defined “uniformly” from a countable
first-order model will preserve bisimulations. (Proof. Given a transition system
on valuations, take its restriction to the above label set and pass the isomorphism
between M and N, described by Theorem B’, on to the original transition system.)
For an illustration of what is meant by “uniform” (beyond the requirement that
isomorphic objects in o-models map to isomorphic states of the transition systems
defined from the o-models), see the next section, where an additional feature of
effectiveness is introduced. That section considers more carefully transitions that
are relevant to the study of operational semantics in the following sense.

Going back (at least) to Turing, mechanical computation has been characterized
by transitions ¢ — ¢’ between “configurations” ¢ and ¢’ subject to a certain set
of rules. (Recall the notion of legal moves between instantaneous descriptions.)
The transitions will be labeled soon enough, but for the moment, let us take the
transitions to be unlabeled. Let us decompose a configuration ¢ into a “data”
component d and a control or “program” component p; whence, the transition
¢ — ¢’ becomes (d,p) — (d',p).

ExaMPLE 2. The transition system [M] (for a fixed o-model M) of Example 1
gives a set of transitions (d,a) — (d', /) ford,d’' € Sy, a € A,, and d[[a]ld’. (The
fresh symbol / denotes the “terminal” or “null” control state.) This transition
set can be extended by closing the label set 4, under various program constructs.
Examples include sequential composition, nondeterministic choice +, and Kleene
star -*, which are analyzed in dynamic logic (e.g., Harel [23]) compositionally over
programs conceived as input/output relations. That is to say, such programs are
determined completely by transitions into (d’,+/). In general however, “interme-
diate” computational states in a possibly nonterminating computation may be of
interest as well; in other words, we might also consider transitions (d,p) — (d’,p’),
where p’ # 1/ is a “job” that remains to be done. Such transitions are convenient
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(if not essential) for a construct such as interleaving ||, which might be introduced

subject to the rules

(d.p) — (d'.p") (d.pllp") — (d’.p") (d.p)— (d'.p'|lp")
d.plp") — (d".p'lp")’ (d.p"|lp) — (d’.p')’ (d.p)— (d'.p"|p")

Other rules might include

(d.o?) — (d, \/)M F old].

x € dom(d’) and d = d’ except possibly on x,

@.x =0 = @)
d.p) — (d"./) (d.p) — (d'.y/) (d, skip +p;p*) — (d'.p')
d.p:p’) = (@.p)  dp+p)—(d.V) d.p*) = (d".p)
The rules above are not “complete” but meant simply to provide some intuition.
(Note that from the point of view of predicate logic, “rule” here is better read
as “axiom”—and the presentation of such axioms is unfortunate in that the pre-
miss should be interpreted locally over a fixed model rather than globally over a
family of models.) The treatment of -* generalizes easily to solutions of recursive
equations. Synchronization on actions can also be accomodated by adding the
actions (on which processes synchronize) to the underlying first-order model. See

Fernando [18] for more details.
Now to analyze programs relative to data, it is useful to rewrite the transition

(d.p) — (d'.p') as

dd’
p—=p
with the idea of using bisimilarity on programs p,p’ as a notion of program
equivalence. This is taken up in §4 which investigates further the coinductive
construction of bisimilarity and is in this sense a natural sequel to Theorem A’
above. Before carrying out an analysis that takes data for granted (relegating it to
labels of a transition system, where, in fact, it is commonly abstracted away), let
us consider more carefully just what is taken for granted and see if we can come
up with a story different from that offered by Theorem B’.

§3. Bisimulations and data dependence. To analyze the dependence of transitions
on data, let us rewrite the transition (d,p) — (d’,p’) as

d 17-_17)( d/,

employing the notion of bisimulation on such transitions. Observe that the tran-
sition systems [M]] and their extensions defined in the previous section are of this
form. The constructions considered in van Benthem [11] apply most naturally to
this case where, as already mentioned, safety for bisimulations becomes automatic
in view of Theorem B’. Automatic, that is, as long as the constructions are
“uniform”, as is the case for the following class of constructions to which we
now turn.

Fix a set L of labels, a signature o, and a countable set X of variables. Consider
a function mapping of g-model M (with universe M) into a transition relation
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—mC Sy x L x Sy (where Sy is the set of M-valuations, i.e., functions from a
finite subset of X into M). Given a o-model M, a label / € L, and M -valuations
d: Xo— M and d’': Yy — M, we call a first-order o-formula ¢ with free variables
from Xy + Yo' a record of d 4 md’ if

(i) ME p[d +d']
and

(ii) for all o-models N and N-valuations dy: Xo — N and dj;: Yo — N, if

N E @[dy + d}]. then dy b d.

(The intuition is that X, records the input and Y, the “output™, except that the

“output” may actually refer to an intermediate computational state.)
Hlustration. For L given by regular programs in quantified dynamic logic,

records of a particularly simple (linear) form can be obtained, due to a reduction

reminiscent of the Kleene normal form theorem. (A more general result guaran-

teeing the existence of records will be proved shortly.) Given a regular program

p and a transition & 2y m d, written @[[p]ly;d for notational convenience, we can
extract a finite sequence pi; ps; . . . ; p, of tests and assignments (from the definition

of [[p])) such that
(i) 2lpi;p2:- .- ;pallus.

and

(i) for every o-model N and N-valuation s', if S[p1;p2;. .. ;pallns’s then
2[plns".
Then, for i = 1....,n, let I; be the set {x)....,x, } of variables in X mentioned
in pi;...;p;; and let xi,.. .,x,’;’ be fresh variables; the intention being that x}

represents the value of x; after p; is executed. The transition @[pJlys is then
recorded by

3x11~-~3x,ll~~~E!xf~-~3x,'z” /\ xj=xj & /\ ©is

1<j<ky I1<i<n

where for 1 < i < n, p; relates x{fl

Di.

Next we isolate a certain form of transition rules yielding transitions that can
be recorded. Given a set ® of o-formulas with free variables from X, a rule r is
®-uniform if it has the form

e ,x,’(_lI to x{,...,x, after the execution of
11— 1

/l In
S| =t Ss, — L
; " " Co(si,t1. ... Sy 1y.5,1).
s — 1
where
i) h.....I,.1eL,
(ii) s1. .. ... Sp. te. 5.t are state-variables (not to be confused with variables in

X but meant rather to range over M -valuations, for g-models M),
and

!'For subsets X’ and Y’ of X. the notation X’ + ¥’ is used for the disjoint sum of the sets. For
functions d: X’ — M and d’: Y’ — M. the notation d + d’ is used for the function with domain
X' 4+ Y’ given in the obvious way by d and d’.
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(iii) the condition C,(sy,y,....5,, %, 5,t) enjoys the following “uniformity”
property relative to ®

for all finite subsets Xi. Yi...., X,, Y,. Xo. Yo of X, there is a o-formula
¢ € ® with free variables among X1 + Y, +---+ X, + Y, + Xy + Y,
such that for every o-model M and for all d,: X, — M, di: Y, —
M. ...d X, - M d:Y,—-M,d Xo—-M,d:Yy,— M,

C.(dy.d}.....d,d.d.d) holds

if MEopld +d{+---+d,+d +d+d.

Observe that a ®-uniform rule r is “positive” in that its premiss consists of
positive clauses s; LN ti, plus a side-condition C, reducible to formulas from ®. A
negative condition —(s; - t;) can be approximated by introducing a new label ~ /;
and replacing —(s; KN t;) by s; g (borrowing the idea of “strong negation”).
But one cannot expect, for instance, the negation construct

s Bt iff s=1and thereis no s’ st s s

in van Benthem [11] to be given by ®-uniform rules, if satisfiability of formulas
in @ is re. (since —p is, in the notation of dynamic logic, the test [p] L? for the
non-r.e. complement of the halting problem). On the other hand, the reader may
verify that if the transitions (d.p) — (d’, p’) described in Example 2 are rewritten

as d "% d’, then they can be presented as theorems of ®-uniform rules, where
® is the set of conjunctions of atomic o-formulas (including equalities) over X
and the condition C, is (essentially) vacuous except on assignments, tests, and
skip. The advantage of presenting transitions in terms of ®-uniform rules is the
following. Given a set @ of g-formulas, let ®5 consist of all formulas in ® and
those obtained from it by closing under conjunction and existential quantification
(as well as renaming of variables in X).

LemMa 1 (record property). Every transition proved from ®-uniform rules has a
record in ®3.

Proor. Every theorem has a finite derivation tree, from which a record in ®5
can be extracted: local descriptions of the tree (by formulas in ®) are glued
together by conjunction. before existentially quantifying out old values of program
variables.

The converse of Lemma 1 is even easier: transitions with records in @ can be
presented as theorems of ®-uniform rules (where the side conditions C, do all
the work and are given by the records). It appears, however, that in practice,
a transition relation is more naturally presented in terms of ®-uniform rules.
Accordingly, we will work with transition systems Mg = (L, Sy, —m), Where —
consists of the theorems of a set % of ®-uniform rules. It will prove convenient to
equate Mg with the pointed transition system ((L, Sys, —wm), @) where the initial
state @ is the totally undefined function. Also, given g-models M and N and a
set ¥ of o-formulas, let us write M =y N when M and N satisfy the same o-
sentences in ¥. (Note the switch from formulas to sentences, i.e., formulas with
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no free variables.) Since transitions are determined by records, it is natural to seek
out a translation . on pointed transition systems so that

(1) If # is a set of ®-uniform rules, then ¥ (Mg) = Z(Ng) iff M =¢, N iff
ZMg) = Z(Nag).
In fact, as we now show, & can be defined in a familiar way—essentially the
subset construction in automata theory, mapping nondeterministic finite automata
to deterministic finite automata.

Given a pointed transition system S = ((L, S, —), so), define for every / € L
the function [/]_, : Power(S) — Power(S) by

ll-(a)={teS|3scas —]>t}

Then let Z(S) be the pointed transition system ((L, Z(S), =), {so}) where Z(S)
is given inductively by

lelL acZ(S) [ll-(a)# 2
[1-(a) € Z(S) ’

{s0} € Z(S)

and for every [ € L,
I

= = [l=n(Z(S)xZ(S)).
A simple illustration based on dynamic logic should be sufficient to clarify the
definition.

Illustration. Let p be the nondeterministic program x := 0 + x := 1. Over
the standard model of arithmetic, p sends the empty valuation & either to the
valuation {(x,0)} mapping x to 0 or to the valuation {(x,1)} mapping x to I,
i.e., in the notation of the previous illustration

2lplls iff s ={(x,0)} ors ={(x.1)}.

Applying the operator # to this transition system with initial state @ then gives

(2} a it a={{(x.0}{(xD}}

Note that = is a partial function on Z(S) that is not always defined since
the empty set is excluded from Z(S) (lest the notion of a bisimulation become
trivial over the image of %). The empty set would represent an “absurd” state,
indicating the failure to make a transition (in S). Such failures completely de-
termine bisimilarity over the deterministic transition systems #(S); isomorphism
(over the image of &) captures (prime facie) a bit more structure; namely, for any
sequence of labels /., . . ., /,, the set (viewed externally) of states in S accessible from
the initial state of S by transitions labeled by /j,...,1,. The logical significance
of # is brought out partly in Fernando [17] and partly below.

Concentrating on the case of #(Mg), let us write [/]m for the interpretation
of I € L by ¥(Mg) (omitting the subscript # for notational simplicity). The
key to establishing (1), the nontrivial part of which is isomorphism, is

LEMMA 2. Let & be a set of ®-uniform rules, M =¢, N, {@}Ima. and

. . i
oM!"lyma. Then for every N-valuation s, if @ —N s, then & [—>N S.
y
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PRrROOF. Assume & i>N s. Let Xj be the domain of s, and let

Y = {¢ € @3] is a record ofgl—/>M/ s’
for some g-model M’ and s": Xo — M'},
® = {#|NE 0[s] and 6 or -0 € @3 with free variables from Xp}.

By the definition of a record, it suffices to produce a ¢ € ¥ N O. So by the
definition of ®, we need only demonstrate the consistency of {\/ ¥} U ®. But

now let ¢ € @3 be a record of & LN s, and fix a finite A C ®. Then ¢ & AAis
satisfied by M under some ¢: Xy — M, since M =¢, N. Moreover, since {@}[/Ima
and {@}[/'Ima (by assumption), it follows (appealing again to the definition of
a record) that there is some ¢ € P satisfied by M under ¢. In other words, for
every finite piece A C ®, there is a ¢ € ¥ such that ¢ & A A is satisfiable. Thus,
the General Omitting Types Theorem given in page 108 of Keisler [25] yields the
consistency of {\/ ¥} U®, as required.

LEMMA 3. Let & be a set of ®-uniform rules, M=¢, N, {@}[!Ima, and {@}[Ina’.
Then for alll' € L,

{oH!'ma iff {@}!'Ina’.

Proor. It suffices to prove one direction, say =, of the equivalence, appealing
to symmetry for the other. But then = is immediate from two applications of
Lemma 2. -

THEOREM 4. Let & be a set of ®-uniform rules. If M =¢, N, then & (Mg) =
Z(Ng).

PrOOF. Let R be the relation consisting of all pairs (a,a’) of Z(Mg)-states a
and #(Ng)-states a’ for which there is a finite sequence /... .. 1, of labels in L
such that {@}/ilmo - o[lIma and {@}H}]no -+ o [l,]na’ (where o is relational
composition). To see that R: ¥ (Mg) = Z(Ng), assuming M =¢_ N, observe
that from the preceding lemma, R is a function from % (Mg )-states to .Z(Ng)-
states and, writing f for that function,

aolllmar iff  f(ao)lInf(a1),

assuming without loss of generality that L is closed under sequential composition,

and that @ 5 s iff 3ty LrandtDs. A

COROLLARY 5. Assume @ is closed under renaming of variables (in X) and that
X is a set of O-uniform rules, including rules for sequential composition, random
assignments x :=7 for x € X, and tests ©? for all p € ®. For g-models M and N,
the following are equivalent.

(1) M =¢5 N.

(i) Z(Mg) = Z(Ng).

(iii) Z(Mg) = Z (Ng).
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~

Proor. ‘(i) implies (ii)” is Theorem 4; ‘(i) implies (iii)’ is trivial (& always
implies « ): and ‘(iii) implies (i)’ is a consequence of the fact that every formula
w of @3 can be programmed using tests ¢?, sequential composition

(v & y)?=yhy"?

and random assignments
(Bx w)?=x:=%y?

(thereby closing @ under conjunction and existential quantification). -

Theorem 4 runs against the suggestion from Theorem B’ that mechanical tran-
sitions generally depend on more than the first-order theory of the data model,
although perhaps the underlying logic is best associated with positive existential
induction (Aczel 3, §3.2]) in view of the Record Property, Lemma 1.

At any rate, by equating bisimilarity with isomorphism under %, Corollary 5
reduces Z(S) to the sequences /... .,/, of labels for which the initial state of S
fails to make a transition. The most technically involved part of the argument
above is the omission of types in Lemma 2. The idea of working with “small”
models contrasts with the appeal in Theorems A and A’ to “large” (saturated)
models (borrowing the “terminology” from Keisler [26]). Omitting types argu-
ments often arise when showing completeness for an w-rule. Making a turn
toward the opposite direction, the inadequacy of an w-rule is exposed in the next
section, where the point is that certain second-order types cannot be omitted.
Whereas the dependence of transitions on data is analyzed above by internalizing
the non-determinism of transitions in states taken as sets (according to the logical
translation %), the notation of a bisimulation is applied in the next section to give
an equivalence on programs, leading to a different use of sets (i.e., as equivalence
classes).

§4. Bisimulations and extensionality generalized beyond I1!. A fundamental
problem in programming language semantics is the notion of identity on programs.
On the one hand, equating a program with its text defeats the very point of the
semantics/syntax distinction, contributing nothing to the intuition that there is
an abstract notion here (call it a program) that may have more than one syntactic
presentation. On the other hand, reducing a program to the input/output relation
it computes abstracts away how that relation is computed—which is often of some
interest. A notion of equivalence between programs can be defined relative to a
fixed level of abstraction specified by transitions between mechanical configura-
tions by reformulating the transition (d,p) — (d’.p’) as

’ dd

p—p
and then forming bisimilarity over this transition system. In process semantics as
well as in so-called structural operational semantics (Plotkin [30]), data is typically
abstracted away and the label (d, d’) replaced by an “atomic action” a (presumably
taking d to d’; see, e.g., Fernando [18]). Before abstracting away the data (and
the labels), however, let us observe that bisimilarity subsumes input/output equiv-
alence, since the graph of a program is a specification of transitions at a certain



BISIMULATIONS AND PREDICATE LOGIC 937

level of abstraction (from initial to terminal states). In case all transitions repre-
sent completed input/output computations (i.e., in case all transitions end at /),
bisimilarity is simply input/output equivalence. Otherwise, transition predicates
—, and —,, might be defined inductively according to

d.d’ d.d’ d'.d"” d.d’
P = q P =9 g > P =y
d.d’ ’ d.d’’ ’ d.d’ ’
P —x9q P P =a

whence input/output equivalence amounts to bisimilarity <, relative to —,. It
is natural to view -, and -,, as maps on transition systems, providing a translation
between different levels of abstraction (of which input/output transitions consti-
tute a coarse example). A similar translation reduces so-called trace equivalence to
bisimilarity. More generally, given that equations =~ between process (or program)
terms p and g are interpreted by equality between certain sets [p]l, [¢] associated
with the terms

Fp~q iff [p] = Iql.

it is noteworthy that bisimilarity can be viewed as an equality predicate on sets,
as developed at length in Aczel [4]. (That is, bisimilarity can be just about any
equivalence you want, provided the transition predicate is chosen appropriately.)
These sets can, of course, be somewhat abstract—as with equivalences based on
logical characterizations in some language (where the sets in question are formed
out of the formulas satisfied by the processes). But the reduction to bisimilarity
need not always require a heroic leap of imagination, as illustrated above. At any
rate, one might certainly ask whether some sort of translation exists in principle,
before worrying about just exactly how it looks. Accordingly, the slogan

the scope of the notion of a bisimulation rests on its complexity

can be construed in the rigorous sense in which logical complexity is measured by
the existence of translations. Turning then to these precise measures, note that as
input/output equivalence is, in general, [13-complete, its reduction to bisimilarity
requires a context that can support such complexity. By contrast, bisimilarity
is commonly taken to be at worst I1? in process semantics (e.g., Bloom, Istrail
and Meyer [12]) by working with a transition system in which only finitely many
transitions are possible from a state (whence <, = <), and that finite set is
computable (whence <, is I1?). The reduction to input/output equivalence above
need not involve infinite branching (on any fixed label), but the transitive closure
in -, may generate undecidable transitions (that will, however, still be r.e. provided
— is).

In fact, as we will soon see, the transition predicate can be kept to a very low
mechanical complexity (i.e., linear time!) while still blowing up bisimilarity well
beyond I1J. Bisimilarity is manifestly X} relative to its transition predicate, but
whether this bound is optimal is stated to be open in Darondeau [15, p. 229]. The
rest of this section is devoted to establishing

(1) There is a transition predicate of low complexity over which bisimilarity is
not TI}.
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As far as () is concerned, it turns out that we can make do with a singleton label
set—which is to say that labels are a notational nuissance. Accordingly, in the
remainder of the present section, transition predicates will be understood to be binary
relations on w, and bisimilarity relative to such a relation ~~ will be construed as
that defined over the transition system ({x},w,{(n,*,m)|n~»m}). A fact compli-
cating (1) is that bisimilarity is also IT} (whence A}) over well-founded transition
predicates—a result implicit in Barwise, Gandy and Moschovakis [6, p. 115], as
well as in van Benthem and Bergstra [8, p. 27]. Hence, we will also consider non-
well-founded transition predicates. Moreover, turning to the coinductive charac-
terization of bisimilarity, note that for bisimilarity to fall outside IT}, the coinduc-
tive construction must not terminate at any stage named by a recursive ordinal.
So keeping all these ordinals in view, consider the Church-Kleene system & of
ordinal notations which, for the purposes of (1), can be presented as follows.

Fix a standard enumeration {(e)}.c,, of unary primitive recursive functions,
and define the transition predicate — inductively by the following rules, where 7,
e, m and k range over w,

, nom o me k(trans)
M —n’ n—k ’
(e)(1) — (e)(0) 3.5 (e)(n) (e)(n+2) = (e)(n+1)
3.5 = (e)(0) 3.5 = () (n+ 1)

The set @ of ordinal notations consists of all natural numbers a such that there is
no sequence {4, }i<, for which

a—aygp—dady —dy — .
The idea is that an @ € @ names the recursive ordinal |a| given by its length
|a] = sup{|b| +1]|a — b}.

While we will have no reason to assign finite ordinals unique notations, the rule
scheme (trans) and the premisses of the rules for 3 - 5¢ — (e)(n) are introduced
to secure

LEMMA 6. The relation — is tramsitive, and moreover, for every a € w, if —
restricted to {a} U {b|a — b} is irreflexive, then — restricted to {a}U{b|a — b}
is, in fact, a linear order.

This technical condition pushes through the limit clause of the induction ar-
gument for :

LemMa 7 (essentially Klop [27]). For every a € @ and every b € w,

acwb iff bed@ and|b| = |al.

As indicated in the previous result, the transition system with which we are
dealing is very close to the “ordinal processes” of Klop [27]. i.e., transition sys-
tems given by a singleton label set, a successor ordinal as the state set, and the
ordering > as the transition predicate. The crucial difference is that the states in
the present transition system may be non-well-founded, a property that we exploit
next. Following Feferman and Spector [16], define a superset &* of @ as the set of
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natural numbers a such that there is no hyperarithmetic (= A%)2 sequence {a; }i<w
for which a — a9 — a; — a» — - - -. Now the essential point is that from Feferman
and Spector [16], we know that @* ¢ @ (because @* is X{, whereas & is not) and
that (by the Kleene Basis Theorem)

(%) Vael@* —6@ {la||a€ @ and & — a} = of X

(where ¥ is the first nonrecursive ordinal); whence, an induction argument (on
coinduction) yields

LemMMmA 8. For all a,a’ € @* — @, a<—a’.

ProOF. Argue by induction on « that for all @ and a.a’ € @* — @, a = ,a’.
The base case o = 0 and the inductive step where « is a limit are trivial. So let
a=pB+1 Foralae@* and b € w, observe that a — b implies b € & or
b e @* —@. Appealing to Lemma 7 and () for the former case (i.e., b € &) and
the induction hypothesis for the latter case, conclude that for all a,a’ € 6* — &,
aogqa’. -

Lemma 8 is a slightly more complicated form of an argument in van Benthem
and Bergstra [8, p. 12] proving that bisimilarity cannot be defined by an infinite set
of first-order formulas. The complication consists of the introduction of infinite
branching (which is required to establish < ¢ IT}; otherwise, < = <, € Al)
and of the possibility of nonhyperarithmetic descending sequences (for which,
thankfully, we already know (*)).

Next given an @ € @* — @, observe that — restricted to {d} U{a|d — a} is
a linear order (by Lemma 6). Following the well-known reduction of r.e. orders
to primitive recursive orders, define a primitive recursive function f; by

a if P} =0,
the a s.t. the least p € P} proves @ — a otherwise,

faln) = {

where (under a natural Godel numbering of proofs with a primitive recursive proof
predicate)

P? = {p < n|p proves @ — a for some a # f;(0),.... fa(n —1) s.t.
(Vi < n)(3q < n) q proves a — f;(i) or q proves f;(i) — a}.

It follows from Lemma 6 that the image of f; is precisely {a}U{a |d — a}. Now
let —; be the primitive recursion predicate

s =5 s iff (3p < max(s.s’)) p proves fi(s) — fal(s’).

2 For orientation, recall that these sets form the “hard core” of arithmetic—see Barwise [7], especially
pp. 113-114, where nonhyperarithmetic sets are omitted from various w-models. The present section
shows that the notion of a bisimulation requires more types (in contrast to the previous section where
types were omitted).
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and consider the IT}-path
Z;,={a€l|da— a}

through @ that 4 gives. The following program consults an oracle for bisimilarity
4 over —; to decide (by the construction of f; and Lemma 8) whether or not
a€e’z;

check if @ — a; {This is a =¥ problem easily reducible to bisimilarity.}
if not, then a & Z;;

otherwise, search the » such that f;(n) = a, concluding that a € Z; iff n & ;0.

By Friedman [20], @ can be chosen such that @ is recursive in Z;. But @ is I1}-
complete (under many-one reductions, no less) and bisimilarity is £}. Thus,

THEOREM 9. There is a primitive recursive transition predicate over which bisim-
ilarity is X\-complete under Turing reductions (whence non-I1}).

Setting aside the question of Turing-completeness and concentrating exclusively
on establishing < ¢ II}, we can do without Friedman [20], appealing instead
to Grigorieff [22] and Z}-boundedness (and perhaps to Gandy [21] rather than
Feferman and Spector [16], in which case replace Lemma 8 by the lemma that
over a linear order >,

a—da iff a = a’ or neither a nor a’ belong to the well-founded part of >,

which can easily be proved) to deduce
COROLLARY 10. There is a transition predicate computable in

DTIME-SPACE(n,log(n))

over which bisimilarity is not 1.

ProOF. By the result announced as the title of Grigorieff [22], the linear order
—; above has an isomorphic copy in DTIME-SPACE(n, log(n)), call it =. Let
n be the image in = of the top element 0 of —; (corresponding to @), and note
that bisimilarity < over = cannot be I}, or else = restricted to

{m € w|n = m and not n &m}

is a =] well-ordering of length w{X (contradicting £}-boundedness).
Theorem 9 and Corollary 10 provide intrinsic measures of bisimilarity’s com-
plexity from which it follows that a logical characterization (a la Hennessy-Milner)
of bisimilarity (over transitions computable in linear time) requires a nonhyper-
arithmetic notion of satisfaction. Reducing bisimilarity to its finitary approxima-
tions (as in Theorems A and A’) just shoves the problem over to the transition
predicate (polluting it with nonstandard programs); the complexity of what is ana-
lyzed by induction (or coinduction) becomes trivial compared to what is assumed
at the base case! An (arithmetic) w-rule is simply insufficient to capture a non-
I} concept. A logic for bisimilarity requires more than I1] notions of inference
well known to be adequate for dynamic logic (under translations described, for
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example, in Harel [23]). We are led to a flight in logical complexity not unlike
that suggested in Darondeau and Yoccoz [14].

§5. Discussion: analyzing mechanical transitions abstractly. The rather ab-
stract investigations above may seem so far removed from the reality of mechanical
computation that we might ask if one has anything to do with the other. It is true
enough that in studying mechanical computation, a common attitude, when faced
with matters involving astronomical complexity, is to retreat to some fragment of
the logic that is decidable and is therefore, in principle, amenable to mechani-
cal computation. But understanding mechanical computation is different from
mechanical computation, and logical abstractions introduced for the former (e.g.,
input/output equivalence) are bound (every now and then) to exceed the realm of
mechanical computation. When these do, we should not forget that retreating to
some “mechanically tractable” approximation of these abstractions leaves the mon-
strously complex reduction of reasoning to that fragment unanalyzed. The larger
mechanically uncomputable whole still hangs over us, begging for our attention,
and dwarfing the part amenable to mechanical computation (however carefully we
examine that fragment). And before, for instance, dismissing complications based
on infinite branching as marginal, we might keep in mind that the notion of infinity
exists because, in the absence of a fixed finite bound, it has proved to be a useful
abstraction (functioning, as it were, as a “telescope” into the unknown). More
concretely, assuming binary functions + and - are introduced alongside constants
/ and 4/ subject to

1, 1, [
X — X y—Xx x =/ X =X
) ) I i X' E i
x+y—->x x+y—=x' x-y—y x-y-ox'-y I =+

(in accordance with the intuition that + represents nondeterministic choice, -
sequential composition, and / an atomic action), the infinitely branching transition
systems of Figure 1 occur in solving the innocent system of equations

x1=1+x -1, Xy =1+x,, X3 = x1 +x2

by states 7|, 72, and r3 (for xi, x, x3, respectively) with transitions given by

! 1 1
l+r1-l—>x l-r2—>x }"1+r2—)x

/ ’ / ’ /
ry— x r — X r3 — X

The root r; is pictured by the transition system to the left of Figure 1, whereas r3
is pictured by the transition system to the right. Both transition systems provide
solutions for x|, whereas only the right provides a solution for x3. But the states r
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and r3 cannot co-exist in a model where & = <, forcing us to choose between
a solution for x3 and the least solution (in terms of transitions) to x;. (Note that
as a solution to x; = / + x; -/, the right transition system has an infinite branch
representing an unfair merge between / and x; - /, where x; - / is always chosen.)
Insofar as least fixed points (i.e., inductively defined sets) are ordinarily IT! sets,
this discrepancy is hardly surprising since bisimilarity may easily be non-H{.

Indeed, given that bisimilarity may have such complexity,® a natural question
is

is bisimilarity a reasonable notion of process equality?

As long as the concept of a process is, however, understood as a logical abstraction
(grounded, hopefully, in a mechanical reality), why impose an absolute limit
on the logical complexity of a notion of process equality? Abstract reasoning
and mechanical computation are two very different activities. Abstract concepts
are our friends, and to insist that they be mechanically computable would be to
seek rather dull company. What matters (from the point of view of theoretical
computer science) is that they have something interesting to say about mechanical
computation. The basic thrust of the present work has been to suggest the notion
of a bisimulation as a link grounding generalized (abstract) recursion theory in
ordinary (mechanical) recursion theory, according to Figure 2 adapted from Bar-
wise [7, pp. 42, 43, etc.]. Figure 2 (see next page) describes a universe of sets built
hierarchically along an ordinal a from a collection of urelements which (in the
present case) are given by programs, construed as syntactic objects, and analyzed
semantically as processes (i.e.. sets*). The ordinal « is, by a theorem of Gandy’s
(see Barwise [7, p. 211]), an upper bound on the closure ordinal for the operator
b/ coinductively computing bisimilarity. Furthermore, the upper bound is tight,
as the equivalence underlying the quotient construction in Barwise, Gandy and
Moschovakis [6] of the next admissible set (via hyperprojective well-founded trees)
is, in fact, bisimilarity. Building on the results of the present paper, Fernando
[19] traces the step from ordinary to generalized recursion back to a semantic
analysis of a transition-based, mechanical notion of computation (and explores
that semantic analysis further). ‘

3To be sure, other objections have been raised against bisimilarity—for example, that it is too fine
(e.g., Bloom, Istrail and Meyer [12]) and that it may fail to be a congruence for certain transformations
on states. Without claiming to pronounce the final word on the matter, let us just say that the criticism
concerning fineness is difficult to take seriously if translations of transition systems are allowed (surely
input/output equivalence is not too fine?) and that as for bisimilarity failing to be a congruence
for certain functions, the blame need not be put on bisimilarity but rather on the noncompositional
functions introduced to a transition system. After all, it is easy enough to construct an r.e. transition
relation containing copies of all re. transition relations (i.e., a “universal operational semantics”)
without having to introduce function symbols into the signature {L.~+} of transition systems. One is
then certainly free to expand that {L.~~}-model to interpret all sorts of pathological functions, but
it would be too much to expect bisimilarity to respect all such functions indiscriminately, especially
since the notion of a bisimulation presupposes a fixed level of abstraction (i.e., transition predicate)
of which there are a multitude.

40Of course, the notion of a set can arise in other ways, as in the translation .% in §3, where they
occur as states.
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