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The power set of a finite set is used as the alphabet of a string interpret-
ing a sentence of Monadic Second-Order Logic so that the string can be
reduced (in straightforward ways) to the symbols occurring in the sen-
tence. Simple extensions to regular expressions are described match-
ing the succinctness of Monadic Second-Order Logic. A link to Goguen
and Burstall’s notion of an institution is forged, and applied to con-
ceptions within natural language semantics of time based on change.
Various reductions of strings are described, along which models can
be miniaturized as strings.

1 introduction

Working with more than one alphabet is established practice in finite-
state language processing, attested by the popularity of auxiliary sym-
bols (e.g., Kaplan and Kay 1994; Beesley and Karttunen 2003; Yli-Jyrä
and Koskenniemi 2004; Hulden 2009). To avoid choosing an alphabet
prematurely, implementations commonly treat the alphabet Σ as a dy-
namic entity that is left underspecified before the finite automaton is
constructed in full.1 Fixing Σ is not always necessary to determine
the language denoted by an expression. This is the case with regular
expressions; the expression ; denotes the empty set for any alpha-
bet Σ, and the expression ab denotes the singleton set {ab} for any
alphabet Σ ⊇ {a, b}. Beyond regular expressions, however, there are
expressions that denote different languages given different choices of

1 I am indebted to an anonymous referee for raising this point.
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the alphabet Σ. Consider ab’s negation (or complement) ab, which
denotes a language

Σ∗ − {ab} = {s ∈ Σ∗ | s ̸= ab}
that is regular iff Σ is a finite set. To delay fixing Σ to some finite set
is to leave open just what the denotation Σ∗ − {ab} of ab is. Relative
to an alphabet Σ, a symbol c, understood as a string of length one,
belongs to that denotation if and only if c ∈ Σ. (Σ contains any symbol,
including c, in the open alphabet system implemented in Beesley and
Karttunen 2003.)

Apart from negations, there are many more extensions to regular
expressions describing denotations that vary with the choice of alpha-
bet. Consider the sentences of Monadic Second-Order Logic (MSO),
which, under a model-theoretic interpretation against strings, capture
the regular languages, by a fundamental theorem due independently
to Büchi, Elgot and Trakhtenbrot (e.g., Theorem 3.2.11, page 145 in
Grädel 2007; Theorem 7.21, page 124 in Libkin 2010). Leaving the
precise details of MSO for Section 2 below, suffice it to say (for now)
that occurrences of a string symbol a are encoded in a unary predi-
cate symbol Pa for an MSO-sentence such as ∀x Pa(x), saying a occurs
at every string position (satisfied by the string aaa but not by the string
ab unless a = b). We can check if a string over any finite alphabet Σ
(hereafter, a Σ-string) satisfies an MSO-sentence φ, but the computa-
tion gets costlier as Σ is enlarged. Surely, however, only the symbols
that appear in φ matter in satisfying φ or its negation? To investigate
this question, let the vocabulary of φ be the set

voc(φ) := {a | Pa occurs in φ}
of subscripts of unary predicate symbols appearing in φ. (For example,
∀x Pa(x)’s vocabulary voc(∀x Pa(x)) is {a}.) Now the question is: can
we not reduce satisfaction of φ by a Σ-string to satisfaction of φ by a
voc(φ)-string? A simple form such a reduction might take is a function
f : Σ∗ → voc(φ)∗ mapping a Σ-string s to a voc(φ)-string f (s) that
satisfies φ if and only if s does

s |= φ ⇐⇒ f (s) |= φ. (1)
Unfortunately, already forφ equal to ∀x Pa(x) andΣ to {a, b}, it is clear
no such function f can exist; the lefthand side of (1) fails for s = ab,
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whereas the righthand side cannot: an |= ∀x Pa(x) for all integers n≥ 0.
Evidently, voc(φ)∗ is too small to provide the variation necessary for
the reduction (1). Enter (2voc(φ))∗, where the power set 2A of a set
A is the set of all subsets of A. For any MSO-sentence φ and string
s = α1 · · ·αn of sets αi, we intersect s componentwise with voc(φ) for
the 2voc(φ)-string

ρvoc(φ)(α1 · · ·αn) := (α1 ∩ voc(φ)) · · · (αn ∩ voc(φ)).
Then for any finite set Σ, we let MSOΣ be the set of MSO-sentences
with vocabulary contained in Σ

MSOΣ := {φ | φ is an MSO-sentence and voc(φ) ⊆ Σ}
and interpret sentences φ ∈ MSOΣ relative to 2Σ-strings s using a bi-
nary relation |=Σ (defined in Section 2) such that

s |=Σ φ ⇐⇒ ρvoc(φ)(s) |=voc(φ) φ. (2)
The subscripts Σ and voc(φ) on |= in the lefthand and righthand sides
of (2) track the reduction effected by ρvoc(φ) but could otherwise be
dropped, had we not already used |= for the satisfaction relation men-
tioned in (1). Fixing φ’s denotation relative to Σ as the set

LΣ(φ) =
�
s ∈ (2Σ)∗ | s |=Σ φ

	
of 2Σ-strings that |=Σ-satisfy φ, we may conclude from (2) that
(†) whatever finite set Σwe use to fix the denotation of φ, it all comes

down to voc(φ).
Our argument for (†) via (2) rests on modifying MSO-satisfaction |= as
it is usually presented overΣ-strings (e.g., Libkin 2010) to one |=Σ over
2Σ-strings. Without appealing to (†), which might be made precise
some other way, we motivate the step from Σ to 2Σ in our presentation
of MSO-models in Section 2, showing, among other things, how that
step clarifies what predication and quantification amount to on strings
(essentially, preimages and images under ρvoc(φ)).

Beyond MSO, the reduction (2) is an instance of a general condi-
tion built into an abstract model-theoretic approach to specification
and programming based on institutions (Goguen and Burstall 1992).
We adopt this perspective to generalize (2) in Section 3 from ρvoc(φ)
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to functions on strings of sets, manipulating not only the vocabulary
but also the length of strings (yielding, at the limit, infinite strings). At
the center of this perspective are declarative methods for specifying
sets of strings over different alphabets. We focus on methods, includ-
ing but not limited to MSO, where the alphabets are power sets 2Σ of
finite sets Σ.

A multiplicity of such alphabets is useful in the semantics of tense
and aspect to measure time at different bounded granularitiesΣ, track-
ing finite sets of unary predicates named in Σ. Consider, for instance,
Reichenbach’s well-known account based on a reference time R, an
event time E and a speech time S (Reichenbach 1947). We can picture
various temporal relations between an event and a speech as strings
of boxes that may or may not contain E or S. For example, the string
E S portrays S after E (much like a film or comic strip), which we can
verbalize using the simple past or the present perfect, illustrated by (a)
and (b) respectively (where the event with time E is Ed’s exhalation).
(a) Ed exhaled.
(b) Ed has exhaled.

To represent the difference between (a) and (b), we bring the
reference time R into the picture, expanding Σ= {E,S} to Σ= {R,E,S}
with
(‡) R,E S for the simple past (a), and

E R,S for the present perfect (b),
where a box is drawn instead of the usual curly braces {, } for a set
construed as a symbol in a string of sets. The difference brought out
in (‡) carries significance for anaphora (e.g., Kamp and Reyle 1993,
where R is split many ways) and event structure (including an event’s
consequent state, in Moens and Steedman 1988). Both strings in (‡)
can be constructed from simpler strings representing a Reichenbachian
analysis of
(i) tense as a relation between R and S, with Σ= {R,S} and

R S for the past (a), and R,S for the present (b)
and

(ii) aspect as a relation between R and E, with Σ= {R,E} and
R,E for the simple (a), and E R for the perfect (b).
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Complicating the picture, there are finer analyses of E into aspectual
classes going back to Aristotle, Ryle and Vendler (e.g., Dowty 1979)
that call for an expansion of Σ= {R,E,S} to refine the level of granular-
ity (Fernando 2014). A wide ranging hypothesis that the semantics of
tense and aspect is finite-state is defended in Fernando (2015), deploy-
ing regular languages over power sets, of the kind described below.

Applications to temporal semantics aside, the reader expecting
a discussion of finite-state methods applied to phonology, morphol-
ogy and/or syntax should be warned that such a discussion has been
left for someone competent in such matters to take up elsewhere. The
present paper claims neither to be the first nor the last word on regular
languages over power sets. Its aim simply is to show how to get a han-
dle on the dependence of certain declarative methods on the choice
of a finite set Σ of symbols by stepping up to the power set 2Σ of Σ
and reducing a string through some function ρvoc(φ) or other. MSO
provides an obvious point of departure (Section 2), leading to further
declarative methods (Section 3).

2 mso and related extensions of regular
expressions

It is convenient to fix an infinite set Z of symbols a that can appear in
unary predicate symbols Pa, from which sentences of MSO are formed.
An MSO-sentence φ can have within it only finitely many unary predi-
cate symbols Pa, allowing us to break MSO up into fragments given by
finite subsets Σ of Z (no single one of which encompasses all of MSO).
In addition to the Pa’s, we assume a binary relation symbol S (for suc-
cessors), from which we can form, for example, the MSO-sentence

∀x
�
Pa(x) ⊃ ∃y(S(x , y)∧ Pb(y))

�
saying that every a-occurrence is succeeded by a b-occurrence. Formal
definitions are given in Subsection 2.1 of a satisfaction relation |=Σ
between (finite) MSOΣ-models andMSOΣ-sentences, built fromMSOΣ-
formulas with free variables analyzed by suitable expansions of Σ.
These expansions are undone by functions ρΣ on strings that arguably
provide the key to predication and quantification over strings. Indeed,
the ρΣ’s pave an easy route to the regularity of MSO, as we show in
Subsection 2.2. The functions can be tweaked for useful extensions
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in Subsection 2.3 of regular expressions, and declarative methods in
Section 3 that, like our presentation of MSO via |=Σ, meet abstract
requirements from Goguen and Burstall (1992).

In what follows, we write Fin(A) for the set of finite subsets of a
set A. Often but not always, A is Z .
2.1 MSO-models, formulas and satisfaction
We restrict our attention to finite models, defining for any integer
n≥ 0, [n] to be the set of integers from 1 to n,

[n] := {1, 2, . . . , n}
and Sn to be the successor (next) relation from i to i+1 for i ∈ [n−1]

Sn := {(1,2), (2,3), . . . , (n− 1, n)} .
Given Σ ∈ Fin(Z), let us agree that an MSOΣ-model M is a tuple

〈[n], Sn, {[[Pa]]}a∈Σ〉
for some integer n ≥ 0,2 such that for each a ∈ Σ, [[Pa]] is a subset
of [n] interpreting the unary relation symbol Pa. For A ⊆ Σ, the A-
reduct of M is the MSOA-model 〈[n], Sn, {[[Pa]]}a∈A〉, keeping only the
interpretations [[Pa]] for a ∈ A.

There is a simple bijection str from MSOΣ-models to 2Σ-strings,
picturing an MSOΣ-model M = 〈[n], Sn, {[[Pa]]}a∈Σ〉 as the 2Σ-string
str(M) = α1 · · ·αn with

αi := {a ∈ Σ | i ∈ [[Pa]]} (for i ∈ [n]),
which inverts to

[[Pa]] = {i ∈ [n] | a ∈ αi} (for a ∈ Σ).
For example, if Σ = {a, b} and M is 
[4], S4, {[[Pc]]}c∈Σ

� with [[Pa]] =
{1,2} and [[Pb]] = {1,3}, then

str(M) = a, b a b

(with αi boxed, as noted in the introduction, to mark them out as string
symbols). Strings of boxes with exactly one a ∈ Σ embed Σ∗ into (2Σ)∗;
let ι : Σ∗→ (2Σ)∗ map a1 · · · an ∈ Σn to

ι(a1 · · · an) := a1 · · · an .

2We follow Libkin (2010) in allowing a model to have an empty do-
main/universe.
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An advantage in working with (2Σ)∗ rather than Σ∗ is that we can
intersect a 2Σ-string α1 · · ·αn componentwise with any subset A of Σ
for the 2A-string

ρA(α1 · · ·αn) := (α1 ∩ A) · · · (αn ∩ A)

(generalizing ρvoc(φ) in the introduction). The A-reduct of the MSOΣ-
model given by the string α1 · · ·αn is represented by ρA(α1 · · ·αn); i.e.,
for any MSOΣ-model M and MSOA-model M ′,

ρA(str(M)) = str(M ′) ⇐⇒ M ′ is the A-reduct of M .

The difference between an MSOΣ-model M and the string str(M) is so
slight that we can confuse M harmlessly with str(M) and refer to a
2Σ-string as an MSOΣ-model.

To form MSO-formulas with free variables, let us fix an infinite
set Var disjoint from Z , Var ∩ Z = ;, treating each x ∈ Var as a first-
order variable. Given finite subsets Σ of Z and V of Var, we define a
MSOΣ,V -model to be a 2Σ∪V -string in which each x ∈ V occurs exactly
once, and collect these in the set ModV (Σ)

ModV (Σ) :=
¦

s ∈ (2Σ∪V )∗ | (∀x ∈ V ) ρ{x}(s) ∈ ∗
x
∗©

.

We define the setMSOΣ,V of MSOΣ-formulas φ with free variables in V
by induction, alongside sets LΣ,V (φ) of strings in ModV (Σ) that satisfy
φ, determining a satisfaction relation

|=Σ,V ⊆ ModV (Σ)×MSOΣ,V

between strings s ∈ModV (Σ) and formulas φ ∈MSOΣ,V according to
s |=Σ,V φ ⇐⇒ s ∈ LΣ,V (φ).

The inductive definition consists of six clauses.
(a) If {x , y} ⊆ V , then x = y and S(x , y) are in MSOΣ,V , with x = y

satisfied by strings in ModV (Σ) where x and y occur in the same
position

LΣ,V (x = y) :=
¦

s ∈ModV (Σ) | ρ{x ,y}(s) ∈ ∗
x , y

∗©
and S(x , y) satisfied by strings in ModV (Σ) where x occurs imme-
diately before y

LΣ,V (S(x , y)) :=
¦

s ∈ModV (Σ) | ρ{x ,y}(s) ∈ ∗
x y

∗©
.
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(b) If a ∈ Σ and x ∈ V , then Pa(x) is in MSOΣ,V and is satisfied by
strings in ModV (Σ) where the occurrence of x coincides with one
of a

LΣ,V (Pa(x))

:=
¦

s ∈ModV (Σ) | ρ{a,x}(s) ∈
¦

, a
©∗

a, x
¦

, a
©∗©

.

(c) If φ ∈ MSOΣ,V then so is ¬φ with ¬φ satisfied by strings in
ModV (Σ) that do not satisfy φ

LΣ,V (¬φ) := ModV (Σ)−LΣ,V (φ).

(d) If φ and ψ are in MSOΣ,V then so is φ∧ψ with φ∧ψ satisfied by
strings in ModV (Σ) that satisfy both φ and ψ

LΣ,V (φ ∧ψ) := LΣ,V (φ)∩LΣ,V (ψ).

For quantification, we must be careful that a variable can be reused,
as in

Pb(x)∧ ∃x Pa(x),

which is equivalent to Pb(x)∧∃yPa(y) since ∃x Pa(x) and ∃yPa(y) are.3
To cater for reuse of q ∈ Var∪ Z , we define an equivalence relation ∼q

between strings s and s′ of sets that differ at most on q, putting
s′ ∼q s ⇐⇒ ρ̂q(s

′) = ρ̂q(s),

where the function ρ̂q removes q from a string α1 · · ·αn of sets
ρ̂q(α1 · · ·αn) := (α1 − {q}) · · · (αn − {q}).

We can now state the last two clauses of our inductive definition of
MSOΣ,V and LΣ,V (φ).
(e) If φ ∈ MSOΣ,V∪{x} then ∃xφ is in MSOΣ,V with ∃xφ satis-

fied by strings in ModV (Σ) that are ∼x -equivalent to strings in
ModV∪{x}(Σ) satisfying φ :
LΣ,V (∃xφ) :=

�
s ∈ModV (Σ) | (∃s′ ∈ LΣ,V∪{x}(φ)) s′ ∼x s

	
,

which simplifies in case x is not reused
LΣ,V (∃xφ) =

�
ρΣ∪V (s) | s ∈ LΣ,V∪{x}(φ)

	 if x ̸∈ V.
3We can always avoid reuse in finite formulas, working with finitely many

variables.
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(f) If φ ∈ MSOΣ∪{a},V then ∃Paφ is in MSOΣ,V with ∃Paφ satisfied by
strings in ModV (Σ) that are ∼a-equivalent to strings in ModV (Σ∪
{a}) satisfying φ :
LΣ,V (∃Paφ) :=

�
s ∈ModV (Σ) | (∃s′ ∈ LΣ∪{a},V (φ)) s′ ∼a s

	
,

which simplifies in case Pa is not reused
LΣ,V (∃Paφ) =

�
ρΣ∪V (s) | s ∈ LΣ∪{a},V (φ)

	 if a ̸∈ Σ.

We adopt the usual abbreviations: φ ∨ ψ for ¬(¬φ ∧ ¬ψ), ∀xφ for
¬∃x¬φ, etc. Also, we render second-order quantification ∃Pa as ∃X ,
writing ∃Xφ for ∃Paφ

X
a where a does not occur in φ, and φX

a is φ
with Pa replacing every occurrence of X . For example, we can express
x < y as ∃X (X (y) ∧ ¬X (x) ∧ closed(X )) where closed(X ) abbreviates
∀x∀y(X (x)∧ S(x , y) ⊃ X (y)), which we can picture as

L{a},;(closed(Pa)) =
∗

a
∗

for the picture
L;,{x ,y} (∃Pa(Pa(y)∧¬Pa(x)∧ closed(Pa)))

=
�
ρ{x ,y}(s) | s ∈ L{a},{x ,y}(Pa(y)∧¬Pa(x)∧ closed(Pa))

	
=
¦
ρ{x ,y}(s) | s ∈ ∗

x
∗ ∗

a
∗

a, y a
∗©

=
∗

x
∗

y
∗

of x < y.
Next comes the pay-off in interpreting MSO-sentences over not

just Z-strings but strings of sets. An easy proof by induction on φ ∈
MSOΣ,V establishes
Proposition 1 Let Σ ∈ Fin(Z) and V ∈ Fin(Var). Then for all sets A⊆ Σ
and U ⊆ V ,

MSOA,U ⊆ MSOΣ,V

and for all φ ∈MSOA,U ,
LΣ,V (φ) =
�
s ∈ModV (Σ) | ρA∪U(s) ∈ LA,U(φ)

	
.

To pick out MSOΣ,V -formulas with no free variables, we let V = ; for
the set

MSOΣ = MSOΣ,;
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of MSOΣ-sentences, and write |=Σ for |=Σ,;, and LΣ(φ) for LΣ,;(φ)
(where φ ∈ MSOΣ). An immediate corollary to Proposition 1 is that
for all φ ∈MSOΣ and s ∈Mod;(Σ) = (2Σ)∗,

s |=Σ φ ⇐⇒ ρvoc(φ)(s) |=voc(φ) φ (2)
where voc(φ) is the smallest subset A of Z such that φ ∈MSOA

voc(φ) =
∩ {A∈ Fin(Z) | φ ∈MSOA}

(sharpening the description of voc(φ) in the introduction).
2.2 Regularity
For any finite sets A and B, the restriction

ρB
A := ρA ∩
�
(2B)∗ × (2B)∗
�

of ρA to (2B)∗ is a regular relation – i.e. computed by a finite-state
transducer (with one state, mapping α ⊆ B to α∩A). For the preimage
(or inverse image) of a language L under a relation R, we borrow the
notation

〈R〉 L :=
�
s | (∃s′ ∈ L) sRs′

	
from dynamic logic, instead of R−1 L which becomes awkward for long
R’s. We can then rephrase the definition of ModV (Σ) as

ModV (Σ) =
∩
x∈V

¬
ρΣ∪V{x}
¶ ∗

x
∗
. (3)

Similarly we have
LΣ,V (S(x , y)) = ModV (Σ)∩

¬
ρΣ∪V{x ,y}
¶ ∗

x y
∗ for x , y ∈ V

and writing θ B
A for the inverse of ρB

A ,

LΣ,V (∃xφ) = ModV (Σ)∩
¬
ρΣ∪V
Σ∪V−{x}
¶ ¬
θ
Σ∪V∪{x}
Σ∪V−{x}
¶ LΣ,V∪{x}(φ)

= ModV (Σ)∩
¬
θ
Σ∪V∪{x}
Σ∪V

¶ LΣ,V∪{x}(φ) for x ̸∈ V.

As regular languages are closed under intersection, complementation
and preimages under regular relations (which are themselves closed
under inverses), it follows that
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Proposition 2 For every Σ ∈ Fin(Z), V ∈ Fin(Var) and φ ∈MSOΣ,V , the
set LΣ,V (φ) of strings in ModV (Σ) that satisfy φ is a regular language.
The aforementioned Büchi–Elgot–Trakhtenbrot theorem (BET) side-
steps free variables, making do with MSOΣ = MSOΣ,; and a fragment
|=Σ ⊆ Σ∗ ×MSOΣ of |=Σ ⊆ (2Σ)∗ ×MSOΣ given by Σ-strings s and φ ∈
MSOΣ such that

s |=Σ φ ⇐⇒ ι(s) |=Σ φ
(recalling from Subsection 2.1 that ι(a1 · · · an) = a1 · · · an for
a1 · · · an ∈ Σn). A language L ⊆ Σ∗ is then characterized by BET as
regular iff for some sentence φ ∈MSOΣ,

L =
�
s ∈ Σ∗ | s |=Σ φ	 .

There is a sense in which the difference between s and ι(s) is purely
cosmetic; a simple one-state finite-state transducer computes ι. But
the MSOΣ-sentences valid in |=Σ need not be valid in |=Σ; take the
MSOΣ-sentence

spec(Σ) := ∀x
∨
a∈Σ

�
Pa(x)∧
∧

a′∈Σ−{a}
¬Pa′(x)
�

specifying in every string position x , exactly one symbol a from Σ.
BET effectively presupposes spec(Σ) to extract from φ ∈ MSOΣ the
regular language {s ∈ Σ∗ | ι(s) |=Σ φ} over Σ, rather than the full
regular language LΣ(φ) over 2Σ from Proposition 2. To represent a
regular language over 2Σ, BET provides a sentence not inMSOΣ but in
MSO2Σ , which we can translate into MSOΣ by replacing every subfor-
mula Pα(x) (for α ⊆ Σ) with the conjunction∧

a∈α
Pa(x) ∧
∧

a′∈Σ−α
¬Pa′(x)

in MSOΣ,{x} interpretable by |=Σ,V .4 Insofar as computations are car-
ried out on syntactic representations (e.g., MSO-formulas) rather than
on semantic models (designed largely as theoretical aids to under-
standing), the explosion from Σ to 2Σ is computationally worrying
in the syntactic step from MSOΣ to MSO2Σ rather than in the semantic
enrichment of Σ∗ to (2Σ)∗.

4Conversely, we can translate MSOΣ to MSO2Σ by replacing subformulas
Pa(x), for a ∈ Σ, with the disjunction ∨{Pα(x) | α ⊆ Σ and a ∈ α} in MSO2Σ ,{x}.
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Underlying Proposition 2 is a recipe from MSOΣ,V to the regular
expressions

L;,{x ,y}(x = y) =
∗

x , y
∗

L;,{x ,y}(S(x , y)) =
∗

x y
∗

L{a},{x}(Pa(x)) =
¦

, a
©∗

a, x
¦

, a
©∗

closed under conjunction, complementation and preimages under ρB
A

and θ B
A . These extended regular expressions are as succinct as the for-

mulas in MSOΣ,V they represent (up to a constant factor). That said,
if we take the example of spec(Σ), we can simplify the recipe for
LΣ(spec(Σ)) considerably to the image of Σ∗ under ι

LΣ(spec(Σ)) =
¦

a | a ∈ Σ©∗
linear in the size of Σ (as opposed to spec(Σ) with quadratically many
occurrences of the variable x). The representability of regular lan-
guages by regular expressions in general (i.e., Kleene’s theorem) raises
the question: what useful finite-state tools does MSO add to the usual
regular operations? Apart from intersection and complementation (the
usual extensions to regular expressions), one tool that MSOΣ intro-
duces is the idea of a string as a model, the proper formulation of
which blows Σ up to its power set 2Σ (to represent all finite MSOΣ-
models, whether or not they satisfy spec(Σ)). Exploiting that blow up,
we can define regular relations such as ρB

A under which preimages of
regular languages are also regular. We modify the relations ρB

A in the
next subsection, Subsection 2.3, examining the MSO representation
of accepting runs of a finite automaton, which is demonstrably more
succinct than any available with regular expressions.

2.3 Some parts and sorts
Using sets as symbols provides a ready approach to meronymy (i.e.,
parts); we drop the subscript A on ρA for the non-deterministic relation
⊵ of componentwise inclusion between strings of the same length

α1 · · ·αn ⊵ β1 · · ·βm ⇐⇒ n= m and αi ⊇ βi for i ∈ [n]
called subsumption in Fernando (2004). For example, s ⊵ ρA(s) for all
strings s of sets. A part of reduced length can be obtained by truncating

[ 40 ]



On regular languages over power sets

a string s from the front for a suffix s′

s suffix s′ ⇐⇒ (∃s′′) s = s′′s′

or from the back for a prefix s′

s prefix s′ ⇐⇒ (∃s′′) s = s′s′′.

We can then compose the relations ⊵, suffix and prefix for a notion ⊒
of containment

s ⊒ s′ ⇐⇒ (∃s1, s2) s ⊵ s1 and s1 suffix s2 and s2 prefix s′

⇐⇒ (∃u, v) s ⊵ us′v

between strings of possibly different lengths. For every atomic
MSOΣ,V -formula φ, the satisfaction set LΣ,V (φ) consists of the strings
in ModV (Σ) with characteristic ⊒-parts, given as follows.
Proposition 3 For all disjoint finite sets Σ and V ,

LΣ,V (x = y) = ModV (Σ)∩ 〈⊒〉 x , y for x , y ∈ V

LΣ,V (S(x , y)) = ModV (Σ)∩ 〈⊒〉 x y for x , y ∈ V

LΣ,V (Pa(x)) = ModV (Σ)∩ 〈⊒〉 a, x for a ∈ Σ, x ∈ V.

Under Proposition 3, each set LΣ,V (φ) is the intersection of ModV (Σ)
with a language 〈⊒〉 sφ, where sφ is a string of length ≤ 2 that pic-
tures φ. The obvious picture of x < y is the set x

∗
y of arbitrarily

long strings

LΣ,V (x < y) = ModV (Σ)∩ 〈⊒〉 x
∗

y for x , y ∈ V

which is nonetheless easier to visualize (if not read) than the
MSO;,{x ,y}-formula

∃X (X (y)∧¬X (x)∧ (∀u, v) (X (u)∧ S(u, v) ⊃ X (v)))

expressing x < y. To compress the language x
∗

y to the string
x y , we can replace containment ⊒ by weak containment

⪰ := {(α1 · · ·αn, x1 · · · xn) | x i = ε or x i ⊆ αi for i ∈ [n]}
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with deletions (x i equal to the empty string ε) allowed anywhere, not
just in the front or back of α1 · · ·αn or inside any box αi. (For example,
x , a

n
y ⪰ x y for all integers n ≥ 0.) Proposition 3 holds with ⊒

and S(x , y) replaced by ⪰ and x < y respectively

LΣ,V (x = y) = ModV (Σ)∩ 〈⪰〉 x , y for x , y ∈ V

LΣ,V (x < y) = ModV (Σ)∩ 〈⪰〉 x y for x , y ∈ V

LΣ,V (Pa(x)) = ModV (Σ)∩ 〈⪰〉 a, x for a ∈ Σ, x ∈ V.

Whether the part relation R is ⊒ or ⪰,5 what matters for the regularity
of LΣ,V (φ) is that the restriction of R to (2Σ∪V )∗

R ∩ ((2Σ∪V )∗ × (2Σ∪V )∗)

is computable by a finite-state transducer (for all finite sets Σ and V ).
Within ModV (Σ) are part relations ρ{x} (for x ∈ V ) revealed by the
equation

ModV (Σ) =
∩
x∈V

¬
ρΣ∪V{x}
¶ ∗

x
∗
. (3)

Moving from MSO to finite automata, let us rewrite pairs Σ, V as
pairs A,Q of disjoint finite sets A and Q, and define an (A,Q)-automaton
to be a triple A = (→A , FA , qA ) consisting of
(i) a set →A of triples in Q× A×Q specifying A -transitions (where

we write q
a→A q′ instead of (q, a, q′) ∈ →A )

(ii) a set FA ⊆Q of A -final states, and
(iii) an A -initial state qA ∈Q.
Given an (A,Q)-automaton A , an A -accepting run is a string

a1, q1 a2, q2 · · · an, qn ∈ (2A∪Q)∗

such that qA
a1→A q1 and qn ∈ FA and

qi−1
ai→A qi for 1< i ≤ n

5For the present purposes, we can take a part relation to be any fragment R
of ⪰ (i.e., whenever sRs′, s ⪰ s′). Thus, ρA, suffix, prefix, ⊒ and ⪰ are all part
relations.
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(where for n = 0, the empty string ε is an A -accepting run iff qA ∈
FA ). Let AccRuns(A ) be the set of A -accepting runs. Clearly, for all
s ∈ A∗,

A accepts s ⇐⇒ (∃s′ ∈ AccRuns(A )) ι(s) = ρA(s
′)

(recalling ι(a1 · · · an) = a1 · · · an ). That is, A accepts the language

L (A ) = 〈ιA〉


θA∪Q

A

� AccRuns(A )
(recalling θ B

A is the inverse of ρB
A ). As for the set AccRuns(A ) of

A -accepting runs, we start by collecting strings of pairs from A and
Q in
Pairs(A,Q) :=

∪
n≥0

¦
a1, q1 · · · an, qn | a1 · · · an ∈ An and q1 · · ·qn ∈Qn

©
.

We refine Pairs(A,Q) to AccRuns(A ), taking into account
(i) the set Init[A ] of strings that start with a pair a, q such that

qA
a⇝A q

Init[A ] := 〈prefix〉¦ a, q | qA a⇝A q
©

(ii) the set Final[A ] of strings ending with an A -final state

Final[A ] := 〈⊵〉 〈suffix〉¦ q | q ∈ FA
©

and
(iii) the set Bad[A ] of strings containing q a, q′ for triples (q, a, q′)

outside the set ⇝A of A -transitions

Bad[A ] := 〈⊵〉 〈suffix〉 〈prefix〉¦ q a, q′ | (q, a, q′) ∈Q× A×Q

and not q
a⇝A q′
©

.

Note that 〈R〉 〈R′〉 L = 〈R; R′〉 L for all relations R and R′ and sets L,
where R; R′ is the relational composition of R and R′

R; R′ :=
�
(s, s′) | (∃s′′) sRs′′ and s′′R′s′

	
(and containment ⊒ is the relational composition of ⊵, suffix and
prefix).
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Proposition 4 For all disjoint finite sets A and Q, and all (A,Q)-automata
A , the set AccRuns(A ) of A -accepting runs consists of all strings in
Pairs(A,Q) that belong to Init[A ] and Final[A ] but not to Bad[A ]

AccRuns(A ) = Pairs(A,Q)∩ Init[A ]∩ Final[A ]−Bad[A ].
Note that the language Pairs(A,Q) can be formed by defining for any
finite sets C and D, the set

SpecD(C) := LC∪D(spec(C)) =


ρC∪D

C

�¦
c | c ∈ C
©∗

of 2C∪D-strings with exactly one element of C in each box, making
Pairs(A,Q) = SpecQ(A)∩ SpecA(Q).

The language
¦

c | c ∈ C
©
of ρC -parts of strings in SpecD(C) includes

strings of any finite length, whereas all strings a, q , q and q a, q′
pictured in InitA , FinalA and BadA have length ≤ 2. This is one sense
in which the constraint Pairs(A,Q) is global (wide), while Init[A ] ∩
Final[A ]−Bad[A ] is local (narrow). A second sense is that Pairs(A,Q)
captures accepting runs of all (A,Q)-automata, just as ModV (Σ) in
Proposition 3 captures all MSOΣ,V -models. That is, Pairs(A,Q) and
ModV (Σ) are general, sortal constraints that provide a context (or
background) for more specific constraints to differentiate strings of
the same sort; this differentiation is effected in Propositions 4 and 3
by attributes or parts that pick out substrings of length bounded by 2.
Table 1 outlines the situation.

Table 1: sortal (taxonomic) differential (meronymic)
Proposition 3 ModV (Σ) 〈⊒〉 sφ
Proposition 4 Pairs(A,Q) Init[A ]∩ Final[A ]−Bad[A ]

general specific (to φ, A )
length of part unbounded (ρA) bounded (≤ 2)

A further difference between the second and third columns of
Table 1 is that whereas the sortal constraints ModV (Σ) and Pairs(A,Q)
employ deterministic part relations ρA, the differential constraints
〈⊒〉 sφ and Init[A ]∩ Final[A ]−Bad[A ] employ non-deterministic re-
lations ⊒, prefix and the relational composition ⊵; suffix. Although it is
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clear from Subsection 2.1 that the work done by ⊒, prefix and ⊵; suffix
can be done by ρA, non-determinism nevertheless arises when intro-
ducing existential quantification through the inverse θ B

A of ρB
A (used

for the step from A -accepting runs to the language L (A ) accepted
by A ). But while ⊒, prefix and ⊵; suffix search inside a string, θ B

A
searches outside. The search by θ B

A is bounded only because the set
B (that serves as its superscript) is finite (with elements of B not in A
amounting to auxiliary symbols).

Non-determinism aside, the relations ⊒, prefix and ⊵; suffix differ
from ρA and its inverse in relating strings of different lengths. Indeed,
Table 1 arose above from the observation that parts with length ≤ 2
suffice for the constraints in the third column. That said, in the next
section, we compress strings deterministically without setting any pre-
determined bounds (such as 2) on the resulting length, for sorts and
parts alike.

3 compression and institutions
Having established through Proposition 1 the reduction

s |=Σ φ ⇐⇒ ρvoc(φ)(s) |=voc(φ) φ (2)
(for all φ ∈MSOΣ and s ∈ (2Σ)∗), we proceeded to part relations other
than ρA in Table 1. The present section calls attention to string func-
tions that can (unlike ρA) shorten a string, pointing the equivalence (2)
and Table 1 in the direction of institutions (Goguen and Burstall 1992).
As the length n of a string determines the domain [n] = {1, . . . , n} of
the model encoded by the string, compression alters ontology over and
above A-reducts produced by ρA.
3.1 From compression to inverse limits
We can strip off empty boxes at the front and back of a string s by
defining

unpad(s) :=

� unpad(s′) if s = s′ or else s = s′
s otherwise

so that unpad(s) neither begins nor ends with , making
∗

x
∗
= 〈unpad〉 x .
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Using unpad-preimages, we can eliminate Kleene stars from the right
side of

ModV (Σ) =
∩
x∈V

¬
ρΣ∪V{x}
¶ ∗

x
∗ (3)

and from the extended regular expressions from Proposition 3 for the
sets LΣ,V (φ) of strings satisfying formulas φ ∈ MSOΣ,V . Regular ex-
pressions with complementation instead of Kleene star are known in
the literature as star-free regular expressions, denoting, by a theorem of
McNaughton and Papert, the first-order definable sets (Theorem 7.26,
page 127, Libkin 2010). We can formulate a notion of Σ-extended star-
free expressions matching the regular expressions over 2Σ, but while it
is easy enough to introduce the constructs 〈⊒〉 and 〈unpad〉, we need
subsets and supersets of Σ to relativize complementation and define
the constructs 
ρB

A

� and 
θ B
A

�, where θ B
A is the inverse of ρB

A . On the
positive side, this complication is potentially interesting as it suggests
a hierarchy between the star-free regular languages and regular lan-
guages over 2Σ. Be that as it may, our present concerns lie elsewhere.

Rather than separating the set Var of first-order variables from
the set Z of subscripts a on unary predicates Pa, we can formulate the
requirement on a symbol a that it occur exactly once in MSO{a}

nom(a) := ∃x∀y(Pa(y)≡ x = y)

characteristic of nominals in the sense of Hybrid Logic (e.g., Braüner
2014, or “world variables” in Prior 1967, pages 187–197), with

L{a}(nom(a)) = 〈unpad〉 a .

From nom(a), it is a small step to the condition interval(a) that a occur
in a string without gaps, which we can express in MSO{a} as

interval(a) := ∃x Pa(x) ∧ ¬∃y gapa(y)

where gapa(y) says a does not occur at position y even though it occurs
before and after y

gapa(y) := ¬Pa(y)∧ ∃u∃v (u< y ∧ y < v ∧ Pa(u)∧ Pa(v))

so that
L{a}(interval(a)) = 〈unpad〉 a

+
. (4)
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We can eliminate ·+ from the right of (4) by defining a function bc that
given a string s, compresses blocks αn of n> 1 consecutive occurrences
in s of the same symbol α to a single α, leaving s otherwise unchanged

bc(s) :=


bc(αs′) if s = ααs′
α bc(βs′) if s = αβs′ with α ̸= β
s otherwise

so that a
+ is 〈bc〉 a . In general, bc outputs only stutter-free strings,

where a string α1α2 · · ·αn is stutter-free if αi ̸= αi+1 for i from 1 to
n−1. Construing boxes in a string as moments of time, we can view bc
as implementing “McTaggart’s dictum that ‘there could be no time if
nothing changed”’ (Prior 1967, page 85). The restriction of bc to any
finite alphabet is computable by a finite-state transducer, as are, for
all Σ ∈ Fin(Z) and A⊆ Σ, the composition ρΣA ; bc for bcΣA

bcΣA (s) := bc
�
ρΣA (s)
� for s ∈ (2Σ)∗

and the composition bcΣA ;unpad for πΣA
πΣA (s) := unpad�bcΣA (s)

�
= bc
�unpad(ρΣA (s))� for s ∈ (2Σ)∗.

For a ∈ Σ, the (2Σ)-strings in which a is an interval are those that πΣ{a}
maps to a

LΣ(interval(a)) =
¬
πΣ{a}
¶

a .

The functions πΣA compose nicely
whenever A⊆ B ⊆ Σ, πΣA = πΣB ;πB

A (5)
from which it follows that

LΣ
�∧

a∈A

interval(a)� = ∩
a∈A

LΣ(interval(a))
=
∩
a∈A

¬
πΣ{a}
¶

a

=


πΣA
� Interval(A)

where Interval(A) is the πA
A-image of ∩a∈A

¬
πA{a}
¶

a

Interval(A) :=

�
πA

A(s) | s ∈
∩
a∈A

¬
πA{a}
¶

a

�
.
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Conflating a string s with the language {s}, observe that Interval({a}) =
a . For a ̸= a′, the set Interval({a, a′}) consists of thirteen strings, one
per interval relation in Allen (1983), which can be partitioned

Interval({a, a′}) = L �a⃝ a′
� ∪ L (a ≺ a′) ∪ L (a′ ≺ a)

between the nine-element set
L �a⃝ a′
�

:=
¦

a , a′ , ε
©

a, a′
¦

a , a′ , ε
©

describing overlap⃝ between a and a′ insofar as for all s ∈ Interval(Σ)
with a, a′ ∈ Σ,

s |=Σ ∃x (Pa(x)∧ Pa′(x)) ⇐⇒ πΣ{a,a′}(s) ∈ L
�
a⃝ a′
�

and the two-element sets
L (a ≺ a′) :=

¦
a a′ , a a′
©

L (a′ ≺ a) :=
¦

a′ a , a′ a
©

describing complete precedence≺ insofar as for all s ∈ Interval(Σ)with
a, a′ ∈ Σ,

s |=Σ ∀x∀y
�
(Pa(x)∧ Pa′(y)) ⊃ x < y

� ⇐⇒ πΣ{a,a′}(s) ∈ L (a ≺ a′)

and similarly for a′ ≺ a. Event structures are built around the rela-
tions⃝ and ≺ in Kamp and Reyle (1993) (pages 667–674) to express
the Russell-Wiener event-based conception of time, a particular elab-
oration of McTaggart’s dictum mentioned above. The sets Interval(A)
above provide representations of finite event structures (Fernando
2011).

Requiring that event structures be finite flies against the popu-
larity of, for instance, the real line R in temporal semantics (e.g.,
Kamp and Reyle 1993, page 670). But we can approximate any in-
finite set Z by its set Fin(Z) of finite subsets, using the inverse system
(Interval(A))A∈F in(Z),
πA,B : Interval(B)→ Interval(A), s 7→ πB

A(s) for A⊆ B ∈ Fin(Z)
for the inverse limit
{a : Fin(Z)→ Fin(Z)∗ | a(A) = πA,B(a(B)) whenever A⊆ B ∈ Fin(Z)}
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consisting of maps a : Fin(Z) → Fin(Z)∗ that respect the projections
πA,B. An element of that inverse limit, in case R ⊆ Z , is the map aR
such that for all r1 · · · rn ∈ R∗,

aR({r1, r2, . . . , rn}) = r1 r2 · · · rn for r1 < r2 < · · ·< rn

copying R. Notice that compressing strings via πA,B allows us to
lengthen the strings in the inverse limit. If we remove the compression
bc in πA,B, we are left with the map ρA that leaves the ontology intact
(insofar as the domain of an MSO-model is given by the string length),
whilst restricting the vocabulary (for A-reducts).

3.2 From inverse systems to institutions
We have left out from the language Interval({a}) = a the string a
(among many others) that satisfies interval(a), having built unpad into
πA

A. Notice that a is bounded to the left in a

a |={a} ∃x∃y(S(x , y)∧ Pa(y)∧¬Pa(x))

but not in a . The functions πB
A underlying Interval(A) abstract away

information about boundedness, which is fine if we assume in-
tervals are bounded (as in Allen 1983). But what if we wish to
study intervals that may or may not be left-bounded? Or, for that
matter, strings where a may or may not be an interval? The line
we pursue in this subsection harks back to Table 1 at the end of
Section 2, encoding presuppositions in the second column (e.g.,
ModV (Σ)), and assertions in the third column (e.g., 〈⊒〉 sφ). For in-
stance, we presuppose a string s is stutter-free (i.e., s = bc(s)) and
assert that a is an interval in s, to replace Interval(A) by the inter-
section �

bc(s) | s ∈ (2A)∗
	︸ ︷︷ ︸

presupposition
∩ ∩¦¬πA{a}
¶

a | a ∈ A
©︸ ︷︷ ︸

assertion

of which a and a are members, for a ∈ A. More generally, the idea
is to refine the inverse system from the previous subsection to certain
concrete instances of institutions (in the sense of Goguen and Burstall
1992) given by suitable functions on strings.
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More precisely, let Z be a large set of symbols, and f be a function
on Fin(Z)-strings (e.g., bc). For any finite subset A of Z , let P f (A) be the
image of (2A)∗ under f

P f (A) := { f (s) | s ∈ (2A)∗}
and let fA be the composition fA = ρA; f

fA(s) := f (ρA(s)) for s ∈ Fin(Z)∗.
Thus, P f (A) is the image of Fin(Z)∗ under fA. More importantly, for
every pair (B, A) of finite subsets of Z such that A ⊆ B, we define the
function P f (B, A) : P f (B)→ P f (A) sending s ∈ P f (B) to fA(s) ∈ P f (A)

P f (B, A)(s) := fA(s) for s ∈ P f (B).

Now, to say P f is an inverse system over Fin(Z) is to require that for
all A∈ Fin(Z),
(c1) P f (A, A) is the identity function on P f (A); i.e.,

fA( f (s)) = f (s) for all s ∈ (2A)∗

and whenever A⊆ B ⊆ C ∈ Fin(Z),
(c2) P f (C , A) is the composition P f (C , B);P f (B, A); i.e.,

fA( f (s)) = fA( fB( f (s))) for all s ∈ (2C)∗.

Functions f validating conditions (c1) and (c2) include the identity
function on Fin(Z)∗ (in which case fA is ρA), unpad and bc (see Fernando
2014, where inverse systems P f are referred to as presheaves). The
condition (c2) reduces to the condition

whenever A⊆ B ⊆ Σ, πΣA = π
Σ
B ;πB

A (5)
from the previous subsection, for f equal to the composition bc;unpad
(meeting also the requirement (c1)). To capture the entry ModV (Σ) in
the second column and row of Table 1 in terms of P f , we must treat a
first-order variable in V as a symbol a ∈ Z (as in the previous subsec-
tion), and build into f both the uniqueness and existence conditions
that nom(a) expresses, for a ∈ V . To ensure that no a ∈ V occur more
than once in a string s, we delete occurrences in s of a after its first,
setting for all α1 · · ·αn ∈ Fin(Z)∗,
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uV (α1 · · ·αn) := β1 · · ·βn where βi := αi−
�
V ∩

i−1∪
j=1

α j

�
for i ∈ [n].

To ensure each a ∈ V occurs at least once in the string, we put V at
the very end

eV (sα) := s(α∪ V )

with eV (ε) := V for the empty string ε. Now, if f is the composition
eV ; uV then

ModV (Σ) = P f (Σ∪ V )

and (c1) and (c2) hold.
The third column of Table 1 calls for further ingredients. Let us

define a Z-form to be a function sen with domain Fin(Z) mapping A∈
Fin(Z) to a set sen(A) such that for all B ∈ Fin(Z),

sen(A)∩ sen(B) ⊆ sen(A∩ B)

and
sen(A) ⊆ sen(B) whenever A⊆ B.

Given a Z-form sen, we can associate every φ ∈∪{sen(A) | A∈ Fin(Z)}
with the finite subset

voc(φ) =
∩{A∈ Fin(Z) | φ ∈ sen(A)}

of Z such that
φ ∈ sen(A) ⇐⇒ voc(φ) ⊆ A

for all A ∈ Fin(Z). Next, given a function f on Fin(Z)∗ and a Z-form
sen, let us agree that a ( f , sen)-specification L is a function with do-
main Fin(Z) mapping A ∈ Fin(Z) to a function LA with domain sen(A)
mapping φ ∈ sen(A) to a set LA(φ) of strings in P f (A). The intuition is
that LA(φ) consists of the strings in P f (A) that A-satisfy φ

s ∈ LA(φ) ⇐⇒ s A-satisfies φ (for all s ∈ P f (A)).

Putting the ingredients together, let us define a (Z , f )-quadriplex to be
a 4-tuple (Fin(Z),P f , sen,L ) such that
(i) P f is an inverse system over Fin(Z)
(ii) sen is a Z-form, and
(iii) L is a ( f , sen)-specification.
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Note that once Z and f are fixed, only the third and fourth compo-
nents sen and L of a (Z , f )-quadriplex (Fin(Z),P f , sen,L ) may vary.
To link up with institutions, as defined in Goguen and Burstall (1992),
we view
(i) Fin(Z) as a category with morphisms given by ⊆
(ii) P f as a contravariant functor from Fin(Z) to the category Set of

sets and functions, and
(iii) sen as a (covariant) functor from Fin(Φ) to Set such that whenever

A⊆ B ∈ Fin(Z), sen(A, B) is the inclusion sen(A) ,→ sen(B).
The one remaining condition a (Z , f )-quadriplex must meet to be an
institution is that for all A⊆ B ∈ Fin(Z) and φ ∈ sen(A),

s ∈ LB(φ) ⇐⇒ fA(s) ∈ LA(φ) (for all s ∈ P f (B))

which we can put as the equation
LB(φ) = P f (B)∩ 〈 fA〉 LA(φ).

In fact, the special case A= voc(φ) suffices.
Proposition 5 Given a set Z and function f on Fin(Z)∗, a (Z , f )-
quadriplex (Fin(Z),P f , sen,L ) is an institution iff for all Σ ∈ Fin(Z) and
φ ∈ sen(Σ),

LΣ(φ) = P f (Σ)∩



fvoc(φ)

� Lvoc(φ)(φ) . (6)
If f is the identity on Fin(Z)∗, and sen(Σ) is MSOΣ, then (6) becomes
the equivalence

s |=Σ φ ⇐⇒ ρvoc(φ)(s) |=voc(φ) φ (2)
for all φ ∈ MSOΣ and s ∈ (2Σ)∗. (6) also represents the division in
Table 1 between column 2 (P f (Σ)) and column 3 (
 fvoc(φ)

� Lvoc(φ)(φ)),
whilst leaving open the possibility that f is not the identity function
on Fin(Z)∗ nor is φ an MSO-formula.

Under (6), we may assume without loss of generality that sen and
L have the following form. For every Σ ∈ Fin(Z), there is a set Expr(Σ)
of expressions e with denotations [[e]] ⊆ (2Σ)∗ such that sen(Σ) = 2Σ×
Expr(Σ) consists of pairs (A, e) of subsets A ⊆ Σ and e ∈ Expr(Σ) with
voc(A, e) = A and

LΣ(A, e) = P f (Σ)∩ 〈 fA〉 [[e]]. (7)
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An instructive example is provided by A equal to {a}, and e equal to
the extended regular expression 〈⊒〉 a a or equivalently, the MSO{a}-
sentence

∃x∃y (S(x , y)∧ Pa(x)∧ Pa(y)).

The righthand side of (7) can never hold with f = bc; there is no s ∈
(2Σ)+ such that bc{a}(s) ⊒ a a . A slight revision, however, makes the
right hand side bc-satisfiable; introduce a symbol b ̸= a for A equal to
{a, b} and e equal to 〈⊒〉 a, b a or the MSO{a,b}-sentence

∃x∃y (S(x , y)∧ Pa(x)∧ Pa(y)∧ Pb(x)).

In general, we can neutralize block compression bc on a string s by
adding a fresh symbol to alternating boxes in s, which bc then leaves
unchanged, since

bc(s) = s ⇐⇒ s is stutter-free
(recalling that α1 · · ·αn is stutter-free if αi ̸= αi+1 for 1 ≤ i < n). Simi-
larly, we can add negations a of symbols a in A through a function clA
clA(α1 · · ·αn) := β1 · · ·βn where βi := αi ∪ {a | a ∈ A−αi} for i ∈ [n]
to express bcΣA in terms of πΣB

bcΣA = clA;πΣc(A);ρA where c(A) := A∪ {a | a ∈ A}
treating a ∈ c(A)− A as an auxiliary symbol, and

bcΣA ; clA = clA;πΣc(A).

Returning to (7) with f = bc, we can say a is bounded to the left
LΣ({a},∃x(¬Pa(x)∧∀y(Pa(y) ⊃ x < y))) =

¬
bcΣ{a}
¶ 〈prefix〉

applying prefix after bc, and say a overlaps a′

LΣ({a, a′},∃x(Pa(x)∧ Pa′(x))) =
¬
bcΣ{a,a′}
¶ 〈⊒〉 a, a′

applying containment ⊒ after bc. It is clear that unpad is just one
of many relations that can come after bcΣA (leading, in this case, to
πΣA = bcΣA ;unpad). The projection ρΣA in bcΣA = ρ

Σ
A ; bc changes the gran-

ularity from Σ to A before bc reduces the ontology to suit A, and part
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relations (such as prefix, containment ⊒ or unpad) pick out a temporal
span to frame a string (such as or a, a′ ) picturing an assertion (e.g.,
left-boundeness, overlap). We are dividing here the choice of an ex-
pression eφ denoting the languageLvoc(φ)(φ) in Proposition 5 between
a relation R and a string s for eφ = 〈R〉 s. Such a choice presupposes the
finite approximability of the model of interest via the inverse limit
of P f (the discreteness of strings mirroring the bounded granularity
of natural language statements, rife with talk of “the next moment”).
Finite approximability is not only plausible but arguably implicit in
accounts such as Reichenbach (1947) of tense and aspect.

4 conclusion

There is no question that as declarative devices specifying sets of
strings accepted by finite automata, regular expressions are more pop-
ular than MSO. What MSO offers, however, is a model-theoretic per-
spective on strings with computable notions of entailment (inclusions
between regular languages being decidable), in addition to Boolean
connectives that expose deficiencies in succinctness of regular expres-
sions (e.g., Gelade and Neven 2012). Mapping a finite automaton A
to a regular expression denoting the language L (A ) accepted by A
can have exponential cost (Ehrenfeucht and Zeiger 1976; Holzer and
Kutrib 2010). A more concise representation of L (A ) existentially
quantifies away the internal states from the accepting runs ofA (ana-
lyzed in Proposition 4 above). Not only can this be carried out in MSO
(proving one half of the Büchi–Elgot–Trakhtenbrot theorem), but it is
well-known that MSO-sentences can be far more succinct than finite
automata (e.g., Libkin 2010, pages 124–125, and 135–136). To match
the succinctness of MSO, regular expressions over alphabets 2Σ (for
finite sets Σ) are extended with preimages and images under homo-
morphisms ρA that output A-reducts, for A⊆ Σ.

The step from Σ up to 2Σ is justified by the various notions of
part between strings of sets, given by ρA, subsumption ⊵, prefix, suffix,
block compression bc and unpad, all computable (over 2Σ) by finite-
state transducers. Reducts between vocabularies are composed with
compression within a fixed vocabulary to fit ontology against the vo-
cabulary. An inverse limit construction (turning compression around
to extension) takes us beyond the finite models of MSO to infinite time-
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lines, approximated at granularity Σ by strings over the alphabet 2Σ.
Different finite sets Σ induce different notions |=Σ of satisfaction that
form institutions, under certain minimal smoothness conditions (used
to establish the Büchi–Elgot–Trakhtenbrot theorem in Section 2).
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