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Projecting temporal properties, events & actions
Tim Fernando

Gothenburg, 25 May 2019 (IWCS)

» Labels in records and record-types
» Statives (Dowty aspect hypothesis)

» Non-statives & Aktionsart (Moens & Steedman ~ episodes)
Epilog (Schubert)

» Finite-state methods

— MSO under projections
Allen interval networks and beyond
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Timeline R (DRT, Kamp & Reyle)
unbounded linear order (Allen & Ferguson)
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Finitization & computability

Timeline R (DRT, Kamp & Reyle)
unbounded linear order (Allen & Ferguson)

X =|_J Fin(X) where Fin(X) := {AC X | A's finite}
(X, <) = “21 {<a}aeFin(x) projections

<{a1,...,an} @S string a;---a, where a; <--- < a,

Trakhtenbrot’'s theorem [t is undecidable whether a first-order
sentence with a binary relation has a finite model.

Biichi-Elgot-Trakhtenbrot theorem (MSO = Reg)
For any finite set A and set L of strings over A,
an MSQO,-sentence defines L iff a finite automaton accepts L.

2113



Aktionsart

VENDLER

ACHIEVEMENT ACCOMPLISHMENT

STATE

ACTIVITY
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Aktionsart

VENDLER, Moens & Steedman (Comrie)

atomic extended
ACHIEVEMENT ACCOMPLISHMENT
+conseq culmination culminated process
STATE

—conseq

(semelfactive)
point

ACTIVITY
process
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Aktionsart in strings

VENDLER, Moens & Steedman (Comrie)

atomic extended
ACHIEVEMENT ACCOMPLISHMENT
+conseq culmination culminated process
STATE a EB a,ap(f)|a,ap(f).ef(f)|ef(f),a
(semelfactive) ACTIVITY
—conseq point process
f ap(F) | ef(f) | ap(F) |ap(F) ef(f) | ef(£) |
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Aktionsart in strings

VENDLER, Moens & Steedman (Comrie)

atomic extended
ACHIEVEMENT ACCOMPLISHMENT
+conseq culmination culminated process
STATE a 3,ap(f)|a,ap(f).ef(f)|ef(f),a
(semelfactive) ACTIVITY
—conseq point process
f |ap(F) | ef(f)| |ap(F) | ap(f).ef(f) | ef(F)

force f | state a
hit break | Fillmore
manner | result | Levin & Rappaport Hovav
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Variations on a theme of S¢h,b,r*

Davidson (event) | Barwise & Perry (situation)
Episodic Logic | characterize ** true-in *
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Variations on a theme of S¢h,b,r*

Davidson (event) | Barwise & Perry (situation)
Episodic Logic | characterize ** true-in *
Here | project wrt £ C A Ea (MSO)

{{Ci,si) }ier (A, L)
Vary finite set A (¢) of

- temporal properties, stative and non-stative

- variables as in Constraint Satisfaction Problem Var, Dom, Con
~ institution (Goguen & Burstall) Sign, Mod, sen

- random variables, or vertices in graphical model (cond independ)
subset ¢; ~ clique in Markov network

... causally or otherwise contingently related sequences of
events, which we might call episodes
— Moens & Steedman
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Reducts
(-reduct py(s) of s sees only symbols in ¢

pelar -~ ap) = (a1 nNl)---(apN¥)

Pia,a}( Iala,a’la,a’,a”la’,a”la”‘) = Ha'a,a’la,a"a’”
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Reducts & the border translation
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Reducts & the border translation
(-reduct py(s) of s sees only symbols in ¢

pelar -~ ap) = (a1 nNl)---(apN¥)

Pia,a}( Iala,a’la,a’,a”la’,a”la”‘) = Ha'a,a’la,a"a’”

b(‘ Ial a’la,a’la") = ‘I(a)ll(a’)l |r(a)|r(a’)

a7
b:(24) — (24)*, a1 an > Br- - Ba

A ={l(a) | ac A} U{r(a) | a€ A}
Bn = {r(a) | a € an}
Bi = {l(a) | a€ ajy1 —ai}U{r(a) | a€ aj—ajq1} fori<n

Pia)(x) = =Pa(x) A (Fy)(xSy A Pa(y))
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Compression

Ha'a,a"a,a’la" k Hala,a’la" no stutters
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Compression two ways

Hala,a’la,a’la" k Hala,a’la" no stutters

4 b border translation

@) 1@ ] | r@)] @)

% [1a)[ 1) [ r(@)] (@)

do(s) := s without OJ
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Compression two ways & projection

Hala,a’la,a’la" k Hala,a’la" no stutters

4 b border translation

’ I(a) | 1(a") ‘ ‘ r(a) | r(a)

do(s) := s without OJ
de(s) = do(pe(s))

a ‘ I(a) | 1(a") ‘ r(a) | r(a)

no []

s projects to s" if s’ = doc(s)(S) Where

voc(a U Q.
a is an s-interval if b(s) projects to |/(a)|r(a)

6113



Leibniz's law: identity of indiscernibles

x7#y 2 (3P)=(P(x) = P(y)) (LL)
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Leibniz's law: identity of indiscernibles

x#y > (3P)~(P(x) = P(y))
replace # by adjacency S
xSy D xZay

and take P from a finite set A

x#ay = \/ =(Pa(x) = Pa(y))
= \/ (_'Pa(X) A Pa(Y))v(Pa(X) A _‘Pa(Y))

acA

Pl(a)(X) 'Dr(a)(X)
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Leibniz's law: identity of indiscernibles relativized

x#y > (3P)~(P(x) = P(y)) (LL)
replace # by adjacency S “time stepss only with change,”
xSy D xX#ay (LLA)

and take P from a finite set A

x#ay =\ ~(Pa(x) = Pa(y)) be
acA
= \/ (FPa(x) A Pa(y)) V (Pa(x) A =Pa(y))
acA

Pl(a)(X) 'Dr(a)(X) do
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Projecting

La = {do(s) | se (M) Schwer S-words

La(s) := {s' € La ]| s projects to s}

8113



Projecting more than once

La = {do(s) | se (M) Schwer S-words

La(s) := {s' € La ]| s projects to s}

La(l(a)[r(a) )N La( ()| r(a)|) = Allen(a,a’) for A={a,a'}e

e —
13 strings

8113



Projecting more than once

La = {do(s) | se (M) Schwer S-words

La(s) := {s' € La ]| s projects to s}

La(l(a)[r(a) )N La( ()| r(a)|) = Allen(a,a’) for A={a,a'}e
—
13 strings

Define superposition s&s’ such that

ﬁA(S)ﬂﬁA(SI) = ,CA(S&S/)
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Projecting more than once

La = {do(s) | se (M) Schwer S-words

La(s) := {s' € La ]| s projects to s}

La(l(a)[r(a) )N La( ()| r(a)|) = Allen(a,a’) for A={a,a'}e
—
13 strings

Define superposition s&s’ such that

LA(S)NLA(S) = La(s&s') where
La(L) == | La(s)

sel

8113



Allen relations projected

s aRd <= b(s) projects to sg(a,a’)
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Allen relations projected

s aRd <= b(s) projects to sg(a,a’)
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From 2 intervals to 3

a<a a < "
a<a
< o d
< | < < <dmos
o | < < mo dos
d|<|<dmos d
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From 2 intervals to 3

a<ad a <a
a<a’
< o d
< | < < <dmos
o | < <mo dos
d|<|<dmos d
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From 2 intervals to 3

a<a a < a’ aoad ada’
a<a a {d,o,s} a"
< o d
< | < < <dmos
o | < <mo dos
d|<|<dmos d

s<(a,d) & s-(,") = [I(a)] r(a)] 1(2)] r(@) [ 1(a") | r(a")

50(2,3) & 5a(d,d") = |I(a")|[I(a) | 1(2) | r(a) | r(a) | r(a")| ad &
+ @) | 1@ [1(2) | r(a) [ r(@) | r(a")| a0
+ [I(a), 1(a") [ (@) | r(a) | (@) | r(@")] a5 a”




Superposition

&O(S, S,, SI/)
&°(e,e,€)  &°(as,a’s, (aUa’)s")
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Superposition

&°(s, s, SH) &°(s, s, S”) &°(s, s, S”)
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Superposition

&°(s, s, SH) &°(s, s, S”) &°(s, s, S”)

&°(e,e,€)  &°(as,d!s,(aUa’)s”) &°(as,s’,as") &°(s,a's’,a's")

Constrain through A, A’

&pp(s,s’,s") anA Cdo o NAC«a
&aa(as,als, (aUa’)s")

&an(s,s,s") anA =10 &an(s,s,s") oNA=0
&pp(as, s’ as") &pn(s,a's' als")
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Superposition

&°(s, s, S”) &°(s, s, S”) &°(s, s, 5//)

&°(e,e,€)  &°(as,d!s,(aUa’)s”) &°(as,s’,as") &°(s,a's’,a's")

Constrain through A, A’

&an(s,s',s") anA Cdo o NACa
&an(as, s, (aUa’)s")

&an(s,s,s") anA =0 &an(s,s,s") oNA=0
&A7A/(a5, Sla OZS//) &A7A/(S, Oé/S/, O/SH)

& yoc(s)voc(s)(5,5',8") = &°(s,s’,s") and s” projects to s and s’
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Episodes in Moens & Steedman
Rather than a homogeneous database of dated points or
intervals, we should partition it into distinct sequences
of causally or otherwise contingently related sequences of
events, which we might call episodes [MS, p 26]
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Episodes in Moens & Steedman as record types

Rather than a homogeneous database of dated points or
intervals, we should partition it into distinct sequences
of causally or otherwise contingently related sequences of
events, which we might call episodes [MS, p 26]

[{i,Li)Yiella == {s€ La| (Viel)dy(s) € Li}

= ﬂﬁA(L;) if £; = voc(s;) for i €l
icl

E.g. interval network arc labeling A : (Iv/ x Ivl) — 24R
for £; = {a,a'}, Li = {sr(a,d) | R € \(a,d')}
determinate labeling L; = {s;} for record

[{{4i,si)}icila == {s€ Lal(Viel)dy(s)=si}
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J.A. Wheeler: it from bit

every it —every particle, every field of force, even the space-
time continuum itself — derives its function, its meaning,
its very existence entirely — even if in some contexts indi-
rectly — from the apparatus-elicited answers to yes-or-no
questions, binary choices, bits.

all things physical are information-theoretic in origin
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J.A. Wheeler: it from bit

every it —every particle, every field of force, even the space-
time continuum itself — derives its function, its meaning,
its very existence entirely — even if in some contexts indi-
rectly — from the apparatus-elicited answers to yes-or-no
questions, binary choices, bits.

all things physical are information-theoretic in origin

it ~ value/string v; (or type/language T;)
linked by ¢; in records (or record types)

MSQO: yes-or-no P,-questions answered in S-steps
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Thank You



