Two perspectives on change \& institutions

Tim Fernando
Trinity College Dublin, Ireland

Nicola Guarino 2014

- Ontological analysis as a search for truth makers
- Episodes as truth makers for material relations
(1) John works for Mary

Perspective One:

find truth makers in a timeline (where episodes occur)

Perspective Two:

find tm's behind episodes/timelines in "rules and regulations"
(G. Carlson 1995) / causal structures (M. Steedman 2005)

Complications

(2) Tess eats dal \neq Tess is eating dal

Tess is not eating dal today; she will tomorrow
(3) Bishops move diagonally

- Genericity (Carlson)
(4) John was drawing a circle
\nRightarrow John drew a circle
- Imperfective Paradox (Dowty)

Episode occurs in a "maximally connected time interval" (Guarino)
(5) Pat spoke until noon ? but not a picosecond later

- Sorites (heap) paradox

Bound granularity
\sim relativize \models to signature in an institution (Goguen \& Burstall)

Antony Galton

G 2008:
a fundamental ontological distinction between
EXP, the dynamic experiential world of objects and processes as they exist at one time, and
HIST, the static historical overview populated by events that are generated by the ongoing processes in EXP
modifying Grenon \& Smith 2004

SNAP	SPAN
objects	events

processes

EXP	HIST
objects	events

processes

G 20012:
processes as abstract patterns of behaviour which may be realised in concrete form as actually occurring states or events

Proposal

$\frac{\text { EXP-process }}{\text { HIST-event }}$	$\approx \frac{\text { internal mechanism }}{\text { external timeline }}$
	$\approx_{\Sigma} \frac{\text { automaton }}{\text { string }}$
	$\approx_{\Sigma} \frac{\text { Hennessy-Milner }(\diamond)}{\text { Monadic Second-Order Logic }}$
	$\approx_{\Sigma} \frac{\text { type }}{\text { particular }}$

(1) Perspective One: strings

(2) Perspective Two: languages

(3) Relating the perspectives

Strings for natural language semantics

W. Klein

The expression of time in natural languages relates a clause-internal temporal structure to a clause-external temporal structure.
The latter may shrink to a single interval, for example, the time at which the sentence is uttered; but this is just a special case.
The clause-internal temporal structure may also be very simple - it may be reduced to a single interval without any further
differentiation, the 'time of the situation'; but if this ever happens, it is only a borderline case.
As a rule, the clause-internal structure is much more complex.

Ed exhaled

H. Reichenbach

it rained
it has rained

		tens			
E,	S	R	S		
E	R,S	R,S		E	R

Inside E: Aristotle

Al was running towards the post-office
$\therefore \mathrm{Al}$ ran towards the post-office
Al was running to the post-office
$\%$ Al ran to the post-office
at(al, post-office) holds at the end of an interval
Partition an interval into
a sequence $I_{1} \cdots I_{n}$ of intervals with $I_{1}<I_{2}<\cdots<I_{n}$
to interpret a string $\alpha_{1} \cdots \alpha_{n}$ of boxes α_{i}

$$
I_{1} \cdots I_{n} \models \alpha_{1} \cdots \alpha_{n} \quad \text { iff } \quad(\forall i \in\{1, \ldots, n\})\left(\forall \varphi \in \alpha_{i}\right) I_{i} \models \varphi
$$

$\alpha_{1} \cdots \alpha_{n}$ is telic if $n \geq 2$ and there is some φ in α_{n} such that the negation $\sim \varphi$ of φ appears in α_{i} for $1 \leq i<n$

$$
\begin{array}{|l|l|l|}
\hline \sim \text { at(al,post-office } & \sim \text { at(al,post-office } & \text { at(al,post-office) } \\
\hline
\end{array}
$$

Intervals strung out

days in a year \sim months in a year

$$
\begin{aligned}
& \begin{array}{|l|l|l|l|l|l|l|l|}
\hline \text { Jan, d1 } & \text { Jan, d2 } \cdots \text { Dec, }^{\rho_{\text {months }}} & \mathrm{Jan}^{31} \mathrm{Feb}^{28} \cdots \mathrm{Dec}^{31}
\end{array} \\
& \xrightarrow{b c} \quad \begin{array}{|l|l|l|}
\hline \text { Jan } & \text { Feb } & \cdots \\
\hline
\end{array}
\end{aligned}
$$

ρ_{Σ} "see only $\Sigma "$

$$
\rho_{\Sigma}\left(\alpha_{1} \cdots \alpha_{n}\right):=\quad\left(\alpha_{1} \cap \Sigma\right) \cdots\left(\alpha_{n} \cap \Sigma\right)
$$

bc "no time without change" (McTaggart's dictum) compress α^{+}to α $\alpha_{1} \cdots \alpha_{n}$ is stutterless if $\alpha_{i} \neq \alpha_{i+1}$ for $1 \leq i<n$
— i.e. if $b c\left(\alpha_{1} \cdots \alpha_{n}\right)=\alpha_{1} \cdots \alpha_{n}$
$b c_{\Sigma}$ is $\rho_{\Sigma} ; b c$ [vocabulary; ontology]

$$
M \models_{\Sigma} \varphi \quad \Sigma \stackrel{\sigma}{\rightarrow} \Sigma^{\prime} \quad \frac{\varphi \in \operatorname{sen}(\Sigma)}{\sigma(\varphi) \in \operatorname{sen}\left(\Sigma^{\prime}\right)} \quad \frac{M^{\prime} \in \operatorname{Mod}\left(\Sigma^{\prime}\right)}{\left.M^{\prime}\right|_{\sigma} \in \operatorname{Mod}(\Sigma)}
$$

$$
\left.M^{\prime}\right|_{\sigma} \models_{\Sigma} \varphi \quad \text { iff } \quad M^{\prime} \models_{\Sigma^{\prime}} \sigma(\varphi)
$$

$\operatorname{sen}(\Sigma)=$ Monadic Second-Order logic (MSO) over Σ
$=$ regular languages over Σ (Büchi, Elgot, Trakhtenbrot)
$\operatorname{Mod}(\Sigma)=$ strings over alphabet $2^{\Sigma}(\operatorname{not} \Sigma)$

$$
\rho_{\Sigma}\left(s^{\prime}\right) \models_{\Sigma \varphi} \varphi \quad \text { iff } \quad s^{\prime} \models_{\Sigma^{\prime}} \varphi
$$

For stutterless strings, apply $b c$ after ρ_{Σ} for $b c_{\Sigma}$

(1) Perspective One: strings

(2) Perspective Two: languages
(3) Relating the perspectives

$\left[\begin{array}{lll}\text { smash } & & \\ \text { AGENT } & : & \text { animate } \\ \text { THEME } & : & \text { concrete }\end{array}\right]$

> \{smash, AGENT animate, THEME concrete $\}$

$$
\begin{aligned}
\llbracket L \rrbracket & :=\bigcap_{s \in L} \operatorname{domain}(\llbracket s \rrbracket) \\
\llbracket \epsilon \rrbracket: & :=\lambda x \cdot x \\
\llbracket s a \rrbracket: & :=\llbracket \rrbracket ; \llbracket a \rrbracket
\end{aligned}
$$

$$
\operatorname{domain}(\llbracket s m a s h \rrbracket) \cap
$$

$$
\text { domain }(\llbracket \mathrm{AGENT} \rrbracket ; \llbracket \text { animate } \rrbracket) \cap
$$

domain(【THEME】; 【concrete】)

Hennessy－Milner \＆traces

For \models ，we can reduce q, δ to $\operatorname{trace}_{\delta}(q) \subseteq \Sigma^{*}$ ．

$$
\begin{aligned}
& \Sigma \text {-deterministic system } \delta: Q \times \Sigma \rightharpoondown Q \quad q \xrightarrow{a} \delta(q, a) \\
& \left(\Phi_{\Sigma}\right) \\
& \varphi::=\top|\langle a\rangle \varphi| \varphi \wedge \varphi^{\prime} \mid \neg \varphi \\
& (a \in \Sigma) \\
& q \models\langle a\rangle \varphi \text { iff }(q, a) \in \operatorname{domain}(\delta) \text { and } \delta(q, a) \models \varphi \\
& \langle\epsilon\rangle \varphi:=\varphi \\
& \langle a s\rangle \varphi:=\langle a\rangle\langle s\rangle \varphi \\
& \operatorname{trace}_{\delta}(q)=\left\{s \in \Sigma^{*} \mid q \models\langle s\rangle \top\right\}
\end{aligned}
$$

$$
\begin{aligned}
\Phi_{\Sigma}(q) & :=\left\{\varphi \in \Phi_{\Sigma} \mid q \models \varphi\right\} \\
\operatorname{trace}_{\delta}(q) & =\left\{s \in \Sigma^{*} \mid\langle s\rangle \top \in \Phi_{\Sigma}(q)\right\}
\end{aligned}
$$

Fact.

$$
\Phi_{\Sigma}(q)=\Phi_{\Sigma}\left(q^{\prime}\right) \quad \text { iff } \quad \operatorname{trace}_{\delta}(q)=\operatorname{trace}_{\delta}\left(q^{\prime}\right)
$$

Transitions as derivatives (Brzozowski)

$$
L_{s}:=\left\{s^{\prime} \mid s s^{\prime} \in L\right\}
$$

For all $s, s^{\prime} \in \Sigma^{*}$ and $L \subseteq \Sigma^{*}$,

$$
L_{s}=L_{s^{\prime}} \text { iff }\left(\forall w \in \Sigma^{*}\right)\left(s w \in L \text { iff } s^{\prime} w \in L\right)
$$

so that the Myhill-Nerode Theorem says:
L is regular iff $\left\{L_{s} \mid s \in \Sigma^{*}\right\}$ is finite.

A monster \mathcal{A}-deterministic system $\hat{\delta}$

$$
\operatorname{Fin}(\mathcal{A}):=\{\Sigma \subseteq \mathcal{A} \mid \Sigma \text { is finite }\}
$$

For $X \in \operatorname{Fin}(\mathcal{A}) \cup\{\mathcal{A}\}$,
an X-state is a non-empty prefix-closed subset q of X^{*}

$$
\hat{\delta}=\left\{\left(q, a, q_{a}\right) \mid q \text { is an } \mathcal{A} \text {-state and } a \in q \cap \mathcal{A}\right\}
$$

Fact. For every $\Sigma \in \operatorname{Fin}(\mathcal{A}), \varphi \in \Phi_{\Sigma}$ and \mathcal{A}-state q,

$$
q \models \varphi \quad \text { iff } \quad q \cap \Sigma^{*} \models \varphi
$$

and if, moreover, $s \in q \cap \Sigma^{*}$, then

$$
q \models\langle s\rangle \varphi \text { iff }\left(q \cap \Sigma^{*}\right)_{s} \models \varphi
$$

The functor $Q: \operatorname{Fin}(\mathcal{A})^{o p} \rightarrow \mathbf{C a t}$

For $\Sigma \in \operatorname{Fin}(\mathcal{A})$,
$Q(\Sigma)$ is the category with
object non-empty prefix-closed $q \subseteq \Sigma^{*}$
morphisms (q, s) from q to q_{s}, for $q \in Q(\Sigma)$ and $s \in q$ $(q, s) ;\left(q_{s}, s^{\prime}\right)=\left(q, s s^{\prime}\right)$ with identities (q, ϵ)

$$
Q\left(\Sigma^{\prime}, \Sigma\right): Q\left(\Sigma^{\prime}\right) \rightarrow Q(\Sigma) \quad \text { for } \Sigma \subseteq \Sigma^{\prime} \in \operatorname{Fin}(\mathcal{A})
$$

$$
q \mapsto q \cap \Sigma^{*}
$$

$$
(q, s) \mapsto\left(q \cap \Sigma^{*}, \pi_{\Sigma}(s)\right)
$$

where $\pi_{\Sigma}(s)$ is the longest prefix of s in Σ^{*}

$$
\begin{aligned}
& \pi_{\Sigma}(\epsilon):=\epsilon \\
& \pi_{\Sigma}(a s):= \begin{cases}a \pi_{\Sigma}(s) & \text { if } a \in \Sigma \\
\epsilon & \text { otherwise. }\end{cases}
\end{aligned}
$$

(Grothendieck) \& institutions

$\mathbf{S i g n}^{o p}=\int Q$

- objects (Σ, q) where $\Sigma \in \operatorname{Fin}(\mathcal{A})$ and $q \in Q(\Sigma)$
- morphisms from $\left(\Sigma^{\prime}, q^{\prime}\right)$ to (Σ, q) are pairs

$$
\left(\left(\Sigma^{\prime}, \Sigma\right),\left(q^{\prime \prime}, s\right)\right)
$$

of $\operatorname{Fin}(\mathcal{A})^{o P_{-}}$-morphisms $\left(\Sigma^{\prime}, \Sigma\right)$ and $Q(\Sigma)$-morphisms $\left(q^{\prime \prime}, s\right)$ s.t. $q^{\prime \prime}=q^{\prime} \cap \Sigma^{*}$ and $q=q_{s}^{\prime \prime}$

$$
\begin{aligned}
\text { sen } & : \text { Sign } \rightarrow \text { Set } \\
& -\operatorname{sen}(\Sigma, q):=\Phi_{\Sigma} \\
& -\operatorname{sen}\left(\left(\Sigma^{\prime}, \Sigma\right),\left(q^{\prime \prime}, s\right)\right): \varphi \mapsto\langle s\rangle \varphi
\end{aligned}
$$

Mod : Sign ${ }^{o p} \rightarrow$ Cat
$-|\operatorname{Mod}(\Sigma, q)|:=\left\{q^{\prime} \in|Q(\Sigma)|: q \subseteq q^{\prime}\right\}$
$-\operatorname{Mod}\left(\left(\Sigma^{\prime}, \Sigma\right),\left(q^{\prime \prime}, s\right)\right): \hat{q} \mapsto\left(\hat{q} \cap \Sigma^{*}\right)_{s}$

(1) Perspective One: strings

(2) Perspective Two: languages
(3) Relating the perspectives

Back to intuitions

$$
\begin{aligned}
\frac{\text { HIST-event }}{\text { EXP-process }} & \approx \frac{\text { external timeline (temporal) }}{\text { internal mechanism (causal) }} \\
& \approx \Sigma \frac{\text { string (timeline) }}{\text { automaton (language) }}
\end{aligned}
$$

Finite approximability hypothesis: timeline as string and processes as finite automata
$\Sigma \in|\mathbf{S i g n}|$ in an institution (Sign, sen, Mod, \models)
timeline \approx where many different processes meet (events)

Ontology \& the satisfaction condition

Recall Guarino's dictum
Ontological analysis as a search for truth makers
What makes a sentence φ true?
Find $\Sigma_{\circ} \xrightarrow{\sigma} \Sigma$ and $\varphi_{\circ} \in \operatorname{sen}\left(\Sigma_{\circ}\right)$ s.t. $\sigma\left(\varphi_{\circ}\right)=\varphi \in \operatorname{sen}(\Sigma)$ and

$$
\left.M\right|_{\sigma} \models_{\Sigma_{0}} \varphi_{\circ} \quad \text { iff } \quad M \models \Sigma \varphi
$$

Institution 1: φ from MSO
σ as inclusion \subseteq
M as string s and $\left.M\right|_{\sigma}=\rho_{\Sigma_{0}}(s)$
Institution 2: φ from Hennessy-Milner
σ from $\int Q$
M as language q and $\left.M\right|_{\sigma}=\left(q \cap \Sigma_{o}{ }^{*}\right)_{s}$

From strings to types \& back

\models organizes models into types

$$
\llbracket \varphi \rrbracket:=\left\{M \in \operatorname{Mod}(\Sigma) \mid M \models_{\Sigma} \varphi\right\}
$$

Inst 1: adjust Büchi-Elgot-Trakhtenbrot theorem:

$$
\begin{aligned}
& \mathrm{MSO}_{\Sigma}=\text { regular languages over } \Sigma \\
& \leadsto \quad \mathrm{MSO}^{\Sigma}=\text { regular languages over } 2^{\Sigma} \\
& \rho_{\Sigma}\left(\alpha_{1} \cdots \alpha_{n}\right):=\left(\alpha_{1} \cap \Sigma\right) \cdots\left(\alpha_{n} \cap \Sigma\right)
\end{aligned}
$$

Inst 2: interpret Hennessy-Milner over determinized transitions - subset construction NFA \sim DFA (Rabin-Scott)

Bottom-up \& top-down
$(*)$ over any stretch of time, any number of processes may run, some interfering with others.

