
Predications, fast & slow

Tim.Fernando@tcd.ie

Commonsense-2017, London

Daniel Kahneman, Thinking, Fast & Slow, 2011

Predications, fast & slow

Tim.Fernando@tcd.ie

Commonsense-2017, London

Daniel Kahneman, Thinking, Fast & Slow, 2011

subject predicate Description Logic

Tweety flies individual concept flies(Tweety)
Birds fly concept concept bird v flies

Predications, fast & slow

Tim.Fernando@tcd.ie

Commonsense-2017, London

Daniel Kahneman, Thinking, Fast & Slow, 2011

subject predicate Description Logic

Tweety flies individual concept flies(Tweety)
Birds fly concept concept bird v flies

William Woods, Meaning & Links, 2007

extensional vs intensional subsumption

Proposal

predication subsumption

fast intensional
slow extensional

Proposal

predication subsumption

fast intensional
slow extensional

1. path ; string

≈ model of Monadic Second-Order Logic (MSO)

MSO-sentence ≈ regular language (Büchi, Elgot &
Trakhtenbrot)

Proposal

predication subsumption

fast intensional
slow extensional

1. path ; string

≈ model of Monadic Second-Order Logic (MSO)

MSO-sentence ≈ regular language (Büchi, Elgot &
Trakhtenbrot)

Inheritance & inertia as: No change without reason
(Principle of Sufficient Reason, Leibniz)

Proposal

predication subsumption

fast intensional
slow extensional

1. path ; string

≈ model of Monadic Second-Order Logic (MSO)

MSO-sentence ≈ regular language (Büchi, Elgot &
Trakhtenbrot)

Inheritance & inertia as: No change without reason
(Principle of Sufficient Reason, Leibniz)

2. extensions approximated at bounded but refinable granularity

What You See Is All There Is (WYSIATI, Kahneman)

- satisfaction condition for institution (Goguen &
Burstall 1992)

2/16

1 Intensions vs extensions

2 Paths & MSO

3 Granularity & institutions

Formal Concept Analysis (Wille, Ganter)

subject predicate predication

Descr Logic individual concept ∈ (ABox)

FCA context object attribute has

Formal Concept Analysis (Wille, Ganter)

subject predicate predication

Descr Logic individual concept ∈ (ABox)

FCA context object attribute has

FCA: Given a set D of objects and a set A of attributes,

intent(D) := {a | (∀d ∈ D) d has a}
extent(A) := {d | (∀a ∈ A) d has a}

a concept is a pair (D,A) s.t. A= intent(D) &
D =extent(A)

Formal Concept Analysis (Wille, Ganter)

subject predicate predication

Descr Logic individual concept ∈ (ABox)

FCA context object attribute has

FCA: Given a set D of objects and a set A of attributes,

intent(D) := {a | (∀d ∈ D) d has a}
extent(A) := {d | (∀a ∈ A) d has a}

a concept is a pair (D,A) s.t. A= intent(D) &
D =extent(A)

- equivalently, A = intent(extent(A))

- for concepts A and A′,

extent(A) ⊆ extent(A′) ⇐⇒ A′ ⊆ A

Formal Concept Analysis (Wille, Ganter)

subject predicate predication

Descr Logic individual concept ∈ (ABox)

FCA context object attribute has

FCA: Given a set D of objects and a set A of attributes,

intent(D) := {a | (∀d ∈ D) d has a}
extent(A) := {d | (∀a ∈ A) d has a}

a concept is a pair (D,A) s.t. A= intent(D) &
D =extent(A)

- equivalently, A = intent(extent(A))

- for concepts A and A′,

extent(A) ⊆ extent(A′) ⇐⇒ A′ ⊆ A

- for each object d , intent({d}) is a concept
4/16

Inheritance

d v d ′ ⇐⇒ intent({d ′}) ⊆ intent({d})

d ′ has a d v d ′

d has a
intent(D) := {a | (∀d ∈ D) d has a}

Inheritance qualified

d v d ′ ⇐⇒ intent({d ′}) ⊆ intent({d})

d ′ has a d v d ′

d has a
intent(D) := {a | (∀d ∈ D) d has a}

− exceptions: birds fly but not penguins . . .

Inheritance qualified

d v d ′ ⇐⇒ intent({d ′}) ⊆ intent({d})

d ′ has a d v d ′

d has a
intent(D) := {a | (∀d ∈ D) d has a}

− exceptions: birds fly but not penguins . . .

d ′ has a d is d ′ not(d has a)

d has a

d has a 6= not(d has a)

every penguin is flightless 6= not(every penguin flies)

Inheritance qualified

d v d ′ ⇐⇒ intent({d ′}) ⊆ intent({d})

d ′ has a d v d ′

d has a
intent(D) := {a | (∀d ∈ D) d has a}

− exceptions: birds fly but not penguins . . .

d ′ has a d is d ′ not(d has a)

d has a
in(a)

d has a 6= not(d has a)

every penguin is flightless 6= not(every penguin flies)

− category mistake: widespread birds but ∗Tweety . . .

5/16

Carlson

G. Carlson: individual/kind/stage-level predication

Tweety flies

Birds are widespread

Tweety was thirsty

Carlson

G. Carlson: individual/kind/stage-level predication

Tweety flies

Birds are widespread

Tweety was thirsty

Carlson

G. Carlson: individual/kind/stage-level predication

Tweety flies

Birds are widespread

Tweety was thirsty

Carlson

G. Carlson: individual/kind/stage-level predication

Tweety flies

Birds are widespread

Tweety was thirsty

- generics are less about instances than about

rules & regulations, “causal forces behind instances” (1995)

Carlson & Steedman causes

G. Carlson: individual/kind/stage-level predication

Birds are widespread

Tweety was thirsty

- generics are less about instances than about

rules & regulations, “causal forces behind instances” (1995)

M. Steedman 2005: temporality is about “causality & goal-
directed action”

die(Tweety) contra inertial alive(Tweety)

Carlson & Steedman causes

G. Carlson: individual/kind/stage-level predication

Birds are widespread

Tweety was thirsty

- generics are less about instances than about

rules & regulations, “causal forces behind instances” (1995)

M. Steedman 2005: temporality is about “causality & goal-
directed action”

die(Tweety) contra inertial alive(Tweety)

alive(Tweety)@t tSt ′ not opp(alive(Tweety)@t)

alive(Tweety)@t ′

6/16

Intensions from instances/extensions

From intent({d}) = A with

A = intent(extent(A))

A v A′ ⇐⇒ extent(A) ⊆ extent(A′)

Intensions from instances/extensions to strings/causes

From intent({d}) = A with

A = intent(extent(A))

A v A′ ⇐⇒ extent(A) ⊆ extent(A′)

to strings

A1 · · ·An with An = A

An−1 ≈ intent({d ′}) for d ′Sd

. . .

S from top/past for inferences such as

a ∈ Ai a 6∈ Ai+1

a ∈ Ai+1
1 ≤ i < n

for d ′Sd saying d is d ′.

7/16

1 Intensions vs extensions

2 Paths & MSO

3 Granularity & institutions

Attributes in strings

FCA string A1 · · ·An

d has a a ∈ Ai

object d position i
attribute a

Attributes in strings as predicates

FCA string A1 · · ·An MSO

d has a a ∈ Ai i ∈ [[Pa]]
object d position i i ∈ {1, . . . , n}

attribute a unary predicate Pa

[[Pa]] = {i ∈ {1, . . . , n} | a ∈ Ai}

Attributes in strings as predicates

FCA string A1 · · ·An MSOA
d has a a ∈ Ai i ∈ [[Pa]]
object d position i i ∈ {1, . . . , n}

attribute a ∈ A Ai ⊆ A unary predicate Pa

[[Pa]] = {i ∈ {1, . . . , n} | a ∈ Ai}
Ai = {a ∈ A | i ∈ [[Pa]]}

Attributes in strings as predicates

FCA string A1 · · ·An MSOA
d has a a ∈ Ai i ∈ [[Pa]]
object d position i i ∈ {1, . . . , n}

attribute a ∈ A Ai ⊆ A unary predicate Pa

[[Pa]] = {i ∈ {1, . . . , n} | a ∈ Ai}
Ai = {a ∈ A | i ∈ [[Pa]]}

[[S]] = {(1, 2), . . . , (n − 1, n)}

MSOA-model = string over the alphabet 2A

A1 · · ·An |= ∃x(Pax ∧ ∀y¬ySx) ⇐⇒ a ∈ A1

MSO-sentence = regular language (Büchi . . .)

9/16

Paths back up S

a ∈ Ai a 6∈ Ai+1

a ∈ Ai+1
(Pay ∧ ¬Pax ∧ ySx) ⊃ Pax

Paths back up S

a ∈ Ai a 6∈ Ai+1

a ∈ Ai+1
(Pay ∧ ¬Pax ∧ ySx) ⊃ Pax

Pax 7→ ∃X (Xx ∧ patha(X))

patha(X) := ∀x(Xx ⊃ ∃y(ySx ∧ Xy) ∨ Pax)︸ ︷︷ ︸ ∧ ¬∃x(Xx ∧ Pax)︸ ︷︷ ︸
X backs upS until a X avoids a

Paths back up S

a ∈ Ai a 6∈ Ai+1

a ∈ Ai+1
(Pay ∧ ¬Pax ∧ ySx) ⊃ Pax

Pax 7→ ∃X (Xx ∧ patha(X))

patha(X) := ∀x(Xx ⊃ ∃y(ySx ∧ Xy) ∨ Pax)︸ ︷︷ ︸ ∧ ¬∃x(Xx ∧ Pax)︸ ︷︷ ︸
X backs upS until a X avoids a

a ∈ Ai o(a) 6∈ Ai

a ∈ Ai+1
(Pay ∧ ¬Po(a)y ∧ ySx) ⊃ Pax

Paths back up S

a ∈ Ai a 6∈ Ai+1

a ∈ Ai+1
(Pay ∧ ¬Pax ∧ ySx) ⊃ Pax

Pax 7→ ∃X (Xx ∧ patha(X))

patha(X) := ∀x(Xx ⊃ ∃y(ySx ∧ Xy) ∨ Pax)︸ ︷︷ ︸ ∧ ¬∃x(Xx ∧ Pax)︸ ︷︷ ︸
X backs upS until a X avoids a

a ∈ Ai o(a) 6∈ Ai

a ∈ Ai+1
(Pay ∧ ¬Po(a)y ∧ ySx) ⊃ Pax

Pax 7→ ∃X (Xx ∧ patho
a(X))

patho
a(X) := ∀x(Xx ⊃ ∃y(ySx ∧ Xy ∧ ¬Po(a)y) ∨ Pax)

10/16

Finite state transducers down S

Fix a finite set In of inheritable/inertial attributes.

a ∈ Ai a 6∈ Ai+1

a ∈ Ai+1

state = subset q of In in previous position (initially ∅)

q
A:A′
−→ q′ where A′ := A ∪ {a ∈ q | a 6∈ A}

q′ := A′ ∩ In

Finite state transducers down S

Fix a finite set In of inheritable/inertial attributes.

a ∈ Ai a 6∈ Ai+1

a ∈ Ai+1

state = subset q of In in previous position (initially ∅)

q
A:A′
−→ q′ where A′ := A ∪ {a ∈ q | a 6∈ A}

q′ := A′ ∩ In

a ∈ Ai o(a) 6∈ Ai

a ∈ Ai+1

q
A:A′
−→ q′ where A′ := A ∪ q

q′ := {a ∈ A′ ∩ In | o(a) 6∈ A}

11/16

A causal ontology

Trade Galois connection

D ⊆ extent(A) ⇐⇒ A ⊆ intent(D)

for an ontology based on S-change

(Pay ∧ ySx) ⊃ (Pax ∨ yRax) yRax :=

{
Pax for kinds
Po(a)y for time

A causal ontology

Trade Galois connection

D ⊆ extent(A) ⇐⇒ A ⊆ intent(D)

for an ontology based on S-change

(Pay ∧ ySx) ⊃ (Pax ∨ yRax) yRax :=

{
Pax for kinds
Po(a)y for time

Principle of Sufficient Reason (Leibniz)

{
differentia a
force o(a)

bias for Pax ≈ a domain minimisation assumption

A causal ontology based on attributes

Trade Galois connection

D ⊆ extent(A) ⇐⇒ A ⊆ intent(D)

for an ontology based on S-change (a ∈ In)

(Pay ∧ ySx) ⊃ (Pax ∨ yRax) yRax :=

{
Pax for kinds
Po(a)y for time

Principle of Sufficient Reason (Leibniz)

{
differentia a ∈ In
force o(a) 6∈ In

bias for Pax ≈ a domain minimisation assumption

individual

kind
≈ instant

interval
≈ stative

eventive
≈ persistent

altering
≈ ∀ (homogeneous)

∃ (ontological)

12/16

1 Intensions vs extensions

2 Paths & MSO

3 Granularity & institutions

Reducts

Given a set A of attributes and A ⊆ A,
A-reduct of 〈{1, . . . , n},Sn, [[Pa]]a∈A〉 is 〈{1, . . . , n},Sn, [[Pa]]a∈A〉

ρA(A1 · · ·An) := (A1 ∩ A) · · · (An ∩ A) “see only A”

ρ{a,a}(a, b a a, c) = a a a

Reducts & compression

Given a set A of attributes and A ⊆ A,
A-reduct of 〈{1, . . . , n},Sn, [[Pa]]a∈A〉 is 〈{1, . . . , n},Sn, [[Pa]]a∈A〉

ρA(A1 · · ·An) := (A1 ∩ A) · · · (An ∩ A) “see only A”

ρ{a,a}(a, b a a, c) = a a a

bc(ρ{a,a}(a, b a a, c)) = a a

Compress A1 · · ·An to eliminate stutters AiAi+1 with Ai = Ai+1

bc(A1 · · ·An) :=

A1 if n = 1
bc(A2 · · ·An) else if A1 = A2

A1 bc(A2 · · ·An) otherwise

Reducts & compression

Given a set A of attributes and A ⊆ A,
A-reduct of 〈{1, . . . , n},Sn, [[Pa]]a∈A〉 is 〈{1, . . . , n},Sn, [[Pa]]a∈A〉

ρA(A1 · · ·An) := (A1 ∩ A) · · · (An ∩ A) “see only A”

ρ{a,a}(a, b a a, c) = a a a

bc(ρ{a,a}(a, b a a, c)) = a a

Compress A1 · · ·An to eliminate stutters AiAi+1 with Ai = Ai+1

bc(A1 · · ·An) :=

A1 if n = 1
bc(A2 · · ·An) else if A1 = A2

A1 bc(A2 · · ·An) otherwise

Base ontology on granularity

bcA(s) := bc(ρA(s))

14/16

Institutionalisation

An MSOA-formula ϕ has finite voc(ϕ) ⊆ A with all attributes in ϕ

A1 · · ·An |= ϕ ⇐⇒ ρvoc(ϕ)(A1 · · ·An) |= ϕ

Institutionalisation

An MSOA-formula ϕ has finite voc(ϕ) ⊆ A with all attributes in ϕ

A1 · · ·An |= ϕ ⇐⇒ ρvoc(ϕ)(A1 · · ·An) |= ϕ

satisfaction condition (Goguen & Burstall) for an

institution

signature A = finite subset of A
A-model = string over the alphabet 2A

A-sentence = MSOA-sentence

Institutionalisation

An MSOA-formula ϕ has finite voc(ϕ) ⊆ A with all attributes in ϕ

A1 · · ·An |= ϕ ⇐⇒ ρvoc(ϕ)(A1 · · ·An) |= ϕ

satisfaction condition (Goguen & Burstall) for an

institution

signature A = finite subset of A
A-model = string over the alphabet 2A

A-sentence = MSOA-sentence

What You See Is All There Is (WYSIATI, Kahneman)

Institutionalisation

An MSOA-formula ϕ has finite voc(ϕ) ⊆ A with all attributes in ϕ

A1 · · ·An |= ϕ ⇐⇒ ρvoc(ϕ)(A1 · · ·An) |= ϕ

satisfaction condition (Goguen & Burstall) for an

institution

signature A = finite subset of A
A-model = string over the alphabet 2A

A-sentence = MSOA-sentence

What You See Is All There Is (WYSIATI, Kahneman)

For finite-state transducer T for inheritance,

bcIn(T (A1 · · ·An)) = bc(T (bcIn(A1 · · ·An)))

and similarly for inertia.

Institutionalisation

An MSOA-formula ϕ has finite voc(ϕ) ⊆ A with all attributes in ϕ

A1 · · ·An |= ϕ ⇐⇒ ρvoc(ϕ)(A1 · · ·An) |= ϕ

satisfaction condition (Goguen & Burstall) for an

institution

signature A = finite subset of A
A-model = string over the alphabet 2A

A-sentence = MSOA-sentence

What You See Is All There Is (WYSIATI, Kahneman)

For finite-state transducer T for inheritance,

bcIn(T (A1 · · ·An)) = bc(T (bcIn(A1 · · ·An)))

and similarly for inertia.

Multiple A-models — bound search by reducing A
but additional constraints may expand A and change institution

15/16

Conclusion

1. strings/causes in place of instances/extensions

- strings as MSO-models
- expect finite automata to be fast

Conclusion

1. strings/causes in place of instances/extensions

- strings as MSO-models
- expect finite automata to be fast

2. top-down, contra bottom-up

- given xSy

{
x is more general than y
x is before y

draw inference from x to y

- avoid fixing an extension

Conclusion

1. strings/causes in place of instances/extensions

- strings as MSO-models
- expect finite automata to be fast

2. top-down, contra bottom-up

- given xSy

{
x is more general than y
x is before y

draw inference from x to y

- avoid fixing an extension

3. from known unknowns︸ ︷︷ ︸ to unknown unknowns︸ ︷︷ ︸
A-models change of

(signature A) signature, institution

Conclusion

1. strings/causes in place of instances/extensions

- strings as MSO-models
- expect finite automata to be fast

2. top-down, contra bottom-up

- given xSy

{
x is more general than y
x is before y

draw inference from x to y

- avoid fixing an extension

3. from known unknowns︸ ︷︷ ︸ to unknown unknowns︸ ︷︷ ︸
A-models change of

(signature A) signature, institution

Thank you

	Intensions vs extensions
	Paths & MSO
	Granularity & institutions

