Predications, fast \& slow

Tim.Fernando@tcd.ie

Commonsense-2017, London

Daniel Kahneman, Thinking, Fast \& Slow, 2011

Predications, fast \& slow

Tim.Fernando@tcd.ie

Commonsense-2017, London

Daniel Kahneman, Thinking, Fast \& Slow, 2011

	subject	predicate	Description Logic
Tweety flies	individual	concept	flies(Tweety)
Birds fly	concept	concept	bird \sqsubseteq flies

Predications, fast \& slow

Tim.Fernando@tcd.ie

Commonsense-2017, London

Daniel Kahneman, Thinking, Fast \& Slow, 2011

	subject	predicate	Description Logic
Tweety flies	individual	concept	flies(Tweety)
Birds fly	concept	concept	bird \sqsubseteq flies

William Woods, Meaning \& Links, 2007
extensional vs intensional subsumption

Proposal

predication	subsumption
fast	intensional
slow	extensional

Proposal

predication	subsumption
fast	intensional
slow	extensional

1. path \sim string
\approx model of Monadic Second-Order Logic (MSO)
MSO-sentence \approx regular language (Büchi, ElGot \&
Trakhtenbrot)

Proposal

predication	subsumption
fast	intensional
slow	extensional

1. path \sim string
\approx model of Monadic Second-Order Logic (MSO)
MSO-sentence \approx regular language (Büchi, Elgot \& Trakhtenbrot)

Inheritance \& inertia as: No change without reason
(Principle of Sufficient Reason, Leibniz)

Proposal

predication	subsumption
fast	intensional
slow	extensional

1. path \sim string
\approx model of Monadic Second-Order Logic (MSO)
MSO-sentence \approx regular language (Büchi, ElGot \& Trakhtenbrot)
Inheritance \& inertia as: No change without reason
(Principle of Sufficient Reason, Leibniz)
2. extensions approximated at bounded but refinable granularity

What You See Is All There Is (WYSIATI, Kahneman)

- satisfaction condition for institution (Goguen \&

Burstall 1992)
(1) Intensions vs extensions

(2) Paths \& MSO

(3) Granularity \& institutions

Formal Concept Analysis (Wille, Ganter)

	subject	predicate	predication
Descr Logic	individual	concept	$\in($ ABox $)$
FCA context	object	attribute	HAS

Formal Concept Analysis (Wille, Ganter)

	subject	predicate	predication
Descr Logic	individual	concept	\in (ABox)
FCA context	object	attribute	HAS

FCA: Given a set D of objects and a set A of attributes,

$$
\begin{aligned}
\operatorname{INTENT}(D) & :=\{a \mid(\forall d \in D) d \text { HAS } a\} \\
\operatorname{EXTENT}(A) & :=\{d \mid(\forall a \in A) d \text { HAS } a\} \\
\text { a concept is a pair }(D, A) \text { s.t. } A & =\operatorname{INTENT}(D) \& \\
D & =\operatorname{EXTENT}(A)
\end{aligned}
$$

Formal Concept Analysis (Wille, Ganter)

	subject	predicate	predication
Descr Logic	individual	concept	\in (ABox)
FCA context	object	attribute	HAS

FCA: Given a set D of objects and a set A of attributes,

$$
\begin{aligned}
\operatorname{INTENT}(D) & :=\{a \mid(\forall d \in D) d \text { HAS } a\} \\
\operatorname{EXTENT}(A) & :=\{d \mid(\forall a \in A) d \text { HAS } a\}
\end{aligned}
$$

a concept is a pair (D, A) s.t. $A=\operatorname{INTENT}(D) \&$

$$
D=\operatorname{ExTENT}(A)
$$

- equivalently, $A=\operatorname{IntEnt}(\operatorname{ExtEnt}(A))$
- for concepts A and A^{\prime},

$$
\operatorname{EXTENT}(A) \subseteq \operatorname{EXTENT}\left(A^{\prime}\right) \Longleftrightarrow A^{\prime} \subseteq A
$$

Formal Concept Analysis (Wille, Ganter)

	subject	predicate	predication
Descr Logic	individual	concept	$\in($ ABox $)$
FCA context	object	attribute	HAS

FCA: Given a set D of objects and a set A of attributes,

$$
\begin{aligned}
\operatorname{INTENT}(D) & :=\{a \mid(\forall d \in D) d \text { HAS } a\} \\
\operatorname{Extent}(A) & :=\{d \mid(\forall a \in A) d \text { HAS } a\}
\end{aligned}
$$

a concept is a pair (D, A) s.t. $A=\operatorname{INTENT}(D) \&$

$$
D=\operatorname{Extent}(A)
$$

- equivalently, $A=\operatorname{Intent}(\operatorname{Extent}(A))$
- for concepts A and A^{\prime},

$$
\operatorname{EXTENT}(A) \subseteq \operatorname{EXTENT}\left(A^{\prime}\right) \Longleftrightarrow A^{\prime} \subseteq A
$$

- for each object d, INTENT $(\{d\})$ is a concept

Inheritance

$$
d \sqsubseteq d^{\prime} \Longleftrightarrow \operatorname{INTENT}\left(\left\{d^{\prime}\right\}\right) \subseteq \operatorname{INTENT}(\{d\})
$$

$$
\frac{d^{\prime} \operatorname{HAS} a \quad d \sqsubseteq d^{\prime}}{d \text { HAS } a}
$$

$$
\operatorname{INTENT}(D):=\{a \mid(\forall d \in D) d \text { HAS } a\}
$$

Inheritance qualified

$$
d \sqsubseteq d^{\prime} \Longleftrightarrow \operatorname{INTENT}\left(\left\{d^{\prime}\right\}\right) \subseteq \operatorname{INTENT}(\{d\})
$$

$\frac{d^{\prime} \text { HAS } a \quad d \sqsubseteq d^{\prime}}{d \text { HAS } a} \quad \operatorname{INTENT}(D):=\{a \mid(\forall d \in D) d$ HAS $a\}$

- exceptions: birds fly but not penguins...

Inheritance qualified

$$
d \sqsubseteq d^{\prime} \Longleftrightarrow \operatorname{INTENT}\left(\left\{d^{\prime}\right\}\right) \subseteq \operatorname{INTENT}(\{d\})
$$

$\frac{d^{\prime} \text { HAS } a \quad d \sqsubseteq d^{\prime}}{d \text { HAS } a} \quad \operatorname{INTENT}(D):=\{a \mid(\forall d \in D) d$ HAS $a\}$

- exceptions: birds fly but not penguins...

$$
\frac{d^{\prime} \text { HAS a } \quad d \text { IS } d^{\prime} \quad \operatorname{not}(d \text { HAS } \bar{a})}{d \text { HAS } a}
$$

$$
d \operatorname{HAS} \bar{a} \neq \operatorname{not}(d \operatorname{HAS} a)
$$

every penguin is flightless \neq not(every penguin flies)

Inheritance qualified

$$
\begin{gathered}
d \sqsubseteq d^{\prime} \Longleftrightarrow \quad \operatorname{INTENT}\left(\left\{d^{\prime}\right\}\right) \subseteq \operatorname{INTENT}(\{d\}) \\
\frac{d^{\prime} \text { HAS } a d \sqsubseteq d^{\prime}}{d \operatorname{HAS} a} \quad \operatorname{INTENT}(D):=\{a \mid(\forall d \in D) d \text { HAS } a\}
\end{gathered}
$$

- exceptions: birds fly but not penguins...

$$
\frac{d^{\prime} \text { HAS a } \quad d \text { IS } d^{\prime} \quad \operatorname{not}(d \text { HAS } \bar{a})}{d \text { HAS } a} \text { in }(a)
$$

$$
d \text { HAS } \bar{a} \neq \operatorname{not}(d \text { HAS } a)
$$

$$
\text { every penguin is flightless } \neq \text { not(every penguin flies) }
$$

- category mistake: widespread birds but *Tweety ...

Carlson

G. Carlson: individual/kind/stage-level predication

Tweety flies
Birds are widespread
Tweety was thirsty

Carlson

G. Carlson: individual/kind/stage-level predication

Tweety flies
Birds are widespread
Tweety was thirsty

Carlson

G. CARLSON: individual/kind/stage-level predication

Tweety flies
Birds are widespread
Tweety was thirsty

Carlson

G. CARLSON: individual/kind/stage-level predication

Tweety flies
Birds are widespread
Tweety was thirsty

- generics are less about instances than about
rules \& regulations, "causal forces behind instances" (1995)

Carlson \& Steedman causes

G. Carlson: individual/kind/stage-level predication

Birds are widespread
Tweety was thirsty

- generics are less about instances than about rules \& regulations, "causal forces behind instances" (1995)
M. Steedman 2005: temporality is about "causality \& goaldirected action"
die(Tweety) contra inertial alive(Tweety)

Carlson \& Steedman causes

G. CARLSON: individual/kind/stage-level predication

Birds are widespread
Tweety was thirsty

- generics are less about instances than about rules \& regulations, "causal forces behind instances" (1995)
M. Steedman 2005: temporality is about "causality \& goaldirected action"
die(Tweety) contra inertial alive(Tweety)
$\frac{\left.\text { alive(Tweety)@t } \quad t \text { St } t^{\prime} \quad \text { not opp(alive(Tweety) } @ t\right)}{\text { alive(Tweety) @ } t^{\prime}}$

Intensions from instances/extensions

From $\operatorname{Intent}(\{d\})=A$ with

$$
\begin{aligned}
A & =\operatorname{INTENT}(\operatorname{EXTENT}(A)) \\
A \sqsubseteq A^{\prime} & \Longleftrightarrow \operatorname{EXTENT}(A) \subseteq \operatorname{ExTENT}\left(A^{\prime}\right)
\end{aligned}
$$

Intensions from instances/extensions to strings/causes

From $\operatorname{intent}(\{d\})=A$ with

$$
\begin{aligned}
A & =\operatorname{INTENT}(\operatorname{ExTENT}(A)) \\
A \sqsubseteq A^{\prime} & \Longleftrightarrow \operatorname{EXTENT}(A) \subseteq \operatorname{EXTENT}\left(A^{\prime}\right)
\end{aligned}
$$

to strings
$A_{1} \cdots A_{n}$ with $A_{n}=A$

$$
A_{n-1} \approx \operatorname{INTENT}\left(\left\{d^{\prime}\right\}\right) \text { for } d^{\prime} S d
$$

S from top/past for inferences such as

$$
\frac{a \in A_{i} \quad \bar{a} \notin A_{i+1}}{a \in A_{i+1}} 1 \leq i<n
$$

for $d^{\prime} S d$ saying d is d^{\prime}.
(1) Intensions vs extensions
(2) Paths \& MSO
(3) Granularity \& institutions

Attributes in strings

FCA	string $A_{1} \cdots A_{n}$
d HAS a	$a \in A_{i}$
object d	position i
attribute a	

Attributes in strings as predicates

FCA	string $A_{1} \cdots A_{n}$	MSO
d HAS a	$a \in A_{i}$	$i \in \llbracket P_{a} \rrbracket$
object d	position i	$i \in\{1, \ldots, n\}$
attribute a		unary predicate P_{a}

$$
\llbracket P_{a} \rrbracket=\left\{i \in\{1, \ldots, n\} \mid a \in A_{i}\right\}
$$

Attributes in strings as predicates

FCA	string $A_{1} \cdots A_{n}$	$\mathrm{MSO}_{\mathcal{A}}$
d HAS a	$a \in A_{i}$	$i \in \llbracket P_{a} \rrbracket$
object d	position i	$i \in\{1, \ldots, n\}$
attribute $a \in \mathcal{A}$	$A_{i} \subseteq \mathcal{A}$	unary predicate P_{a}

$$
\begin{aligned}
\llbracket P_{a} \rrbracket & =\left\{i \in\{1, \ldots, n\} \mid a \in A_{i}\right\} \\
A_{i} & =\left\{a \in \mathcal{A} \mid i \in \llbracket P_{a} \rrbracket\right\}
\end{aligned}
$$

Attributes in strings as predicates

FCA	string $A_{1} \cdots A_{n}$	$\mathrm{MSO}_{\mathcal{A}}$
d HAS a	$a \in A_{i}$	$i \in \llbracket P_{a} \rrbracket$
object d	position i	$i \in\{1, \ldots, n\}$
attribute $a \in \mathcal{A}$	$A_{i} \subseteq \mathcal{A}$	unary predicate P_{a}

$$
\begin{aligned}
\llbracket P_{a} \rrbracket & =\left\{i \in\{1, \ldots, n\} \mid a \in A_{i}\right\} \\
A_{i} & =\left\{a \in \mathcal{A} \mid i \in \llbracket P_{a} \rrbracket\right\} \\
\llbracket S \rrbracket & =\{(1,2), \ldots,(n-1, n)\}
\end{aligned}
$$

$\mathrm{MSO}_{\mathcal{A}}$-model $=$ string over the alphabet $2^{\mathcal{A}}$

$$
A_{1} \cdots A_{n}=\exists x\left(P_{a} x \wedge \forall y \neg y S x\right) \Longleftrightarrow a \in A_{1}
$$

MSO-sentence $=$ regular language (BüCHI \ldots)

Paths back up S

$$
\frac{a \in A_{i} \quad \bar{a} \notin A_{i+1}}{a \in A_{i+1}}
$$

$$
\left(P_{\mathrm{a}} y \wedge \neg P_{\overline{\mathrm{a}}} x \wedge y S x\right) \supset P_{\mathrm{a}} x
$$

Paths back up S

$$
\begin{gathered}
\frac{a \in A_{i} \quad \bar{a} \notin A_{i+1}}{a \in A_{i+1}} \quad\left(P_{a} y \wedge \neg P_{\bar{a}} x \wedge y S x\right) \supset P_{a} x \\
P_{a} x \mapsto \quad \exists X\left(X x \wedge \operatorname{path}_{a}(X)\right) \\
\operatorname{path}_{a}(X):=\underbrace{\forall x\left(X x \supset \exists y(y S x \wedge X y) \vee P_{a} x\right)}_{X \text { backs up }{ }^{S} \text { until } a} \wedge \underbrace{\neg \exists x\left(X x \wedge P_{\bar{a}} x\right)}_{X \text { avoids } \bar{a}}
\end{gathered}
$$

Paths back up S

$$
\begin{gathered}
\frac{a \in A_{i} \quad \bar{a} \notin A_{i+1}}{a \in A_{i+1}} \quad\left(P_{a} y \wedge \neg P_{\bar{a}} x \wedge y S x\right) \supset P_{a} x \\
P_{a} x \mapsto \quad \exists X\left(X x \wedge \operatorname{path}_{a}(X)\right) \\
\operatorname{path}_{a}(X):=\underbrace{\forall x\left(X x \supset \exists y(y S x \wedge X y) \vee P_{a} x\right)}_{X \text { backs up }^{S} \text { until } a} \wedge \underbrace{\neg \exists x\left(X x \wedge P_{\bar{a}} x\right)}_{X \text { avoids } \bar{a}} \\
\frac{a \in A_{i}}{a \in A_{i+1}} \quad\left(P_{a y} y \wedge \neg P_{o(a)} y \wedge y S x\right) \supset P_{a} x
\end{gathered}
$$

Paths back up S

$$
\begin{gathered}
\begin{array}{c}
a \in A_{i} \bar{a} \notin A_{i+1} \\
a \in A_{i+1}
\end{array} \quad\left(P_{a} y \wedge \neg P_{\bar{a}} x \wedge y S x\right) \supset P_{a} x \\
P_{a} x \mapsto \quad \exists X\left(X x \wedge \operatorname{path}_{a}(X)\right) \\
\operatorname{path}_{a}(X):=\underbrace{S}_{X \text { backs up }} \text { until } \begin{array}{l}
\forall x\left(X x \supset \exists y(y S x \wedge X y) \vee P_{a} x\right)
\end{array} \underbrace{\neg \exists x\left(X x \wedge P_{\bar{a}} x\right)}_{X \text { avoids } \bar{a}} \\
\frac{a \in A_{i} \quad o(a) \notin A_{i}}{a \in A_{i+1}} \\
\quad P_{a} x \mapsto \quad \exists X\left(P_{a} y \wedge \neg P_{o(a)} y \wedge y S x\right) \supset P_{a} x \\
\operatorname{path}_{a}^{o}(X):=\forall x\left(X x \supset \exists y\left(y S x \wedge X y \wedge \neg P_{o(a)} y\right) \vee P_{a} x\right)
\end{gathered}
$$

Finite state transducers down S

Fix a finite set In of inheritable/inertial attributes.

$$
\frac{a \in A_{i} \quad \bar{a} \notin A_{i+1}}{a \in A_{i+1}}
$$

state $=$ subset q of $I n$ in previous position (initially \emptyset)

$$
q \xrightarrow{A: A^{\prime}} q^{\prime} \text { where } \begin{aligned}
A^{\prime} & :=A \cup\{a \in q \mid \bar{a} \notin A\} \\
q^{\prime} & :=A^{\prime} \cap I n
\end{aligned}
$$

Finite state transducers down S

Fix a finite set In of inheritable/inertial attributes.

$$
\frac{a \in A_{i} \quad \bar{a} \notin A_{i+1}}{a \in A_{i+1}}
$$

state $=$ subset q of $I n$ in previous position (initially \emptyset)

$$
\begin{aligned}
& q \xrightarrow{A: A^{\prime}} q^{\prime} \text { where } A^{\prime}:=A \cup\{a \in q \mid \bar{a} \notin A\} \\
& q^{\prime}:=A^{\prime} \cap I n
\end{aligned}
$$

$$
\frac{a \in A_{i} \quad o(a) \notin A_{i}}{a \in A_{i+1}}
$$

$$
q \xrightarrow{A: A^{\prime}} q^{\prime} \text { where } \begin{aligned}
& A^{\prime}:=A \cup q \\
& q^{\prime}:=\left\{a \in A^{\prime} \cap \operatorname{In} \mid o(a) \notin A\right\}
\end{aligned}
$$

A causal ontology

Trade Galois connection

$$
D \subseteq \operatorname{Extent}(A) \Longleftrightarrow A \subseteq \operatorname{INTENT}(D)
$$

for an ontology based on S-change

$$
\left(P_{a} y \wedge y S x\right) \supset\left(P_{a} x \vee y R_{a} x\right) \quad y R_{a} x:= \begin{cases}P_{\bar{a}} x & \text { for kinds } \\ P_{o(a)} y & \text { for time }\end{cases}
$$

A causal ontology

Trade Galois connection

$$
D \subseteq \operatorname{ExTENT}(A) \Longleftrightarrow A \subseteq \operatorname{INTENT}(D)
$$

for an ontology based on S-change
$\left(P_{a} y \wedge y S x\right) \supset\left(P_{a} x \vee y R_{a} x\right) \quad y R_{a} x:= \begin{cases}P_{\bar{a}} x & \text { for kinds } \\ P_{o(a)} y & \text { for time }\end{cases}$
Principle of Sufficient Reason (Leibniz) $\left\{\begin{array}{l}\text { differentia } \bar{a} \\ \text { force } o(a)\end{array}\right.$
bias for $P_{a} x \approx$ a domain minimisation assumption

A causal ontology based on attributes

Trade Galois connection

$$
D \subseteq \operatorname{ExTENT}(A) \Longleftrightarrow A \subseteq \operatorname{INTENT}(D)
$$

for an ontology based on S-change $\quad(a \in \operatorname{In})$
$\left(P_{a} y \wedge y S x\right) \supset\left(P_{a} x \vee y R_{a} x\right) \quad y R_{a} x:= \begin{cases}P_{\bar{a}} x & \text { for kinds } \\ P_{o(a)} y & \text { for time }\end{cases}$
Principle of Sufficient Reason (Leibniz) $\left\{\begin{array}{l}\text { differentia } \bar{a} \in \operatorname{In} \\ \text { force } o(a) \notin \ln \end{array}\right.$ bias for $P_{a} x \approx$ a domain minimisation assumption
$\frac{\text { individual }}{\text { kind }} \approx \frac{\text { instant }}{\text { interval }} \approx \frac{\text { stative }}{\text { eventive }} \approx \frac{\text { persistent }}{\text { altering }} \approx \frac{\forall \text { (homogeneous) }}{\exists \text { (ontological) }}$

(1) Intensions vs extensions

(2) Paths \& MSO

(3) Granularity \& institutions

Reducts

Given a set \mathcal{A} of attributes and $A \subseteq \mathcal{A}$, A-reduct of $\left\langle\{1, \ldots, n\}, S_{n}, \llbracket P_{a} \rrbracket_{a \in \mathcal{A}}\right\rangle$ is $\left\langle\{1, \ldots, n\}, S_{n}, \llbracket P_{a} \rrbracket_{a \in A}\right\rangle$

$$
\rho_{A}\left(A_{1} \cdots A_{n}\right):=\left(A_{1} \cap A\right) \cdots\left(A_{n} \cap A\right) \quad \text { "see only } A \text { " }
$$

$$
\rho_{\{a, \bar{a}\}}\left(\begin{array}{|l|l|l|}
\hline a, b & a & \bar{a}, c \\
\hline
\end{array}\right)=\begin{array}{|l|l|l|}
\hline a & a & \bar{a} \\
\hline
\end{array}
$$

Reducts \& compression

Given a set \mathcal{A} of attributes and $A \subseteq \mathcal{A}$, A-reduct of $\left\langle\{1, \ldots, n\}, S_{n}, \llbracket P_{a} \rrbracket_{a \in \mathcal{A}}\right\rangle$ is $\left\langle\{1, \ldots, n\}, S_{n}, \llbracket P_{a} \rrbracket_{a \in A}\right\rangle$

$$
\begin{array}{r}
\rho_{A}\left(A_{1} \cdots A_{n}\right) \quad:=\left(A_{1} \cap A\right) \cdots\left(A_{n} \cap A\right) \quad \text { "see } \\
\rho_{\{a, \bar{a}\}}\left(\begin{array}{|l|l|l|}
\hline a, b & a & \bar{a}, c
\end{array}\right) \\
b c\left(\rho_{\{a, \bar{a}\}}\left(\begin{array}{|l|l|l|l|}
\hline a, b & a & \bar{a}, c \\
\hline
\end{array}\right)\right. \\
\hline
\end{array}=\begin{array}{|l|l|l|}
\hline a & \bar{a} \\
\hline
\end{array}
$$

Compress $A_{1} \cdots A_{n}$ to eliminate stutters $A_{i} A_{i+1}$ with $A_{i}=A_{i+1}$

$$
b c\left(A_{1} \cdots A_{n}\right):= \begin{cases}A_{1} & \text { if } n=1 \\ b c\left(A_{2} \cdots A_{n}\right) & \text { else if } A_{1}=A_{2} \\ A_{1} b c\left(A_{2} \cdots A_{n}\right) & \text { otherwise }\end{cases}
$$

Reducts \& compression

Given a set \mathcal{A} of attributes and $A \subseteq \mathcal{A}$,
A-reduct of $\left\langle\{1, \ldots, n\}, S_{n}, \llbracket P_{a} \rrbracket_{a \in \mathcal{A}}\right\rangle$ is $\left\langle\{1, \ldots, n\}, S_{n}, \llbracket P_{a} \rrbracket_{a \in A}\right\rangle$

$$
\begin{aligned}
& \rho_{A}\left(A_{1} \cdots A_{n}\right):=\left(A_{1} \cap A\right) \cdots\left(A_{n} \cap A\right) \quad \text { "see only } A \text { " } \\
& \rho_{\{a, \bar{a}\}}\left(\begin{array}{|l|l|l|}
\hline a, b & a & \bar{a}, c \\
\hline
\end{array}\right)=\begin{array}{|l|l|l|}
\hline a & a & \bar{a} \\
\hline
\end{array} \\
& b c\left(\rho_{\{a, \bar{a}\}}\left(\begin{array}{|l|l|l|}
\hline a, b & a & \bar{a}, c \\
)
\end{array}\right)=\begin{array}{|l|l|l|}
\hline a & \bar{a} \\
\hline
\end{array}\right.
\end{aligned}
$$

Compress $A_{1} \cdots A_{n}$ to eliminate stutters $A_{i} A_{i+1}$ with $A_{i}=A_{i+1}$

$$
b c\left(A_{1} \cdots A_{n}\right):= \begin{cases}A_{1} & \text { if } n=1 \\ b c\left(A_{2} \cdots A_{n}\right) & \text { else if } A_{1}=A_{2} \\ A_{1} b c\left(A_{2} \cdots A_{n}\right) & \text { otherwise }\end{cases}
$$

Base ontology on granularity

$$
b c_{A}(s):=b c\left(\rho_{A}(s)\right)
$$

Institutionalisation

An $\mathrm{MSO}_{\mathcal{A}}$-formula φ has finite $\operatorname{voc}(\varphi) \subseteq \mathcal{A}$ with all attributes in φ

$$
A_{1} \cdots A_{n} \models \varphi \Longleftrightarrow \rho_{\operatorname{voc}(\varphi)}\left(A_{1} \cdots A_{n}\right) \models \varphi
$$

Institutionalisation

An $\mathrm{MSO}_{\mathcal{A}}$-formula φ has finite $\operatorname{voc}(\varphi) \subseteq \mathcal{A}$ with all attributes in φ

$$
A_{1} \cdots A_{n} \models \varphi \Longleftrightarrow \rho_{\operatorname{voc}(\varphi)}\left(A_{1} \cdots A_{n}\right) \models \varphi
$$

satisfaction condition (Goguen \& Burstall) for an
institution $\left\{\begin{array}{l}\text { signature } A=\text { finite subset of } \mathcal{A} \\ A \text {-model }=\text { string over the alphabet } 2^{A} \\ A \text {-sentence }=\mathrm{MSO}_{A} \text {-sentence }\end{array}\right.$

Institutionalisation

An $\operatorname{MSO}_{\mathcal{A}}$-formula φ has finite $\operatorname{voc}(\varphi) \subseteq \mathcal{A}$ with all attributes in φ

$$
A_{1} \cdots A_{n} \models \varphi \Longleftrightarrow \rho_{\operatorname{voc}(\varphi)}\left(A_{1} \cdots A_{n}\right) \models \varphi
$$

satisfaction condition (Goguen \& Burstall) for an

$$
\text { institution }\left\{\begin{array}{l}
\text { signature } A=\text { finite subset of } \mathcal{A} \\
A \text {-model }=\text { string over the alphabet } 2^{A} \\
A \text {-sentence }=\mathrm{MSO}_{A} \text {-sentence }
\end{array}\right.
$$

What You See Is All There Is (WYSIATI, Kahneman)

Institutionalisation

An $\mathrm{MSO}_{\mathcal{A}}$-formula φ has finite $\operatorname{voc}(\varphi) \subseteq \mathcal{A}$ with all attributes in φ

$$
A_{1} \cdots A_{n} \models \varphi \Longleftrightarrow \rho_{\operatorname{voc}(\varphi)}\left(A_{1} \cdots A_{n}\right) \models \varphi
$$

satisfaction condition (Goguen \& Burstall) for an

$$
\text { institution }\left\{\begin{array}{l}
\text { signature } A=\text { finite subset of } \mathcal{A} \\
A \text {-model }=\text { string over the alphabet } 2^{A} \\
A \text {-sentence }=\mathrm{MSO}_{A} \text {-sentence }
\end{array}\right.
$$

What You See Is All There Is (WYSIATI, Kahneman)
For finite-state transducer T for inheritance,

$$
b c_{l n}\left(T\left(A_{1} \cdots A_{n}\right)\right)=b c\left(T\left(b c_{l n}\left(A_{1} \cdots A_{n}\right)\right)\right)
$$

and similarly for inertia.

Institutionalisation

An $\mathrm{MSO}_{\mathcal{A}}$-formula φ has finite $\operatorname{voc}(\varphi) \subseteq \mathcal{A}$ with all attributes in φ

$$
A_{1} \cdots A_{n} \models \varphi \Longleftrightarrow \rho_{\operatorname{voc}(\varphi)}\left(A_{1} \cdots A_{n}\right) \models \varphi
$$

satisfaction condition (Goguen \& Burstall) for an

$$
\text { institution }\left\{\begin{array}{l}
\text { signature } A=\text { finite subset of } \mathcal{A} \\
A \text {-model }=\text { string over the alphabet } 2^{A} \\
A \text {-sentence }=\mathrm{MSO}_{A} \text {-sentence }
\end{array}\right.
$$

What You See Is All There Is (WYSIATI, Kahneman)
For finite-state transducer T for inheritance,

$$
b c_{l n}\left(T\left(A_{1} \cdots A_{n}\right)\right)=b c\left(T\left(b c_{l n}\left(A_{1} \cdots A_{n}\right)\right)\right)
$$

and similarly for inertia.
Multiple A-models - bound search by reducing A but additional constraints may expand A and change institution

Conclusion

1. strings/causes in place of instances/extensions

- strings as MSO-models
- expect finite automata to be fast

Conclusion

1. strings/causes in place of instances/extensions

- strings as MSO-models
- expect finite automata to be fast

2. top-down, contra bottom-up

- given $x S y \quad\left\{\begin{array}{l}x \text { is more general than } y \\ x \text { is before } y\end{array}\right.$
draw inference from x to y
- avoid fixing an extension

Conclusion

1. strings/causes in place of instances/extensions

- strings as MSO-models
- expect finite automata to be fast

2. top-down, contra bottom-up

- given $x S y\left\{\begin{array}{l}x \text { is more general than } y \\ x \text { is before } y\end{array}\right.$ draw inference from x to y
- avoid fixing an extension

3. from $\underbrace{\text { known unknowns }}_{A \text {-models }}$ to $\underbrace{\text { unknown unknowns }}_{\text {change of }}$ (signature A) signature, institution

Conclusion

1. strings/causes in place of instances/extensions

- strings as MSO-models
- expect finite automata to be fast

2. top-down, contra bottom-up

- given $x S y\left\{\begin{array}{l}x \text { is more general than } y \\ x \text { is before } y\end{array}\right.$ draw inference from x to y
- avoid fixing an extension

3. from $\underbrace{\text { known unknowns }}_{A \text {-models }}$ to $\underbrace{\text { unknown unknowns }}_{\text {change of }}$ (signature A) signature, institution
