Predications, fast & slow

Tim.Fernando@tcd.ie

Commonsense-2017, London

DANIEL KAHNEMAN, Thinking, Fast & Slow, 2011

Predications, fast & slow

Tim.Fernando®@tcd.ie

Commonsense-2017, London

DANIEL KAHNEMAN, Thinking, Fast & Slow, 2011

‘ subject ‘ predicate ‘ Description Logic

Tweety flies

Birds fly | concept | concept bird C flies

individual | concept flies(Tweety)

Predications, fast & slow

Tim.Fernando@tcd.ie

Commonsense-2017, London

DANIEL KAHNEMAN, Thinking, Fast & Slow, 2011

‘ subject ‘ predicate ‘ Description Logic

Tweety flies
Birds fly

individual | concept flies(Tweety)
concept concept bird C flies

WiLLiaM WooDS, Meaning & Links, 2007

extensional vs intensional subsumption

predication | subsumption
fast intensional
slow extensional

predication | subsumption
fast intensional
slow extensional

1. path ~» string
~ model of Monadic Second-Order Logic (MSO)

MSO-sentence = regular language (BUCHI, ELGOT &
TRAKHTENBROT)

predication | subsumption
fast intensional
slow extensional

1. path ~» string
~ model of Monadic Second-Order Logic (MSO)

MSO-sentence = regular language (BUcHI, ELGOT &
TRAKHTENBROT)

Inheritance & inertia as: No change without reason
(Principle of Sufficient Reason, LEIBN1Z)

Proposal

predication ‘ subsumption
fast intensional
slow extensional

1. path ~» string
~ model of Monadic Second-Order Logic (MSO)

MSO-sentence =~ regular language (BUCHI, ELGOT &
TRAKHTENBROT)

Inheritance & inertia as: No change without reason
(Principle of Sufficient Reason, LEIBNIZ)
2. extensions approximated at bounded but refinable granularity
What You See Is All There Is (WYSIATI, KAHNEMAN)

- satisfaction condition for institution (GOGUEN &
BURSTALL 1992)

2/16

@ Intensions vs extensions

subject | predicate | predication
Descr Logic | individual | concept | € (ABox)
FCA context object attribute HAS

Formal Concept Analysis (WILLE, GANTER)

subject | predicate | predication

Descr Logic | individual | concept | € (ABox)

FCA context object attribute HAS
FCA: Given a set D of objects and a set A of attributes,

INTENT(D) := {a| (Vd € D) d HAS a}
EXTENT(A) = {d | (Va€ A) d HaAs a}

a concept is a pair (D, A) s.t. A=INTENT(D) &
D =EXTENT(A)

Formal Concept Analysis (WILLE, GANTER)

subject | predicate | predication

Descr Logic | individual | concept | € (ABox)

FCA context object attribute HAS

FCA: Given a set D of objects and a set A of attributes,
INTENT(D) = {a| (Vd € D) d uas a}
EXTENT(A) = {d | (Va € A) d HAS a}

a concept is a pair (D, A) s.t. A=INTENT(D) &
D=EXTENT(A)
- equivalently, A = INTENT(EXTENT(A))

- for concepts A and A’,

EXTENT(A) C EXTENT(A') < A CA

Formal Concept Analysis (WILLE, GANTER)

subject | predicate | predication

Descr Logic | individual | concept | € (ABox)

FCA context object attribute HAS
FCA: Given a set D of objects and a set A of attributes,

INTENT(D) = {a| (Vd € D) d naAs a}
EXTENT(A) = {d | (Va € A) d HAS a}

a concept is a pair (D, A) s.t. A=INTENT(D) &
D=EXTENT(A)

- equivalently, A = INTENT(EXTENT(A))

- for concepts A and A’,
EXTENT(A) C EXTENT(A') < A CA

- for each object d, INTENT({d}) is a concept

4/16

dCd <= INTENT({d'}) C INTENT({d})

d’' HAS a dC d
d HAS a

INTENT(D) := {a|(Vd € D) d uas a}

dCd <= NTENT({d'}) C INTENT({d})

d' HAS a dC d
d HAS a

INTENT(D) := {a|(Vd € D) d uas a}

— exceptions: birds fly but not penguins ...

dCd <= NTENT({d'}) C INTENT({d})

d HAS a dC d
d HAS a

INTENT(D) := {a|(Vd € D) d HAs a}

— exceptions: birds fly but not penguins ...

dHasa disd not(d HAS 3)
d HAS a

d HAS 3 # not(d HAS a)

every penguin is flightless # not(every penguin flies)

Inheritance qualified

dCd <= NTENT({d'}) C INTENT({d})

d’' HAS a dC d
d HAS a

INTENT(D) := {a| (Vd € D) d nas a}

— exceptions: birds fly but not penguins ...

d’ HAS a dis d not(d HAS 3) -
d HAS a

(a)

d HAS 2 # not(d HAS a)

every penguin is flightless # not(every penguin flies)

— category mistake: widespread birds but *Tweety ...

5/16

G. CARLSON: individual/kind/stage-level predication

Tweety flies
Birds are widespread
Tweety was thirsty

G. CARLSON: individual/kind/stage-level predication

Tweety flies
Birds are widespread
Tweety was thirsty

G. CARLSON: individual/kind/stage-level predication

Tweety flies
Birds are widespread
Tweety was thirsty

G. CARLSON: individual/kind/stage-level predication

Tweety flies
Birds are widespread
Tweety was thirsty

- generics are less about instances than about

rules & regulations, “causal forces behind instances” (1995)

CARLSON & STEEDMAN causes

G. CARLSON: individual/kind /stage-level predication

Birds are widespread
Tweety was thirsty

- generics are less about instances than about

rules & regulations, “causal forces behind instances” (1995)

M. STEEDMAN 2005: temporality is about “causality & goal-
directed action”

die(Tweety) contra inertial alive(Tweety)

CARLSON & STEEDMAN causes

G. CARLSON: individual/kind /stage-level predication

Birds are widespread
Tweety was thirsty

- generics are less about instances than about

rules & regulations, “causal forces behind instances” (1995)

M. STEEDMAN 2005: temporality is about “causality & goal-
directed action”

die(Tweety) contra inertial alive(Tweety)

alive(Tweety)@t tSt/ not opp(alive(Tweety)@t)
alive(Tweety)@t

6/16

From INTENT({d}) = A with

A = INTENT(EXTENT(A))
AC A" < EXTENT(A) C EXTENT(A)

Intensions from instances/extensions to strings/causes
From INTENT({d}) = A with

A = INTENT(EXTENT(A))
AC A < EXTENT(A) C EXTENT(A')

to strings

Ar---Ap with A, =A
An—1 ~ INTENT({d'}) for d'Sd

S from top/past for inferences such as

acA; ag At
a€ A

1<i<n

for d’'Sd saying d1s d'.

7/16

© Paths & MSO

FCA | string A1 --- A, |
d HAS a aeA
object d position i
attribute a

FCA | string A1 --- A, | MSO
d HAS a acA i€[Pa]
object d position i ie{l,...,n}
attribute a unary predicate P,

[Pa] = {ie{L,....n}[ac A}

FCA | string Ay --- Ap | MSO 4
d HAS a acA i€[Pa]
object d position / ie{l,....n}
attribute a € A A CA unary predicate P,

[Pl = {i€{L,....n}[ac A}
A = {ae Alie[Pi]}

Attributes in strings as predicates

FCA | string A;--- A, | MSO 4
d HAS a acA i€[Pa]
object d position | ie{l,...,n}
attribute a € A A CA unary predicate P,

[P] = {ie{l,....,n} | ac A}
A = {ac Alie[P]}
[S] = {(1,2),...,(n—1,n)}

MSO 4-model = string over the alphabet 24

Ar--Ap E Ix(Pax AVy—ySx) <= ac A

MSO-sentence = regular language (BUCHTI ...)

9/16

acA a ¢ A,'+1
ac A,'+1

(Pay A =Psx A ySx) D Pax

acA ag¢An
acAin

(Pay A =Psx A ySx) D Pax

P.x +— 3X(Xx A path,(X))

path,(X) = Vx(Xx D y(ySx A Xy) V Pax) A —3x(Xx A Psx)

-~

X backs up® until a X avoids 2

acA agAn
acAin

(Pay A =Psx A\ ySx) D Pax

P.x + 3X(Xx A path,(X))

~

path,(X) = Vx(Xx D 3y(ySx A Xy) V Pax) A —3x(Xx A Pzx)

-~

X backs up® until a X avoids 2

acA; o(a) € A
ac A,‘+]_

(Pay A =Pyayy A ySx) D Pax
(a)

Paths back up S

acA agAn
acAin

(Pay A =Psx A\ ySx) D Pax

P.x — 3X(Xx A path,(X))

path,(X) = Vx(Xx D Jy(ySx A Xy) V P.x) A —3x(Xx A Psx)

X backs up® until a X avoids 2

acA o(a) A
acAin

(Pay A =Pga)y A ySx) D Pax

P.x +— 3X(Xx A path3(X))

path7(X) = Vx(Xx D 3y(ySx A Xy A =Py(a)y) V Pax)

10/16

Fix a finite set /In of inheritable/inertial attributes.

acA agAn
a€Ain

state = subset g of In in previous position (initially 0))

qﬂq' where A':=AU{acq|adA}
g =AnNin

Fix a finite set In of inheritable/inertial attributes.

acA ad¢An
a€ A

state = subset g of In in previous position (initially 0)

g 2% ¢ where A:=Au{aeq|agA}
g =Anin

acA; o(a) € Ai
acAin

qA:—>Alq' where A" := AUq
qd ={acAnin|o(a) & A}

11/16

Trade GALOIS connection
D C EXTENT(A) <= A CINTENT(D)

for an ontology based on S-change

Psx for kinds

(Pay/\ySX) 2 (PaXVyRaX) yRax = { Po(a)y for time

Trade GALOIS connection
D C EXTENT(A) <= A CINTENT(D)

for an ontology based on S-change

Psx for kinds

(Pay/\ySX) 2 (PaxvyRaX) yRax = { Po(a)y for time

differentia a

Principle of Sufficient Reason (LEIBNIZ) { force o(a)

bias for P,x =~ a domain minimisation assumption

A causal ontology based on attributes
Trade GALOIS connection
D C EXTENT(A) <= A CINTENT(D)
for an ontology based on S-change (a € In)

Psx for kinds

(Pay A ySx) D (Pax V yRax) yR.x = { Puy for time

differentia a € In
force o(a) & In

bias for P,x = a domain minimisation assumption

Principle of Sufficient Reason (LEIBN1Z) {

individual _instant _ stative _ persistent _ V (homogeneous)

kind ~ interval ~ eventive altering 3 (ontological)

12/16

© Granularity & institutions

Given a set A of attributes and A C A,
A-reduct of ({1,...,n},Sn, [Palaca) is ({1,...,n}, Sn, [Pa)aca)

pa(Ar- - An) = (ALNA)---(A,NA) “see only A"

paz(ablal3 c) = [a]a]3]

Reducts & compression

Given a set A of attributes and A C A,
A-reduct of ({1,...,n}, Sn,[Pa]laca) is ({1,...,n}, Sn, [Pa]laca)

pa(A1---Ap) = (ALNA)---(ApNA) “seeonly A”

Piaa(a,b|a|§,c‘) = ‘alalé‘

bc(p{a75}(‘a,b|a|§,c‘)) = ‘alé‘

Compress Aj - - - A, to eliminate stutters AjA;+1 with Aj = A1

A1 if n=1
lr(A]_"‘A,-,) = b(:(Ag--~A,,) else if A1 :A2
A1 bc(Az---A,) otherwise

Reducts & compression

Given a set A of attributes and A C A,
A-reduct of ({1,...,n},Sn,[Pa]laca) is ({1,...,n}, Sn, [Pa]laca)

pa(Ar---Ay) = (ALNA)---(A,NA) “see only A"

a,b|a|§,c‘) = ‘alalé‘

p{a,é}(
bc(p{aj}(‘a,blaﬁ,c‘)) = ‘aIE‘

Compress Aj --- Ap, to eliminate stutters A;A; 11 with A; = Aj1

A1 if n=1
be(Ay---Ap) = be(Az -+ An) else if A; = Ay
A1 bc(Az---A,) otherwise

Base ontology on granularity

bea(s) = be(pals))

14/16

An MSO 4-formula ¢ has finite voc(y) C A with all attributes in ¢

Al"'AnIZSD — pvoc(go)(Al"'An) 'ZQO

An MSO 4-formula ¢ has finite voc(y) C A with all attributes in ¢
A AnlE @ = puocp)(Are--An) E
satisfaction condition (GOGUEN & BURSTALL) for an

signature A = finite subset of A
institution { A-model = string over the alphabet 24
A-sentence = MSO 4-sentence

Institutionalisation

An MSO 4-formula ¢ has finite voc(¢) C A with all attributes in ¢
Ar---Ap 'Z(p — pvoc(go)()':90
satisfaction condition (GOGUEN & BURSTALL) for an

signature A = finite subset of A
institution { A-model = string over the alphabet 24
A-sentence = MSO 4-sentence

What You See Is All There Is (WYSIATI, KAHNEMAN)

Institutionalisation

An MSO 4-formula ¢ has finite voc(p) C A with all attributes in ¢
AL A, ‘_ p = pvoc(tp)() |_
satisfaction condition (GOGUEN & BURSTALL) for an

signature A = finite subset of A
institution { A-model = string over the alphabet 24
A-sentence = MSO 4-sentence

What You See Is All There Is (WYSIATI, KAHNEMAN)

For finite-state transducer T for inheritance,
bCln(T(Al T An)) = bC(T(bcln(Al T An)))

and similarly for inertia.

Institutionalisation
An MSO 4-formula ¢ has finite voc(p) C A with all attributes in ¢
A AnE e = pVOC(L,D)(Al e An) B
satisfaction condition (GOGUEN & BURSTALL) for an

signature A = finite subset of A
institution { A-model = string over the alphabet 24
A-sentence = MSO 4-sentence

What You See Is All There Is (WYSIATI, KAHNEMAN)

For finite-state transducer T for inheritance,
[xln(T(Al s An)) = [x(T(kln(Al ce An)))

and similarly for inertia.

Multiple A-models — bound search by reducing A
but additional constraints may expand A and change institution

15/16

1. strings/causes in place of instances/extensions

- strings as MSO-models
- expect finite automata to be fast

1. strings/causes in place of instances/extensions

- strings as MSO-models
- expect finite automata to be fast

2. top-down, contra bottom-up

- given xSy {

x is more general than y
x is before y

draw inference from x to y

- avoid fixing an extension

Conclusion

1. strings/causes in place of instances/extensions

- strings as MSO-models
- expect finite automata to be fast

2. top-down, contra bottom-up

X is more general than y

- given xSy { x is before y

draw inference from x to y

- avoid fixing an extension

3. from known unknowns to unknown unknowns

A-models change of
(signature A) signature, institution

Conclusion

1. strings/causes in place of instances/extensions

- strings as MSO-models
- expect finite automata to be fast

2. top-down, contra bottom-up

X is more general than y

- given xSy { x is before y

draw inference from x to y

- avoid fixing an extension

3. from known unknowns to unknown unknowns

A-models change of
(signature A) signature, institution

THANK YOU

	Intensions vs extensions
	Paths & MSO
	Granularity & institutions

