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Proposal

predication ‘ subsumption
fast intensional
slow extensional

1. path ~» string
~ model of Monadic Second-Order Logic (MSO)

MSO-sentence =~ regular language (BUCHI, ELGOT &
TRAKHTENBROT)

Inheritance & inertia as: No change without reason
(Principle of Sufficient Reason, LEIBNIZ)
2. extensions approximated at bounded but refinable granularity
What You See Is All There Is (WYSIATI, KAHNEMAN)

- satisfaction condition for institution (GOGUEN &
BURSTALL 1992)
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@ Intensions vs extensions
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Formal Concept Analysis (WILLE, GANTER)

subject | predicate | predication

Descr Logic | individual | concept | € (ABox)

FCA context object attribute HAS
FCA: Given a set D of objects and a set A of attributes,

INTENT(D) = {a| (Vd € D) d naAs a}
EXTENT(A) = {d | (Va € A) d HAS a}

a concept is a pair (D, A) s.t. A=INTENT(D) &
D=EXTENT(A)

- equivalently, A = INTENT(EXTENT(A))

- for concepts A and A’,
EXTENT(A) C EXTENT(A') < A CA

- for each object d, INTENT({d}) is a concept
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dCd <= INTENT({d'}) C INTENT({d})

d’' HAS a dC d
d HAS a

INTENT(D) := {a|(Vd € D) d uas a}
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Inheritance qualified

dCd <= NTENT({d'}) C INTENT({d})

d’' HAS a dC d
d HAS a

INTENT(D) := {a| (Vd € D) d nas a}

— exceptions: birds fly but not penguins ...

d’ HAS a dis d not(d HAS 3) -
d HAS a

(a)

d HAS 2 # not(d HAS a)

every penguin is flightless # not(every penguin flies)

— category mistake: widespread birds but *Tweety ...
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CARLSON & STEEDMAN causes

G. CARLSON: individual/kind /stage-level predication

Birds are widespread
Tweety was thirsty

- generics are less about instances than about

rules & regulations, “causal forces behind instances” (1995)

M. STEEDMAN 2005: temporality is about “causality & goal-
directed action”

die( Tweety) contra inertial alive( Tweety)

alive( Tweety )@t tSt/ not opp(alive( Tweety)@t)
alive( Tweety )@t
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From INTENT({d}) = A with

A = INTENT(EXTENT(A))
AC A" < EXTENT(A) C EXTENT(A)



Intensions from instances/extensions to strings/causes
From INTENT({d}) = A with

A = INTENT(EXTENT(A))
AC A < EXTENT(A) C EXTENT(A')

to strings

Ar---Ap with A, =A
An—1 ~ INTENT({d'}) for d'Sd

S from top/past for inferences such as

acA; ag At
a€ A

1<i<n

for d’'Sd saying d1s d'.
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© Paths & MSO



FCA | string A1 --- A, |
d HAS a aeA
object d position i
attribute a




FCA | string A1 --- A, | MSO
d HAS a acA i€[Pa]
object d position i ie{l,...,n}
attribute a unary predicate P,

[Pa] = {ie{L,....n}[ac A}



FCA | string Ay --- Ap | MSO 4
d HAS a acA i€[Pa]
object d position / ie{l,....n}
attribute a € A A CA unary predicate P,

[Pl = {i€{L,....n}[ac A}
A = {ae Alie[Pi]}



Attributes in strings as predicates

FCA | string A;--- A, | MSO 4
d HAS a acA i€[Pa]
object d position | ie{l,...,n}
attribute a € A A CA unary predicate P,

[P] = {ie{l,....,n} | ac A}
A = {ac Alie[P]}
[S] = {(1,2),...,(n—1,n)}

MSO 4-model = string over the alphabet 24

Ar--Ap E Ix(Pax AVy—ySx) <= ac A

MSO-sentence = regular language (BUCHTI ...)
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acA a ¢ A,'+1
ac A,'+1

(Pay A =Psx A ySx) D Pax



acA ag¢An
acAin
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acA  agAn
acAin

(Pay A =Psx A\ ySx) D Pax

P.x + 3X(Xx A path,(X))

~

path,(X) = Vx(Xx D 3y(ySx A Xy) V Pax) A —3x(Xx A Pzx)

-~

X backs up® until a X avoids 2

acA; o(a) € A
ac A,‘+]_

(Pay A =Pyayy A ySx) D Pax
(a)



Paths back up S

acA agAn
acAin

(Pay A =Psx A\ ySx) D Pax

P.x  —  3X(Xx A path,(X))

path,(X) = Vx(Xx D Jy(ySx A Xy) V P.x) A —3x(Xx A Psx)

X backs up® until a X avoids 2

acA  o(a) A
acAin

(Pay A =Pga)y A ySx) D Pax

P.x +—  3X(Xx A path3(X))

path7(X) = Vx(Xx D 3y(ySx A Xy A =Py(a)y) V Pax)
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Fix a finite set /In of inheritable/inertial attributes.

acA agAn
a€Ain

state = subset g of In in previous position (initially 0))

qﬂq' where A':=AU{acq|adA}
g =AnNin



Fix a finite set In of inheritable/inertial attributes.

acA ad¢An
a€ A

state = subset g of In in previous position (initially 0)

g 2% ¢ where A:=Au{aeq|agA}
g =Anin

acA; o(a) € Ai
acAin

qA:—>Alq' where A" := AUq
qd ={acAnin|o(a) & A}
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A causal ontology based on attributes
Trade GALOIS connection
D C EXTENT(A) <= A CINTENT(D)
for an ontology based on S-change (a € In)

Psx for kinds

(Pay A ySx) D (Pax V yRax) yR.x = { Puy  for time

differentia a € In
force o(a) & In

bias for P,x = a domain minimisation assumption

Principle of Sufficient Reason (LEIBN1Z) {

individual _instant _ stative _ persistent _ V (homogeneous)

kind ~ interval ~ eventive  altering 3 (ontological)
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© Granularity & institutions



Given a set A of attributes and A C A,
A-reduct of ({1,...,n},Sn, [Palaca) is ({1,...,n}, Sn, [Pa)aca)

pa(Ar- - An) = (ALNA)---(A,NA) “see only A"

paz(ablal3 c) = [a]a]3]




Reducts & compression

Given a set A of attributes and A C A,
A-reduct of ({1,...,n}, Sn,[Pa]laca) is ({1,...,n}, Sn, [Pa]laca)

pa(A1---Ap) = (ALNA)---(ApNA) “seeonly A”

Piaa( a,b|a|§,c‘) = ‘alalé‘
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Reducts & compression

Given a set A of attributes and A C A,
A-reduct of ({1,...,n},Sn,[Pa]laca) is ({1,...,n}, Sn, [Pa]laca)

pa(Ar---Ay) = (ALNA)---(A,NA)  “see only A"

a,b|a|§,c‘) = ‘alalé‘

p{a,é}(
bc(p{aj}(‘a,blaﬁ,c‘)) = ‘aIE‘

Compress Aj --- Ap, to eliminate stutters A;A; 11 with A; = Aj1

A1 if n=1
be(Ay---Ap) = be(Az -+ An) else if A; = Ay
A1 bc(Az---A,)  otherwise

Base ontology on granularity

bea(s) = be(pals))
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An MSO 4-formula ¢ has finite voc(y) C A with all attributes in ¢
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Institutionalisation
An MSO 4-formula ¢ has finite voc(p) C A with all attributes in ¢
A AnE e = pVOC(L,D)(Al e An) B
satisfaction condition (GOGUEN & BURSTALL) for an

signature A = finite subset of A
institution { A-model = string over the alphabet 24
A-sentence = MSO 4-sentence

What You See Is All There Is (WYSIATI, KAHNEMAN)

For finite-state transducer T for inheritance,
[xln(T(Al s An)) = [x( T(kln(Al ce An)))

and similarly for inertia.

Multiple A-models — bound search by reducing A
but additional constraints may expand A and change institution
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Conclusion

1. strings/causes in place of instances/extensions

- strings as MSO-models
- expect finite automata to be fast

2. top-down, contra bottom-up

X is more general than y

- given xSy { x is before y

draw inference from x to y

- avoid fixing an extension

3. from known unknowns to unknown unknowns

A-models change of
(signature A) signature, institution

THANK YOU
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