
23

Finite-state Methods Featuring

Semantics
Tim Fernando

23.1 Introduction

“It may turn out to be very useful for semantic representations too.” So
concludes the abstract of Lauri Karttunen’s COLING 84 paper, Fea-
tures and values (F&V), referring to “the new Texas version of the
‘DG (directed graph)’ package” which was “primarily intended for rep-
resenting morphological and syntactic information” (page 28). That the
directed graph was essentially a finite automaton may have been too
obvious an observation for F&V to state — or, assuming it had already
been stated, restate. Be that as it may, this observation is used in Fer-
nando 2016 to extract typed features structures from Robin Cooper’s
record type approach to frames (Fillmore 1982, Cooper 2012). I restate
the observation here to develop its uses for semantic representations
further, egged on by the aforementioned statement from F&V, and (as
with Kornai 2017) the prospects of bringing together “two lines of re-
search that lie at the opposite ends on the field” (Karttunen 2007).
Just how to view feature structures as finite automata is detailed in
the next section (section 2); why this view might pay off is explored in
section 3.

As bottom-dwellers in the Chomsky hierarchy, finite automata have
well-known limitations to test the maxim keep it simple. Finite-state
methods are structured below around semantic notions |= of satisfac-
tion between models and sentences, kept simple through Leibniz’s Law,
Identity of Indiscernibles. A logical formalism well-known from Hen-

525

Tokens of Meaning: Papers in Honor of Lauri Karttunen.
Cleo Condoravdi and Tracy Holloway King (eds.).
Copyright � 2018, CSLI Publications.

526 / Tim Fernando

nessy & Milner 1985 (among other papers) is applied to feature struc-
tures in section 2 broadly along the lines of Blackburn 1993, but with
particular attention to certain sets of strings to which directed graphs
can be reduced, called trace sets. A set Σ of attributes is paired with a
trace set T ⊆ Σ∗ for a signature (Σ, T), picking out the set Mod(Σ, T)
of trace sets L sandwiched between T and Σ∗

T ⊆ L ⊆ Σ∗.

A trace set L ∈ Mod(Σ, T) is a (Σ, T)-model , as the notationMod(Σ, T)
suggests, against which to evaluate a Σ-sentence. A (Σ, T)-model L can
be construed as a record of record type (Σ, T) with an s-component
Ls, for every string s ∈ T , that is a trace set satisfying a Σ-sentence ϕ
precisely if L satisfies the Σ-sentence hsiϕ

L |= hsiϕ ⇐⇒ Ls |= ϕ.

To analyze satisfaction |=, it suffices to keep the set Σ in a signature
(Σ, T) finite, and integrate different signatures within a category (fol-
lowing the so-called Grothendieck construction). Behind the somewhat
technical details below is the intuition that signatures are bounded
granularities that simplify calculations of satisfaction |=. That simpli-
fication, called the Translation Axiom in Barwise 1974 (page 235) and
the Satisfaction Condition in Goguen & Burstall 1992 (page 102), ap-
plies to unification in F&V with negative and disjunctive constraints
that refine the sets Mod(Σ, T).

Supposing a typed feature structure can be viewed as a finite au-
tomaton (which section 2 takes pains to show), so what? To make the
view compelling, we turn in section 3 to runs of finite automata with the
eventual goal of understanding these runs as uses of linguistic resources
encoded by typed feature structures. An approach to temporality in
which time arises from running automata is presented paralleling sec-
tion 2, with Monadic Second Order logic in place of Hennessy-Milner
logic, and superposition in place of unification (for building models
bottom-up, subject to constraints). Careful attention is paid to shifts
in bounded granularity and to the assorted forces that take shape as
granularity is refined. This is in contrast to the practice of fixing some
space of possible worlds once and for all, without any provisions for
varying granularity.

23.2 From Features to Strings and Types

Some notions taken up in F&V are collected in the first column of Table
1, which we analyze in this section according to the second column.

Finite-state Methods Featuring Semantics / 527

path ha1 · · · ani of attributes string a1 · · · an
(rooted) directed graph G set L(G) of strings

generalize(G,G′) L(G) ∩ L(G′)
constraints C set ΦC of sentences with ¬,∨
unifyC(G,G′) L(G) ∪ L(G′) if it satisfies ΦC

Table 1

We take for granted in Table 1 a set Σ of attributes (a, ai, . . .), and
define a Σ-deterministic system to be a partial function δ : Q×Σ ⇁ Q
to some set Q of nodes from the set Q × Σ of node-attribute pairs.
We picture a triple (q, a, δ(q, a)) in δ as a deterministic transition q

a→
δ(q, a), and formulate a (rooted) directed graph G as a pair (δ, q) of
a Σ-deterministic system δ and a node q ∈ Q. To define the language
L(G) ⊆ Σ∗, let δq : Σ∗ ⇁ Q be the ⊆-smallest subset F of Σ∗×Q such
that

(i) (ǫ, q) ∈ F , and

(ii)(sa, q′′) ∈ F whenever (s, q′) ∈ F and (q′, a, q′′) ∈ δ.

Now, if the directed graph G is the pair (δ, q), then its language L(G)
is the set dom(δq) of strings s for which δq(s) is defined. The language
dom(δq) is called the trace set of (δ, q), and strings in dom(δq) are
called traces of (δ, q).

Next, with Σ fixed, we express constraints through the set sen(Σ)
of sentences ϕ generated from attributes a ∈ Σ by the grammar

ϕ ::= ⊤ | haiϕ | ¬ϕ | ϕ ∨ ϕ′

interpreted against a Σ-deterministic system δ : Q×Σ ⇁ Q by a binary
relation |=δ ⊆ Q× sen(Σ) that treats ⊤ as a tautology

q |=δ ⊤ for every q ∈ Q,

hai as the Diamond modal operator with accessibility relation δ(·, a)
q |=δ haiϕ ⇐⇒ (q, a) ∈ dom(δ) and δ(q, a) |=δ ϕ,

¬ as Boolean negation

q |=δ ¬ϕ ⇐⇒ not q |=δ ϕ

and ∨ as Boolean disjunction

q |=δ ϕ ∨ ϕ′ ⇐⇒ q |=δ ϕ or q |=δ ϕ′

(Hennessy & Milner 1985, Blackburn 1993). Collecting the sentences in
sen(Σ) that q |=δ-satisfies in

senΣ(δ, q) := {ϕ ∈ sen(Σ) | q |=δ ϕ},

528 / Tim Fernando

it turns out that directed graphs satisfy the same subset of sen(Σ)
precisely if they have the same trace set

senΣ(δ, q) = senΣ(δ
′, q′) ⇐⇒ dom(δq) = dom(δ′q′) (23.28)

(Hennessy & Milner 1985).1 Under Leibniz’s Identity of Indiscernibles,
with discernibility based on sen(Σ), (23.1) reduces a directed graph
(δ, q) to its trace set dom(δq). The trace set captures a fragment of
sen(Σ)

dom(δq) = {s ∈ Σ∗ | hsi⊤ ∈ senΣ(δ, q)}
consisting of sentences of the form hsi⊤, where for every ϕ ∈ sen(Σ),
the sentence hsiϕ in sen(Σ) is defined by induction on s ∈ Σ∗ , starting
with the null string ǫ,

hǫiϕ := ϕ

and using modal operators hai elsewhere
hasiϕ := haihsiϕ

so that ha1 · · · aniϕ is ha1i · · · haniϕ and

q |=δ hsiϕ ⇐⇒ s ∈ dom(δq) and δq(s) |=δ ϕ. (23.29)

In the remainder of this section, we replace q and δ in (23.2) by a
prefix-closed language over Σ with derivatives (in §2.1), and expand Σ
to flesh out Table 1 (in §2.2), systematized category-theoretically (in
§2.3) to link up with section 3.

23.2.1 Languages and Transitions to Derivatives

Given a set L ⊆ Σ∗ of strings over Σ and a string s over Σ, the s-
derivative of L is the set

Ls := {s′ | ss′ ∈ L}
of strings that put after s belong to L (Brzozowski 1964). For any Σ-
deterministic system δ : Q × Σ ⇁ Q and node q, one can check that
dom(δq) is the set of strings s such that the null string ǫ is in the
s-derivative of dom(δq)

s ∈ dom(δq) ⇐⇒ ǫ ∈ (dom(δq))s

and that for every s ∈ dom(δq), the s-derivative of dom(δq) is the trace
set of (δ, δq(s))

(dom(δq))s = dom(δq′) where q′ = δq(s).

1Readers familiar with, for example, Barwise & Moss 1996 will note that deter-
minism simplifies matters considerably, reducing bisimulation equivalence between
(δ, q) and (δ′, q′) to trace equivalence dom(δq) = dom(δ′

q′
), and allowing us to talk

of sets of strings instead of non-well-founded sets.

Finite-state Methods Featuring Semantics / 529

Indeed, the chain of equivalences

a1a2 · · · an ∈ L ⇐⇒ a2 · · · an ∈ La1

⇐⇒ · · · ⇐⇒ ǫ ∈ La1···an

from a1 · · · an to the null string ǫ means that L is accepted by the
deterministic automaton with

- s-derivatives Ls as states

- initial state L = Lǫ

- a-transitions from Ls to Lsa (for every symbol a ∈ Σ)

- final (accepting) states Ls such that ǫ ∈ Ls.

The s-derivative of L equals the s′-derivative of L precisely if s and s′

concatenate with the same strings to produce strings in L

Ls = Ls′ ⇐⇒ (∀w ∈ Σ∗) (sw ∈ L ⇐⇒ s′w ∈ L)

so that the Myhill-Nerode Theorem says that for finite Σ,

L is regular ⇐⇒ {Ls | s ∈ Σ∗} is finite

(e.g. Hopcroft & Ullman 1979). Note that Ls is non-empty precisely if
s is the prefix of some string in L. Moreover, if Ls is empty then so
is Lsa for every a ∈ Σ. That is, ∅ is a sink state that we may safely
exclude from the states of the automaton above, at the cost of making
the transition function partial.

Let us call a language L prefix-closed if for all sa ∈ L, s ∈ L. Note
that trace sets are prefix-closed and non-empty. Let Mod(Σ) denote the
set

Mod(Σ) := {L ⊆ Σ∗ | L 6= ∅ and L is prefix-closed}
of non-empty prefix-closed subsets of Σ∗, and let us refer to an element
ofMod(Σ) as a Σ-state. Not only are trace sets Σ-states, but conversely,

if δ̂ is the Σ-deterministic system

{(L, a, La) | L ∈ Mod(Σ) and a ∈ Σ ∩ L}
then every Σ-state L is the trace set of (δ̂, L). Keeping δ̂ implicit, a Σ-
state L makes an s-transition to its s-derivative Ls precisely if s ∈ L,
specializing the biconditional (2) from the previous page to

L |= hsiϕ ⇐⇒ s ∈ L and Ls |= ϕ.

23.2.2 Adding Attributes, Types and Constraints

Identity as indiscernibility relative to sen(Σ) presupposes that all dif-
ferences which matter are captured by the set Σ. An obvious problem
is that the single trace set {ǫ} cannot differentiate between atomic val-
ues. But it is easy enough to introduce for every atomic value v, a fresh

530 / Tim Fernando

attribute av to Σ for say, the trace set {av, ǫ}. At least two objections
can be made to this move. The first is that a trace set of {ǫ} is ar-
guably what it means for a value v to be atomic; any larger trace set
would make v non-atomic. If “atomic” is understood this way, identity
as indiscernibility leaves us no choice but to differentiate between val-
ues by making all but perhaps one of them non-atomic. A more serious
objection is that if the alphabet Σ is to be finite, then we cannot in-
troduce fresh attributes to Σ indefinitely. Or can we? Given any set A,
no matter how large, we can form its set Fin(A) of finite subsets

Fin(A) := {Σ ⊆ A | Σ is finite}
and let Σ vary over members of Fin(A); each attribute a ∈ A−Σ added
to Σ leads to the different member Σ ∪ {a} of Fin(A). The challenge
then becomes to implement the variations in Σ systematically. This is
where signatures and institutions enter.

But first, it will prove convenient to expand sen(Σ) with a modal
operator ✸ for a sentence ✸ϕ equivalent to the disjunction over all
s ∈ Σ∗ of the sentences hsiϕ. More precisely,

q |=δ
✸ϕ ⇐⇒ (∃s ∈ Σ∗) q |=δ hsiϕ (23.30)

for any Σ-deerministic system δ : Q × Σ ⇁ Q and node q ∈ Q. In-
corporating ✸ into sen(Σ) and senΣ(δ, q) for sen✸(Σ) and sen✸

Σ(δ, q)
respectively, it is not dfficult to verify that trace equivalence remains
indiscernibility up to sen✸(Σ)

sen✸

Σ(δ, q) = sen✸

Σ(δ
′, q′) ⇐⇒ dom(δq) = dom(δ′q′).

Thus, we can again reduce (δ, q) to its trace set dom(δq) and |=δ to a
binary relation |=Σ ⊆ Mod(Σ) × sen✸(Σ) between a Σ-state L and a
sentence ϕ ∈ sen✸(Σ), simplifying (23.3) to

L |=Σ ✸ϕ ⇐⇒ (∃s ∈ Σ∗) L |=Σ hsiϕ
⇐⇒ (∃s ∈ L) Ls |=Σ ϕ

(adding the subscript Σ to prepare for the aforementioned variations).
As usual, we let ✷ϕ abbreviate ¬✸¬ϕ for

L |=Σ ✷ϕ ⇐⇒ (∀s ∈ L) Ls |=Σ ϕ

alongside the Boolen conventions ϕ ⊃ ψ for ψ ∨ ¬ϕ, and ϕ ∧ ψ for
¬(¬ϕ ∨ ¬ψ). Given a subset Φ of sen✸(Σ), we say a Σ-state L is a
Σ-model of Φ, and write L |=Σ Φ, if it satisfies every sentence in Φ

L |=Σ Φ ⇐⇒ (∀ϕ ∈ Φ) L |=Σ ϕ.

Now, to pick out a particularΣ-state through a sentence ϕ, let UniqΣ(ϕ)

Finite-state Methods Featuring Semantics / 531

be the set

UniqΣ(ϕ) := {✸(ϕ ∧ ψ) ⊃ ✷(ϕ ⊃ ψ) | ψ ∈ sen(Σ)}
of implications ✸(ϕ ∧ ψ) ⊃ ✷(ϕ ⊃ ψ) ensuring that if ψ should ever
occur with ϕ, it always occurs with ϕ. Since trace equivalence is in-
discernibility with respect to sen(Σ), it follows that the sentences ψ
appearing in UniqΣ(ϕ) can be restricted to those of the form hsi⊤ for
s ∈ Σ∗ without changing the Σ-models of UniqΣ(ϕ), and that

(†) for any Σ-model L of UniqΣ(ϕ), and s, s′ ∈ L,

if Ls |=Σ ϕ and Ls′ |=Σ ϕ then Ls = Ls′ .

If we are to introduce an attribute av to name a particular value v
through the sentence havi⊤, then we must restrict our (Σ∪{av})-states
to (Σ ∪ {av})-models of UniqΣ∪{av}(havi⊤). An attribute a might also
be introduced to name a type that applies to more than one (Σ∪ {a})-
state, implicating a (Σ∪{a})-state that fails to satisfy some sentence in
UniqΣ∪{a}(hai⊤). There is a curious twist here on treatments of “iden-
tity and mere likeness” (F&V, page 29) and re-entrancy (connected
with a feature path s that appears in the present set-up as a subscript
in Ls and inside a modal operator in hsiϕ). Σ-states L and L′ can be
distinct only if some sentence in sen(Σ) differentiates them (shifting, as
it were, the burden of proof from identification to differentiation, and
suggesting refinements of identity through expansions of Σ).

Additional attributes may serve purposes other then refining dis-
cernibility. For example, they may provide representations of sentences
in sen✸(Σ) as follows. Given a subset Φ of sen✸(Σ), a sentence ϕ ∈
sen✸(Σ), and a string s ∈ Σ∗, let us agree that s (Σ,Φ)-represents ϕ if
every Σ-model of Φ satisfies

✷(ϕ ≡ hsi⊤)

where ϕ ≡ ψ is (ϕ ⊃ ψ) ∧ (ψ ⊃ ϕ), and consequently, for any Σ-state
L,

L |=Σ ✷(ϕ ≡ ψ) ⇐⇒ (∀s ∈ L)(Ls |=Σ ϕ ⇐⇒ Ls |=Σ ψ).

Because we can build ϕ with the connectives ¬ and ∨, we cannot ex-
pect there to be a string that (Σ, ∅)-represents ϕ. But we can always
introduce an attribute aϕ 6∈ Σ and set Φ to {✷(ϕ ≡ haϕi⊤)} so that
aϕ (Σ ∪ {aϕ},Φ)-represents ϕ. And we can put together attributes aϕ
and aψ that (Σ,Φ)-represent ϕ and ψ respectively, as Σ-models of Φ
satisfy

✷ ((ϕ ∧ ψ) ≡ (haϕi⊤ ∧ haψi⊤)).

532 / Tim Fernando

We can then avoid the addition of aϕ∧ψ, provided we generalize our

notion of representation to a language L̂ ⊆ Σ∗ as follows. We say L̂
(Σ,Φ)-represents ϕ if for every Σ-model L of Φ and s ∈ L,

Ls |=Σ ϕ ⇐⇒ (∀s′ ∈ L̂) Ls |= hs′i⊤
⇐⇒ L̂ ⊆ Ls (23.31)

Clearly, a string s (Σ,Φ)-represents ϕ iff the singleton language {s}
(Σ,Φ)-represents ϕ. But why should we care about representing sen-
tences by languages?

Table 1 at the beginning of the present section mentions not only
directed graphs G and G′ but also constraints C. Directed graphs are
formulated here as Σ-states (models), and constraints as subsets of
sen✸(Σ). A Σ-state can be viewed as a token, and a sentence ϕ in
sen✸(Σ) as the type

ModΣ(ϕ) := {L ∈ Mod(Σ) | L |=Σ ϕ}
of Σ-states satisfying ϕ. A set Φ ⊆ sen✸(Σ) of sentences amounts to
the conjunction

V
Φ specifying the type

ModΣ(Φ) :=
\

ϕ∈Φ

ModΣ(ϕ)

of Σ-states satisfying every sentence in Φ. Inclusion ⊆ between sets
of strings over Σ in (23.4) is easily confused with that between sets
ModΣ(ϕ) and ModΣ(ψ) of such sets

ModΣ(ϕ) ⊆ ModΣ(ψ) ⇐⇒ (∀L ∈ Mod(Σ)) L |=Σ ϕ ⊃ ψ

signifying an entailment from ϕ to ψ (and reversing the direction in
(23.4) from the less informative L̂ to the more informative Ls). Con-
verting a sentence ϕ to a Σ-state that (Σ,Φ)-represents it requires a
set Φ of constraints that we can find in, if necessary, an expansion of Σ.
Resorting to Φ as {✷(ϕ ≡ haϕi⊤)} with aϕ thrown into Σ is perhaps
too easy, shoving all the work over to Φ. But there is surely a role for
Φ, since L can only (Σ, ∅)-represent a sentence with the same Σ-models
as {hsi⊤ | s ∈ L}, leaving out many sentences formed with negation ¬
and disjunction ∨. The models of a sentence ϕ that a language (Σ, ∅)-
represents are closed under inclusion ⊆

(∀L ∈ ModΣ(ϕ))(∀L′ ∈ Mod(Σ)) L ⊆ L′ implies L′ |=Σ ϕ

and intersection ∩
(∀L ∈ ModΣ(ϕ))(∀L′ ∈ ModΣ(ϕ)) L ∩ L′ |=Σ ϕ.

But closure under intersection fails for the negation ¬hai⊤, and clo-
sure under intersection fails for the disjunction hai⊤∨ ha′i⊤ (with two

Finite-state Methods Featuring Semantics / 533

different ⊆-minimal models, for a 6= a′).
As a binary operation on directed graphs, unification in F&V is

defined on Σ-states, and, pace Blackburn 1993, not on sentences (in
terms of the connective ∧). The constraints determining when two di-
rected graphs are unifiable does, however, bring in sen✸(Σ), as does
talk of negative and disjunctive features inasmuch as these involve
the sen✸(Σ)-connectives ¬ and ∨. Evidently, a mix of Σ-states and
Σ-sentences is required. Accordingly, let us pair Σ with a language
T ⊆ Σ∗, revising Mod(Σ) to

Mod(Σ, T) := {L ∈ Mod(Σ) | T ⊆ L}
and ModΣ(Φ), for Φ ⊆ sen✸(Σ), to

ModΣ,T (Φ) := {L ∈ ModΣ(Φ) | T ⊆ L}.
Then relative to constraints Φ, we can analyze the unification of Σ-
states L and L′ in terms of ModΣ,L∪L′(Φ), which may be empty even
if neither ModΣ,L(Φ) nor ModΣ,L′(Φ) is, accounting for the partiality
of unification

L and L′ are unifiable relative to Φ ⇐⇒ ModΣ,L∪L′(Φ) 6= ∅.
Negation and disjunction in features may (or may not) require expand-
ing Σ with a¬ϕ and aϕ∨ψ, and Φ with constraints

✷(ϕ′ ≡ haϕ′i⊤) for ϕ′ ∈ {¬ϕ,ϕ ∨ ψ}.
Fixing some large set A to which all the required attributes belong, we
let Σ vary over the set Fin(A) of finite subsets of A, and note

Fact 1 Let Σ′ ∈ Fin(A), Σ ⊆ Σ′, ϕ ∈ sen(Σ), and L′ ∈ Mod(Σ′).
Then L′ ∩ Σ∗ ∈ Mod(Σ) and

L′ |=Σ′ ϕ ⇐⇒ L′ ∩ Σ∗ |=Σ ϕ

and moreover, for every s ∈ L′ ∩ Σ∗, (L′ ∩ Σ∗)s ∈ Mod(Σ) and

L′ |=Σ′ hsiϕ ⇐⇒ (L′ ∩Σ∗)s |=Σ ϕ.

The first part of Fact 1 says that the attributes that matter in satisfying
ϕ are only those that appear in ϕ,2 while the second part interprets
the modal operator hsi against Σ′-states L′ under the presupposition
that s belongs to L′.

2Fact 1 leaves ✸ out of ϕ precisely because ✸ does not identify the attributes
relevant to the satisfaction of sentences built with ✸. To bring ✸ into ϕ in Fact 1,
we can add subscripts X ranging over subsets of Σ to make the pertinent attributes
in ✸X explicit, with

q |=δ
✸Xψ ⇐⇒ (∃s ∈ X∗) q |=δ hsiψ

(Fernando 2016).

534 / Tim Fernando

23.2.3 The Grothendieck Construction and an Institution

Some category-theoretic structure lurking in Fact 1 will resurface in
section 3 under a different guise and is worth spelling out. We fix a
large set A of attributes, and for each finite subset Σ ∈ Fin(A) of
A, turn the set Mod(Σ) of Σ-states into a category Q(Σ) as follows. A
Q(Σ)-morphism from Σ-state L to Σ-state L′ is a pair (L, s) with s ∈ L
and Ls = L′. Q(Σ)-morphisms compose by concatenating strings

(L, s); (Ls, s
′) := (L, ss′)

and (L, ǫ) is the identity morphism for L. Whenever Σ ⊆ Σ′ ∈ Fin(A),
we define the functor Q(Σ′,Σ) : Q(Σ′) → Q(Σ) from Q(Σ′) to Q(Σ)
mapping

- a Σ′-state L′ to the Σ-state L′ ∩ Σ∗, and

- a Q(Σ′)-morphism (L′, s) to the Q(Σ)-morphism (L′ ∩ Σ∗,πΣ(s))

where πΣ(s) is the longest prefix of s in Σ∗

πΣ(ǫ) := ǫ

πΣ(as) :=

�
aπΣ(s) if a ∈ Σ
ǫ otherwise.

Construing Fin(A) as a category with morphisms given by inclusion
⊆, the foregoing defines a contravariant functor Q : Fin(A)op → Cat
into the category Cat of small categories. The Grothendieck construc-
tion (e.g., Tarlecki, Burstall & Goguen 1991) applied to Q yields the
category

R
Q where

- an object is a pair (Σ, L) ∈ Fin(A)×Mod(Σ), and

- a morphism from (Σ′, L′) to (Σ, L) is a pair

((Σ′,Σ), (L′′, s))

of a Fin(A)op-morphism (Σ′,Σ) and a Q(Σ)-morphism (L′′, s) such
that

L′′ = L′ ∩Σ∗ and L = L′′
s .

Reversing the morphisms in
R
Q for the category Sign of signatures

(Σ, L), we define two functors from Sign, one covariant and the other
contravariant

(i) sen : Sign → Set with sen(Σ, L) := sen(Σ) and

sen((Σ,Σ′), (L′′, s)) : ϕ 7→ hsiϕ
(ii)Mod : Signop → Cat where the set Mod(Σ, L) of Σ-states that

⊆-contain L is turned into a full subcategory of Q(Σ), and

Mod((Σ′,Σ), (L′′, s)) : L̂ 7→ (L̂ ∩ Σ∗)s.

Finite-state Methods Featuring Semantics / 535

To build an institution (Goguen & Burstall 1992) from Sign, sen, and
Mod , it remains to form, for every signature (Σ, L), a relation |=Σ,L

by intersecting |=Σ with Mod(Σ, L)× sen(Σ). Fact 1 is essentially the
Satisfaction Condition characterizing institutions

for every signature (Σ′, L′), subset Σ of Σ′, string s ∈ L′∩Σ∗, sentence
ϕ ∈ sen(Σ), and L̂ ∈ Mod(Σ′, L′),

L̂ |=Σ′,L′ hsiϕ ⇐⇒ (L̂ ∩ Σ∗)s |=Σ,L ϕ

where the subscript L above is short for (L′ ∩ Σ∗)s.

Introduced by Goguen and Burstall to cope with the proliferation of
logical systems in computer science, the notion of an institution has
attracted considerable attention and found numerous applications (e.g.
Diaconescu 2012, Kutz et al 2010). Under Fact 1, features and values
can be seen as part of that body of work.

23.3 Time for and from Running Automata

It is one thing to encode a linguistic resource as a feature structure
equivalent to a finite automaton. It is quite another matter to under-
stand the use of such a resource as the use of a finite automaton. To use
a finite automaton is (arguably first and foremost) to run it, accepting
strings that end in a final/accepting state. But such runs take place in
isolation, whereas it is only in combination with other resources that
the encoding or use of a linguistic resource is interesting. The whole
point of the category-theoretic approach from the previous section is
to relate different feature structures. Similarly, the present section con-
siders runs of an automaton not so much in isolation as in combination
with other automata, constructing a notion of time from such runs.
A simple way to superpose runs of two finite automata is defined in
§3.1, and related to the approximation of Priorean temporal models
in §3.2 by strings constructed from temporal propositions. We adopt
the custom from Artificial Intelligence of referring to temporal propo-
sitions as fluents . We fix some large set Θ of fluents much as we fixed
a large set A of attributes in the previous section. The plan roughly is
to fill out Table 2, embracing Leibniz’ Identity of Indiscernibles (as in
section 2), with granularity given by a finite subset A of Θ (analogous
to Σ ∈ Fin(A) in section 2) to form strings over the alphabet 2A of
subsets of A. The ⊆-larger the subset A, the more refined the A-models
and the more expressive the A-sentences can be.

536 / Tim Fernando

section 2 section 3
information merge unify graphs superpose strings

large set A of attributes Θ of fluents
grain/signature Σ ∈ Fin(A) A ∈ Fin(Θ)

model language over Σ string over 2A

sentence Hennessy-Milner Monadic Second-Order

Table 2

Helpful examples for orientation are provided by representations of a
calendar year at various granularities. The set A = {Jan, Feb, . . ., Dec}
of months suggests the string

sA := Jan Feb · · · Dec

of length 12. Enlarging A with days d1,d2,. . .,d31

A′ := A ∪ {d1,d2. . .,d31}
refines sA to the string

sA′ := Jan,d1 Jan,d2 · · · Jan,d31 Feb,d1 · · · Dec,d31

of length 366 for a leap year. We draw boxes (instead of the usual curly
braces { and }) around sets qua symbols to suggest a film strip. A
change in A can cause a box to split (much like hairs in Shan 2015), as

Jan in sA does (30 times) on adding days

Jan ❀ Jan,d1 Jan,d2 · · · Jan,d31

in sA′ . Similarly, a common Reichenbachian account of the progressive

puts a reference time R inside the event time E, splitting E into 3
boxes

E ❀ E E,R E

(one before, one simultaneous, and one after R). This and many other
examples in tense and aspect are taken up at length in Fernando 2015.
The aim of the present section is to link that work with the previous
section through the notion of an institution. The hope is that this might
contribute to understanding the use of linguistic resources encoded as
feature structures in terms of runs of finite automata — runs that give
rise to time at bounded granularities.

23.3.1 From Superposition to Reducts and MSO

Given two equally long strings s = α1 · · ·αn and s′ = α′
1 · · ·α′

n of sets
αi and α′

i, let use define the superposition s&s′ of s and s′ to be the
string obtained by their componentwise unions αi ∪ α′

i

α1 · · ·αn & α′
1 · · ·α′

n := (α1 ∪ α′
1) · · · (αn ∪ α′

n).

Finite-state Methods Featuring Semantics / 537

For example,

E E E & R = E E,R E .

Extending the operation to sets L and L′ of strings of sets, the super-
position L&L′ of L and L′ is the set of superpositions of strings of the
same length from L and L′

L & L′ := {s&s′ | (s, s′) ∈ L× L′ and length(s) = length(s′)}
allowing us to conflate a string s with its singleton language {s} (mak-
ing s&s′ = ∅ in case s and s′ differ in length). Given finite automata
accepting L and L′, the usual product construction on finite automata
for their intersection L ∩ L′ (e.g. Hopcroft & Ullman 1979) can be
adjusted to combine transitions →L for L and →L′ for L′ to form non-
deterministic transitions

(q, q′)
α∪α′

→ (r, r′) ⇐⇒ q
α→L r and q′

α′

→L′ r′

for L&L′ in lockstep but with labels that may differ. We will loosen
the lockstep requirement in §3.2, but first consider constraints that we
might impose on superposition (analogous to C on unifyC(G,G′) in
section 2).

For example, we may wish to require that a fluent a is never followed
by a fluent b, as expressed by the predicate logic formula

(∀x)(∀y)(Pa(x) ∧ S(x, y) ⊃ ¬Pb(y))

where x and y range over string positions, and

S(x, y) says: next after position x is y

while for every fluent a ∈ Θ,

Pa(x) says: a occurs at position x.

More precisely, given a string s = α1 · · ·αn of n sets αi of fluents, we
can interpret S as the binary relation

Sn := {(1, 2), (2, 3), . . . , (n− 1, n)}
on the set

[n] := {1, 2, . . . , n}
of integers from 1 to n, and Pa as the subset

P s
a := {i ∈ [n] | a ∈ αi} (where s = α1 · · ·αn)

of [n], for each fluent a. That is, a string s ∈ (2Θ)n specifies a structure

Ms := h[n], Sn, {P s
a}a∈Θi

against which to interpret predicate logic formulas built from S and
the Pa’s such as the formulas ϕ of Monadic Second-Order Logic (MSO;

538 / Tim Fernando

e.g. Libkin 2010) generated by the seven clauses

ϕ ::= S(x, y) | Pa(x) | X(x) | ϕ ∨ ϕ′ | ¬ϕ | ∃xϕ | ∃Xϕ

from three disjoint infinite sets Var1, Var2 and Θ of first-order variables
x, y ∈ Var1, second-order variables X ∈ Var2, and fluents a ∈ Θ,
respectively. For any such MSO-formula ϕ, only finitely many fluents
may occur in ϕ, which we collect in ϕ’s vocabulary, voc(ϕ) ∈ Fin(Θ)

voc(S(x, y)) = voc(X(x)) = ∅
voc(Pa(x)) = {a}
voc(ϕ ∨ ϕ′) = voc(ϕ) ∪ voc(ϕ′)

voc(¬ϕ) = voc(∃xϕ) = voc(∃Xϕ) = voc(ϕ).

An MSO-sentence is understood to be an MSO-formula in which all
variable occurrences are bound. For every A ∈ Fin(Θ), we put every
MSO sentence with vocabulary contained in A into the set MSO(A)

MSO(A) := {ϕ | ϕ is an MSO-sentence and voc(ϕ) ⊆ A}
and define a binary relation

|=A ⊆ (2A)∗ ×MSO(A)

between (2A)∗ and MSO(A) in the usual Tarskian manner, associating
a string s ∈ (2A)∗ with Ms. (Apologies for reusing the symbol |=.)
For any string s of sets of fluents, let the A-reduct ρA(s) of s be the
componentwise intersection of s with A

ρA(α1 · · ·αn) := (α1 ∩A) · · · (αn ∩A)

(so-called because ρA(s) is precisely the part of s needed to extract
from Ms its A-reduct h[n], Sn, {P s

a}a∈Ai).
Fact 2 For all A ∈ Fin(Θ), ϕ ∈ MSO(A) and s ∈ (2A)∗,

s |=A ϕ ⇐⇒ ρvoc(ϕ)(s) |=voc(ϕ) ϕ .

With Fact 2, the relations {|=A}A∈Fin(Θ) become an institution with
signature category Fin(Θ) provided we

(i) extend the map A 7→ MSO(A) to pairs (A,A′) such that A ⊆ A′ ∈
Fin(Θ), setting MSO(A,A′) to the inclusion MSO(A) →֒ MSO(A′)
mapping ϕ ∈ MSO(A) ⊆ MSO(A′) to itself, and

(ii)turn the map A 7→ (2A)∗ into a contravariant functor M from
Fin(Θ) so that whenever A ⊆ A′ ∈ Fin(Θ), M(A′, A) : (2A

′

)∗ →
(2A)∗ is the restriction of ρA to (2A

′

)∗

M(A′, A)(s) = ρA(s) for all s ∈ (2A
′

)∗.

Finite-state Methods Featuring Semantics / 539

Büchi’s theorem equating sentences inMSO(A) with regular languages
over A (e.g. Libkin 2010, page 124) holds also in the present set-up for
languages over 2A (the advantage of 2A over A being the availability
of reducts for Fact 2).

23.3.2 Compression, Branching and Superposition Modified

A string s ∈ (2A)∗ is understood above to have granularity A. Vari-
ations in A are described in Fact 2 that preserve string length using
A-reducts. It is natural, however, to expect the length of a string to
grow with A, as hinted by the discussion above of

sA := Jan Feb · · · Dec

and

sA′ := Jan,d1 Jan,d2 · · · Jan,d31 Feb,d1 · · · Dec,d31 .

Put the other way around, the A-reduct of sA′

ρA(sA′) = Jan
31

Feb
29

· · · Dec
d31

has substrings such as Jan
31

which we might compress to Jan for

bc(ρA(sA′)) = Jan Feb · · · Dec = sA

where for any string s, bc(s) compresses blocks αn of n > 1 consecutive
occurrences in s of the same symbol α to a single α, leaving s otherwise
unchanged

bc(s) :=







bc(αs′) if s = ααs′

α bc(α′s′) if s = αα′s′ with α 6= α′

s otherwise.

To require that time progress only with change (discernible at some
bounded granularity A), let us work with strings α1α2 · · ·αn that are
stutter-free in that αi 6= αi+1 for i from 1 to n− 1. That is,

a string s is stutter-free ⇐⇒ s = bc(s).

The restriction of bc to any finite alphabet is computable by a finite-
state transducer, as are, for all A′ ∈ Fin(Θ) and A ⊆ A′, the composi-
tion ρA; bc for bcA

bcA(s) := bc(ρA(s)) for s ∈ (2A
′

)∗.

Without the compression bc in bcA, we are left with the map ρA that
leaves the ontology intact (insofar as the domain of an MSO-model
is given by the string length), whilst restricting the vocabulary (for A-
reducts). The institution described by Fact 2 can be adjusted to another
institution in which

540 / Tim Fernando

- the models are stutter-free strings3

- the reducts ρA are replaced by bcA, and

- the satisfaction relations |=′
A are given by explicitly referring to the

sentence’s vocabulary

s |=′
A ϕ ⇐⇒ bcvoc(ϕ)(s) |=voc(ϕ) ϕ.

Compressing strings via bcA allows us to lengthen the strings by in-
version. The inverse limit IL(Θ, bc) of Θ, bc consists of functions a :
Fin(Θ) → Fin(Θ)∗ that respect the projections bcA

a(A) = bcA(a(A
′)) whenever A ⊆ A′ ∈ Fin(Θ).

The prefix relation on strings

s prefix s′ ⇐⇒ s′ = sŝ for some ŝ

lifts to maps a and a′ in IL(Θ, bc) by universal quantification for an
irreflexive relation

a ≺ a′ ⇐⇒ a 6= a′ and (∀A ∈ Fin(Θ)) a(A) prefix a′(A)

that is tree-like on IL(Θ, bc) — i.e., transitive and left linear: for every
a ∈ IL(Θ, bc), and all a1 ≺ a and a2 ≺ a,

a1 ≺ a2 or a2 ≺ a1 or a2 = a1.

In other words, time branches at the inverse limit IL(Θ, bc).
Even if the strings we are interested in are stutter-free, strings that

are not stutter-free can be useful. For instance, to relax the requirement
of L&L′ that L and L′ run in lockstep, let us collect the strings bc-
equivalent to a string in L in

Lbc := {s ∈ (2Θ)∗ | (∃s′ ∈ L) bc(s) = bc(s′)}
and define the bc-superposition L&bcL

′ of L and L′ to be the image
under bc of the superposition of Lbc and L′bc

L &bc L′ := {bc(s) | s ∈ Lbc & L′bc}
(a regular language, if L and L′ are). Then for any two fluents a, a′ ∈ Θ,

the bc-superposition a &bc a′ is the set

{bc(s) | s ∈ (2{a,a
′})∗ and bc{a}(s) = a and bc{a′}(s) = a′ }

consisting of 13 strings, one for each interval relation in Allen 1983.
More generally, for any finite set A = {a1, . . . , an} ∈ Fin(Θ) of fluents,

3Apart from applying bc, a string can also be made stutter-free by superposition

with (tic)∗(+ ǫ) for some fresh fluent tic. The crucial point is that stutter-
freeness ensures the vocabulary is large enough to express the distinctions of interest
(lengthening a string if necessary).

References / 541

the bc-superposition

a1 &bc · · · &bc an

represents the event structures over A in the sense of Russell-Wiener
(Kamp & Reyle 1993, Fernando 2015).

23.3.3 Taking Stock

What are we to make of the difference between the institutions in sec-
tions 2 and 3? At its simplest, the difference is between, on the one
hand, a program or automaton (as piece of code) and, on the other
hand, an execution or run of it — a modern incarnation of the Aris-
totelian dichotomy between potentiality and actuality. Focusing on ap-
plications to natural language semantics, Table 3 lists contrasts based
not only on the widespread encoding of linguistic resources as feature
structures (including frames), but also on the notion defended in Carl-
son 1995 that the truth of a generic statement rests not on “the episodic
instances but rather the causal forces behind those instances” (page
225), as well as the distinction between individual-level and stage-level
predicates (Carlson 1977).

section 2 section 3
automata run
resource use
generic episodic
causal temporal
force event

universal particular/instance
individual-level stage-level

Table 3

Much work remains to flesh out Table 3, and win over the skeptical
reader. At stake in Table 3 is justification for viewing the directed
graphs in F&V as finite automata.4

References

Allen, James F. 1983. Maintaining knowledge about temporal intervals. In
Communications of the ACM , vol. 26, pages 832–843.

Barwise, Jon. 1974. Axioms for abstract model theory. Annals of Mathemat-
ical Logic 7:221–265.

4My thanks to Cleo Condoravdi for inviting me to contribute to this Festschrift,
András Kornai for feedback on this paper, and, not to forget, Lauri Karttunen for
setting standards towards which to aspire.

542 / Tim Fernando

Barwise, Jon and Larry Moss. 1996. Vicious Circles: On the Mathematics of
Non-Wellfounded Phenomena.. CSLI.

Blackburn, Patrick. 1993. Modal logic and attribute value structures. In
M. de Rijke, ed., Diamonds and Defaults, pages 19–65. Kluwer.

Brzozowski, Janusz A. 1964. Derivatives of regular expressions. Journal of
the ACM pages 481–494.

Carlson, Greg N. 1977. A unified analysis of the English bare plural. Lin-
guistics & Philosophy 1:413–458.

Carlson, Greg N. 1995. Truth conditions of generic sentences: Two contrast-
ing views. In The Generic Book , pages 224–237. University of Chicago
Press.

Cooper, Robin. 2012. Type theory and semantics in flux. In R. Kempson,
T. Fernando, and N. Asher, eds., Philosophy of Linguistics, pages 271–323.
North-Holland.

Diaconescu, Răzvan. 2012. Three decades of institution theory. In J.-Y.
Beziau, ed., Universal Logic: An Anthology , pages 309–322. Springer.

Fernando, Tim. 2015. The semantics of tense and aspect: A finite-state
perspective. In S. Lappin and C. Fox, eds., The Handbook of Contemporary
Semantic Theory, Second Edition, pages 203–236. Wiley.

Fernando, Tim. 2016. Types from frames as finite automata. In
A. Foret, G. Morrill, R. Muskens, and R. Osswald, eds., Formal Gram-
mar 2015/2016 , pages 19–40. Springer.

Fillmore, Charles J. 1982. Frame semantics. In Linguistics in the Morning
Calm, pages 111–137. Hanshin Publishing Co.

Goguen, Joseph and Rod Burstall. 1992. Institutions: Abstract model theory
for specification and programming. Journal of the ACM 39:95–146.

Hennessy, Matthew and Robin Milner. 1985. Algebraic laws for non-
determinism and concurrency. Journal of the ACM 32:137–161.

Hopcroft, John and Jeffrey Ullman. 1979. Inroduction to Automata Theory,
Languages, and Computation. Addison-Wesley.

Kamp, Hans and Uwe Reyle. 1993. From Discourse to Logic. Kluwer.

Karttunen, Lauri. 1984. Features and values (F&V). In COLING ’84 , pages
28–33.

Karttunen, Lauri. 2007. Word play. Computational Linguistics 33:443–467.

Kornai, András. 2017. Truth or dare. This volume.

Kutz, Oliver, Till Mossakowski, and Dominik Lücke. 2010. Carnap, goguen,
and the hyperontologies: Logical pluralism and heterogeneous structuring
in ontology design. Logica Universalis 4:255–333.

Libkin, Leonid. 2010. Elements of Finite Model Theory . Springer.

Shan, Chung-chieh. 2015. Splitting hairs. In Proceedings of the 20th Ams-
terdam Colloquium, pages 363–367.

Tarlecki, Andrzej, Rod Burstall, and Joseph Goguen. 1991. Some funda-
mental algebraic tools for the semantics of computation: Part 3 indexed
categories. Theoretical Computer Science pages 239–264.

