Types from Frames as Finite Automata

Tim Fernando®)

Trinity College Dublin, Dublin, Ireland
tim.fernando@cs.tcd.ie

Abstract. An approach to frame semantics is built on a conception
of frames as finite automata, observed through the strings they accept.
An institution (in the sense of Goguen and Burstall) is formed where
these strings can be refined or coarsened to picture processes at various
bounded granularities, with transitions given by Brzozowski derivatives.

Keywords: Frame * Finite automaton - Trace - Derivative * Institution

1 Introduction

A proposal for frame semantics recently put forward in Muskens (2013) analyzes
a frame of the sort studied by Barsalou (1999); Lobner (2014), and Petersen and
Osswald (2014) (not to forget Fillmore 1982) as a fact in a data lattice (§,o,0)
with zero 0 € § and meet o : (§F X §) — F (Veltman 1985). A frame such as

THEME
AGENT

is analyzed, relative to any three entities e, x and y, as the o-combination
smash e o AGENT ex o John x o THEME ey o window y

of five facts, smash e, AGENT ex, John x, THEME ey, and window y. In general,
any fact g € § induces a function [g] from facts to one of three truth values, t, f
and n, such that for all f € § — {0},

t if fog=f (i.e., fincorporatesg)
lg](f) = f if fog=0 (ie., fandgareincompatible)
n otherwise.

Functions such as [g| from § to {t,f,n} are what Muskens calls propositions,
breaking from possible worlds semantics in replacing possible worlds with facts,
and adding a third truth value, n, for a gap between truth and falsity. Sentences
are interpreted as propositions, assembled compositionally from an interpreta-
tion of words as A-abstracts of propositions, as in

smash = Ayxz\fJe.[smashe o AGENT ex o THEME ey f. (1)

Muskens attaches significance to the separation of facts from propositions. Iden-
tifying frames with facts, he declares

(© Springer-Verlag Berlin Heidelberg 2016
A. Foret et al. (Eds.): FG 2015/2016, LNCS 9804, pp. 19-40, 2016.
DOI: 10.1007/978-3-662-53042-9_2

tim.fernando@cs.tcd.ie

20 T. Fernando

I reject the idea (defended in Barsalou (1999), who explicitly discusses
frame representations of negation, disjunction, and universal quantifica-
tion) that all natural language meaning can profitably be represented with
the help of frames

(page 176).

One way to evaluate Muskens’ proposal is by comparing it with others. An
alternative to existentially quantifying the event e in (1) is A-abstraction, as in
the analysis of sortal frames in Petersen and Osswald (2014), with

Xe. smash’(e) A\ animate’ (AGENT'(€)) A concrete’(THEME' (e)) (2)
for the typed feature structure (a), or, to bring the example closer to (1),
Xe. smash’(€) A all'(AGENT'(e)) A all’(THEME' (e)) (3)

for the typed feature structure (b) over a vacuous all-encompassing type all.!

smash smash smash
(a) | AGENT animate (b) | AGENT all (¢) | AGENT
THEME concrete THEME all THEME

It is understood in both (2) and (3) that e is in the domain of the partial functions
AGENT’ and THEME', making the terms AGENT’(e) and THEME'(e) well-defined.
We will simplify (b) shortly to (c), but before dropping all, let us use it to
illustrate how to express the definedness presuppositions in (2) and (3) under
the approach of Cooper (2012). To model a context, Cooper uses a record such
as (d), which is of type (e) assuming all encompasses all.

p1 : smash(r)
(f) | p2 : animate(r.AGENT)

AGENT = AGENT : all
oz ol
ps : concrete(r. THEME)

THEME = y THEME : all

Now, if bg is the record type (e), and ¢ is the type (f) dependent on a record r
of type bg, we can form the function

(Ar : bg) ¢ (4)

mapping a record r of type bg to the record type ¢. (4) serves as Cooper’s
meaning function with

— domain bg (for background) encoding the definedness presuppositions, and
— record type ¢ replacing what a Montagovian would have as a truth value.

Compared to the prefix Ayz in Muskens’ (1), the prefix (Ar : bg) in (4) provides
not just the parameters x and y but the information that they are the agent
and theme components of a record r, around which abstraction is centralized in
accordance with the methodological assumption

! This introductory section presupposes some familiarity with the literature, but is
followed by sections that proceed in a more careful manner, without relying on a full
understanding of the Introduction.

tim.fernando@cs.tcd.ie

Types from Frames as Finite Automata 21

() components are extracted from a single node associated with the frame.

The number of components may be open-ended, as argued famously for events
in Davidson (1967)

Jones did it slowly, deliberately, in the bathroom with a knife, at midnight

(page 81). Under pressure from multiple components, the assumption (t) is
relaxed for non-sortal frames in Lébner (2014) and Petersen and Osswald (2014),
with the latter resorting to e-terms (page 249) and -terms (page 252). It is, how-
ever, possible to maintain (f) by adding attributes that extend the central node
to incorporate the required components (making e- and t-terms unnecessary).
At stake in upholding (1) is a record type approach, a finite-state fragment of
which is the subject of the present paper.

In Cooper (2012), record types are part of a rich system TTR of types with
function spaces going well beyond finite-state methods. Viewing frames as finite
automata — bottom-dwellers in the Chomsky hierarchy — certainly leads us
back to Muskens’ contention that frames cannot capture all natural language
meaning. But while any single finite automaton is bound to fall short, much
can be done with many automata. Or so the present paper argues. Very briefly,
the idea is to reduce the matrices (a)—(c) to the sets (a)’—(c)’ of strings over
the alphabet {smash, AGENT, THEME, animate, concrete, all}, and to represent
the typing in (g) by the matrix (h) that is reduced to the language (h)" over an
expansion of the alphabet with symbols a, and a, for x and y respectively.

(a)" {smash, AGENT animate, THEME concrete}
(b)" {smash, AGENT all, THEME all}
(c)’ {smash, AGENT, THEME}

[smash
smash smash animate
. AGENT
(g) | AGENT =z | : | AGENT : animate (h) Ay
THEME = y THEME : concrete concrete
THEME a
| Y J

(h)" {smash, AGENT a,, THEME a,} U {agent animate, THEME concrete}

To interpret the strings in the sets (a)’, (b)’, (c¢)’ and (h)’, we assume every
symbol a in the string alphabet X' is interpreted as a (partial) function [a],
which we extend to strings s € X*, setting [e¢] to the identity, and [sa] to the
sequential composition Az.[a]([s](z)). Then in place of the A-expressions (1) to
(4), a language L is interpreted as the intersection

ﬂ domain([s]) (5)

of the domains of the interpretations of strings in L. It is customary to present
the interpretations [a] model-theoretically (as in the case of the interpretation
AGENT’ of AGENT in (2)), making the interpretations [s] and (5) model-theoretic.

tim.fernando@cs.tcd.ie

22 T. Fernando

But as will become clear below, the functions [a] can also be construed as the
a-labeled transitions in a finite automaton. The ultimate objective of the present
work is to link frames to the finite-state perspective on events in Fernando (2015)
(the slogan behind the bias for finite-state methods being less is more), as well
as to more wide ranging themes of “semantics in flux” in Cooper (2012), and
“natural languages as collections of resources” in Cooper and Ranta (2008).

The intersection (5) approximates the image {r : bg | ¢} of Cooper’s meaning
function (Ar : bg)e but falls short of maintaining the careful separation that
(Ar : bg)e makes between the presuppositions bg and the dependent record
type . That separation is recreated below within what is called an institution
in Goguen and Burstall (1992), with bg formulated as a signature and ¢ as
a sentence of that signature. Clarifying this formulation is largely what the
remainder of the present paper is about, which consists of three sections, plus a
conclusion. The point of departure of Sect. 2 is the determinism of a frame — the
property that for every state (or node) ¢ and every label a on an arc (or edge),
there is at most one arc from ¢ labeled a. Based on determinism and building on
Hennessy and Milner (1985), Sect. 2 reduces a state g to a set of strings of labels
(i.e., a language). This reduction is tested against states as types and states as
particulars in Sect. 3. To ensure the languages serving as states are accepted by
finite automata (i.e., regular languages), Sect. 4 works with various finite sets X
of labels. The sets X' are paired with record types for signatures, around which
approximations are structured following Goguen and Burstall (1992).

One further word about the scope of the present work before proceeding.
Functions and \’s are commonly taken for granted in a compositional syn-
tax/semantics interface, yet another significant proposal for which is detailed
in Kallmeyer and Osswald (2013) using Lexicalized Tree Adjoining Grammar
(distinct from frames with a first-order formulation in Sects. 3.3.3-3.3.4 there
compatible with (5) above?). The present paper steers clear of any choice of a
syntactic formalism, making no claim of completeness in focusing (modestly) on
types from frames as finite automata.

2 Deterministic Systems and Languages

Fix a (possibly infinite) set A of labels. An A-deterministic system is a partial
function 6 : @ x A — @ from pairs (g,a) € Q X A to elements of @, called states
(of which there may or may not be infinitely many). Let € be the null string
(of length 0) and for any state ¢ € @, let §, : A* — @ be the partial Q-valued
function from strings over the alphabet A that repeatedly applies starting at
¢; more precisely, d, is the C-least set P of pairs such that

(i) (e,9) € P, and
(ii) (sa,d(q’,a)) € P whenever (s,q') € P and (¢',a) € domain(d).

2 The compatibility here becomes obvious if the moves described in footnote 5 of page
281 in Kallmeyer and Osswald (2013) are made, and a root added with attributes
to the multiple base nodes.

tim.fernando@cs.tcd.ie

Types from Frames as Finite Automata 23

For example,
ad’ € domain(dy) <= (q,a) € domain(d) and a’ € domain(ds(qg,q))-
The partial functions d, determine
transitions ¢ > 5,(s) whenever s € domain(d,)
which we can also read as
s-components d,(s) of g, forall s € domain(d,).

The labels in A may correspondingly be regarded as acts or as attributes. In
either case, there is, we will see, a useful sense in which the language domain(é,)
over A holds just about all the A-deterministic system ¢ has to say about ¢q. An
element of domain(d,) is called a trace of q (from ¢§), and henceforth, we write
traces(q) interchangably with domain(d,).

2.1 Satisfaction and Traces

Given a set A of labels, the set @5 of (A-modal) formulas ¢ is generated

o = T|=p|pA¢ | {a)e

from a tautology T, negation —, conjunction A, and modal operators (a) with
labels a € A (Hennessy and Milner 1985). We interpret a formula ¢ € ®a relative
to an A-deterministic system 0 : Q x A — @ and state g € () via a satisfaction
relation |= in the usual way, with (keeping 0 implicit in the background)

¢ =T,
‘not’ -
¢ -p < motql e
‘and’ A
¢ EeNg = qEpandql ¢
and the accessibility relation {(q,d4(a)) | ¢ € @Q and a € domain(d,)} for (a)
q E (a)¢ <= ac domain(d,;) and d,(a) = ¢

It is not difficult to see that the set

Da(q) == {p€Palq = v}

of formulas |=-satisfied by ¢ depends precisely on domain(d,). That is, recalling
that traces(q) is domain(é,), the following conditions, (a) and (b), are equivalent
for all states ¢,¢ € Q.

tim.fernando@cs.tcd.ie

24 T. Fernando
(a) traces(q) = traces(q’)
(b) Palq) = Palq’)

Let us write ¢ ~ ¢’ if (a), or equivalently (b), holds,®> and pronounce ~ trace
equivalence.

2.2 Identity of Indiscernibles and states as Languages

Identity of indiscernibles (also known as Leibniz’s law, and mentioned in Osswald
1999, invoking Quine) can be understood against the set A of attributes as the
requirement on ¢ that distinct pairs ¢, ¢’ of states (in Q) not be trace equivalent

¢#£q¢ = q+q.

Basing discernibility on formulas ¢ € ®a, we say ¢ differentiates q from ¢’ if
q E ¢ but not ¢ E . It follows that

¢ differentiates ¢ from ¢ <= - differentiates ¢’ from ¢
and
q~q <= mnoformulain @, differentiates q from¢’.

We can replace formulas by attributes and make differentiation symmetric, by
agreeing that a label a differentiates q from ¢’ if (exactly) one of the following
holds

(i) a € traces(q) — traces(q")
(ii) a € traces(q') — traces(q)
(iii) a € traces(q) N traces(q’) and Pa(dq(a)) # Pa(dy(a))

In the case of (i) and (ii), we can see ¢ ¢ already at a, whereas (iii) digs
deeper. Two other equivalent ways to say a differentiates ¢ from ¢’ are (a) and

(b) below.

(a) a is a prefix of a string in the symmetric difference of trace sets
(traces(q) U traces(q')) — (traces(q) N traces(q'))

(b) there exists ¢ € ®a such that the formula (a)y differentiates either ¢ from
q' or ¢ from ¢

The notion of an attribute a € A differentiating g from ¢’ generalizes straight-
forwardly to a string ay - - -a, € AT differentiating ¢ from ¢'.

In fact, if we reduce a state ¢ to the language traces(q), the notions of differ-
entiation above link up smoothly with derivatives of languages (Brzozowski 1964;

3 Readers familiar with bisimulations will note that ~ is the largest bisimulation
(determinism being an extreme form of image-finiteness; Hennessy and Milner 1985).

tim.fernando@cs.tcd.ie

Types from Frames as Finite Automata 25

Conway 1971; Rutten 1998, among others). Given a language L and a string s,
the s-derivative of L is the set

Ly := {s|ss’elL}

obtained from strings in L that begin with s, by stripping s off. Observe that
for all ¢ € Q and s € traces(q), if L = traces(q) then the s-derivative of L
corresponds to the s-component §,(s) of g

Ly = traces(d4(s))

and L decomposes into its components

L =e+) aL, (6)

acA

The fact that e belongs to traces(q) reflects prefix-closure. More precisely, a
language L is said to be prefiz-closed if s € L whenever sa € L. That is, L is
prefix-closed iff prefiz(L) C L, where the set prefiz(L) of prefixes in L

prefir(L) := {s | Ls # 0}

consists of all strings that induce non-empty derivatives. For any non-empty
prefix-closed language L, we can form a deterministic system ¢ over the set

(L, |seL}

of s-derivatives of L, for s € L, including € for L. = L = traces(L), where
domain(6) is defined to be {(Ls, a) | sa € L} with

0(Ls,a) := Lgq whenever sa € L.

But what about languages that are not prefix-closed? Without the assump-
tion that L is prefix-closed, we must adjust Eq. (6) to

L = o(L) + ZaLa

a€A

with € replaced by) in case € € L, using

e ifee L
o(L) = {@ otherwise

(called the constant part or output of L in Conway 1971, page 41). Now, the
chain of equivalences
aj--rap €L = ay---ap, €L, < -+ & €€ L4 ..q

n

means that L is accepted by the automaton with

tim.fernando@cs.tcd.ie

26 T. Fernando

(i) all s-derivatives of L as states (whether or not s € prefiz(L))
Q = {Ls|seA"}

(ii) s-derivatives Ls for s € L as final (accepting) states
(iii) transitions forming a total function @ x A — @ mapping (Ls,a) to L,

and initial state L. = L (e.g., Rutten 1998).

An alternative approach out of prefix closure (from deterministic systems) is
to define for any label a € A and language L C A*, the a-coderivative of L to
be the set

oL == {s]|sa€lL}

of strings that, with a attached at the end, belong to L. Observe that the a-
coderivative of a prefix-closed language is not necessarily prefix-closed (in con-
trast to s-derivatives). Furthermore,

Fact 1. FEwvery language is the coderivative of a prefix-closed language.

Fact 1 is easy to establish: given a language L, attach a symbol a not occurring
in L to the end of L, and form prefiz(La) before taking the a-coderivative

oprefic(La) = L.

An a-coderivative effectively builds in a notion of final state (lacking in a deter-
ministic system §) around not o(L) but o(L,), checking if € is in L,, rather than
L (i.e., a € L, rather than € € L). The idea of capturing a type of state through
a label (such as a for a-coderivatives) is developed further next.

3 From Attribute Values to Types and Particulars

An A-deterministic system 6 : Q X A — (@ assigns each state g € QQ a set

0(q) = {(a,0(q,a)) | a € AN traces(q)}

of attribute value pairs (a,q’) with values ¢’ that can themselves be thought as
sets & (¢") of attribute values pairs. Much the same points in Sect. 2 could be made
appealing to the modal logic(s) of attribute value structures (Blackburn 1993)
instead of Hennessy and Milner (1985). But is the reduction of ¢ to its trace set,
traces(q), compatible with intuitions about attribute value structures? Let us
call a state g d-null if 6(¢) = 0; i.e., traces(q) = {€}. Reducing a d-null state ¢ to
traces(q) = {€} lumps all 6-null states into one — which is problematic if distinct
atomic values are treated as d-null (Blackburn 1993). But what if equality with
a fixed value were to count as a discerning attribute? Let us define a state ¢ to
be d-marked if there is a label a, € A such that for all ¢’ € @,

aq € traces(¢') <= q=¢.

tim.fernando@cs.tcd.ie

Types from Frames as Finite Automata 27

Clearly, a 6-marked state ¢ is trace equivalent only to itself. If a state ¢ is not
d-marked, we can introduce a fresh label a, (not in A) and form the (AU {ay})-
deterministic system

olg] = dU{(q,aq,9)}

with ¢ 0[g]-marked. To avoid infinite trace sets tracesiq(q) 2 ag* (from loops
(¢,aq,q)), we can instead fix a 6-null (or fresh) state \/ and mark ¢ in

0lg; V] = dU (g a9, V)]

Marking a state is an extreme way to impose Leibniz’s law. A more moderate
alternative described below introduces types over states, adding constraints to
pick out particulars.

3.1 Type-Attribute Specifications and Containment

To differentiate states in a set) through subsets @; C Q) given by typest € T
is to define a binary relation v C @ x T (known in Kripke semantics as a 7-
valuation) such that for all g € Q and t € T

v(g,t) <= q€Q.

We can incorporate v into d : Q x A — @) by adding a fresh attribute a;, for each
t €T, to A for the expanded attribute set

Ar = AU{a; |t €T}
and forming either the Ap-deterministic system
o[v] == dU{(q,at,q) | t € T and v(q,t)}
or, given a d-null state / outside (J,c, @¢, the Ap-deterministic system

d[v,v] = dU{(q,at,v/) |t € T and v(q,t)}.

In practice, a type t may be defined from other types, as in (a) below.

smash : T smash = x
(a) t= | AGENT : animate (b) e= | AGENT =y
THEME : concrete THEME = 2

The record e given by (b) is an instance of ¢ just in case z,y and z are instances
of the types T, animate and concrete respectively

e:t < x:7T and y:animate and z: concrete.
It is natural to analyze ¢ in (a) as the modal formula ¢; with three conjuncts

ot = (smash)T A (AGENT)(animate) T A (THEME)(concrete) T

tim.fernando@cs.tcd.ie

28 T. Fernando

(implicitly analyzing T, animate and concrete as T, (animate) T and (animate) T
respectively) and to associate e with the trace set

q(e) = € + smash q(r) + AGENT ¢(y) + THEME q(z)

(given trace sets q(x), q(y) and ¢(z) for x,y and z respectively) for the reduction

e:t <= qle) F ¢
<= animate € q(y) and concrete € q(z).

We can rewrite (a) as the A’-deterministic system
7" := {(t, smash,T), (t, AGENT, animate), (t, THEME, concrete)}
over the attribute set
A’ := {smash, AGENT, THEME}
and state set
T' = {t, T, animate, concrete}

given by types. To apply 7 to a deterministic system § with states given by
tokens of types, the following notion will prove useful. A (T, A, /)-specification
is an Ap-deterministic system 7 : T x Ap — T where y/ € T is 7-null and each
t € T — {4/} is 7-marked, with for all t’ € T,

(t',a¢) € domain(t) < t=1t

(the intuition being to express a type t as the modal formula (a;)T). For 7" given
above, we can form the (77 U {4/}, A’, \/)-specification

7 U {(z,a.,) | €T}

Let us agree that a set ¥ of modal formulas is true in ¢ if every formula in ¥ is
satisfied, relative to d, by every d-state. The content of a (T, A, \/)-specification
T is given by the set

spec(t) = {{ay) T D {(a)T | (t,a,4/) €T} U
{{a;)T D {a){ay)T | (t,a,t') € T and t' # /}
of formulas true in an Ap-deterministic system 0 precisely if for every (¢,a,t’) € 7

and g € Q,
a € traces(q) and d(q,a) € Qu

where for every t € T' — {\/}, Q¢ is {q € Q | a; € traces(q)} and Q,, = Q. We

can express membership in a trace set

s € traces(q) <= q s (s)T

tim.fernando@cs.tcd.ie

Types from Frames as Finite Automata 29

through formulas (s)¢ defined by induction on s:

(o = ¢ and (as)p = (a)(s)y

so that for aias---a, € A",

(@102 - -an)p = (a1)(az) - {an)ep.
Given a language L, let us say q d-contains L if L C traces(q).

Fact 2. For any (T, A,/)-specification T, spec(T) is true in an Ap-deterministic
system 0 : QX Ar — Q iff for everyt € T—{\/} and q € Q, q §-contains trace,(t)
whenever q 0-contains {a}.

Under certain assumptions, trace,(t) is finite. More specifically, let Ty = ()
and for any integer n > 0,

Toy1 = {teT|mNn ({t} xAXT)CT xAXT,}
(making Ty = {4/}). For each t € T,,, trace,(t) is finite provided
(x) forallt € T, {a € A | (t,a) € domain(T)} is finite.
Although (x) and T' C |J,, T}, can be expected of record types in Cooper (2012),
notice that if (¢,a,t) € 7 then t € |J,, T, and a* C trace,(t).
3.2 Terminal Attributes, ¢ and Subtypes

Fact 2 reduces a (T, A,+/)-specification 7 to its trace sets, trace,(t) for t €
T — {/}, unwinding spec(7) to

()T > N\ ()T (7)

s€trace,(t)

for t € T — {\/} (where the conjunction might be infinite). The converse of (7)
follows from a; € trace-(t). (7) has the form

Yt O Pi[r]

with antecedent (a;) T construed as a formula ¢; representing ¢, and consequent
Nsctrace.) (s)T as a formula ¢y[-) representing 7’s conception of t. The attribute
a; often has the following property. Given an A-deterministic system ¢, let us
say an attribute a € A is d-terminal if the set

Tmia(a) := {—(sab)T | s € A* and b € A}

of formulas is true in 6 — i.e., for every d-state ¢, string s € A* and attribute
be A, sab ¢ traces(q). It is natural to associate a frame such as

tim.fernando@cs.tcd.ie

30 T. Fernando

THEME
AGENT

with an A-deterministic system § in which labels on nodes (i.e., John, smash
and window) are d-terminal, while labels on arcs (AGENT, THEME) are not.

Next, we quantify away the strings s mentioned in Tmla(a) for a useful
modal operator &. Given an A-deterministic system 0 : Q x A — (), and states
¢4 € Q, we say ¢ is a d-component of q and write ¢ ~5 ¢, if ¢’ is §4(s) for
some string s € A*. With the relation ~5, we extend satisfaction |= to formulas
O

¢ ECp = () qg~sqd and g E ¢

making ©y essentially the infinitary disjunction \/ _a.(s)¢ and its dual Op :=
—O= the infinitary conjunction A\ a.[s]¢ (Where [s]¢ := —(s)—p). The exten-
sion preserves invariance under trace equivalence ~

whenever ¢ ~ ¢’ and ¢ = o, ¢ E .

That is, for the purpose of =, we can reduce a state ¢ to its trace set traces(q).
Accordingly, we collect all non-empty prefix-closed subsets of A* in

Mod(A) = {prefiz(LU{e}) | L C A"}

(where “Mod” is for models) with the understanding that the transitions ¢
between ¢,q" € Mod(A) are given by derivatives

§(ga) =¢ = q.=¢".

Given a set ¥ of modal formulas over A, we form the subset of Mod(A) satisfying
every formula of ¥

Moda(¥) = {q € Mod(A) | Vg € W) q E ¢}

and say ¥ is A-equivalent to a set ¥’ of modal formulas over A if they have the
same models

V=AW <= Moda(¥)= Moda(¥").
¥ can be strengthened to

Oa(¥) = {—(s)=p | s€ A" and p € ¥}
=a {D¢ | pe?}

requiring that every formula in ¥ holds in all components. Clearly,

TmlA(a) =A DA({—|<ab>T ’ be A})

tim.fernando@cs.tcd.ie

Types from Frames as Finite Automata 31

Given representations ¢; and ¢, of types t and u, we can express the subtyping
t C u as the set

HCw = {(s)(pr A pu) | 5 € A"}

of modal formulas denying the existence of components of type t but not u. Then
‘t C u’ requires ¢y D @, of all components

TE U =a D(th D) Qou)

bringing us back to the implication (7) above of the form ¢; D ;. Inasmuch
as an attribute a is represented by the formula (a) T, we can speak of a being
contained in an attribute b, a C b, when asserting

O({a)T D (b)T).

3.3 Typings and Particulars

We can reduce a typing p : t to a subtyping through the equivalence
p:t < {p}Ct

assuming we can make sense of the singleton type {p}. Given an A-deterministic
system 0 and a d-state ¢, let us call a formula ¢ an (A, g)-nominal if ¢ satisfies
the set

Noma() == {~((s) (e A{s)T) A (") A=(s)T)) | 5,5, " € A%}
= {7(O(p A (s)T) A OlpA{s)T)) | s € A%}

of formulas that together say any two d-components that J-satisfy ¢ d-contain
the same languages over A. We can rephrase Noma () as implications

Noma(p) =a {C(@A(s)T) D O(p D (s)T) | s € A"}
=a {CleAY)DO(p DY) | € Pa}

making §-components that J-satisfy ¢ @a-indistinguishable.*

Fact 3. Let § be an A-deterministic system, q be a 0-state and ¢ be an (A, q)-
nominal.

(i) For all §-components q' and q" of q,

¢ = ¢and ¢’ = ¢ implies ¢ ~q".

4 Noma(y) does the work of the scheme (Nomy) for nominals given in Blackburn
(1993), just as Tmla(a) is analogous to the scheme (Term) there for instantiating
atomic information at terminal nodes.

tim.fernando@cs.tcd.ie

32 T. Fernando

(i) There is a §-component of q that 0-satisfies ¢ and
q = OlpN)

iff every d-component of q satisfies ¢ O ¥ and some d-component of q -
satisfies
¢ | O(@29) A Cp.

Now, an (A, q)-particular is an (A,qg)-nominal ¢ such that ¢ has a o-
component that J-satisfies ¢ — i.e., in addition to all formulas in Noma(p),
q satisfies Op. We say (A, q) verifies p : t if

@ipy is an (A, g)-particular and ¢ = O(@gp1 D ©t).

Part (ii) of Fact 3 says this is equivalent to ¢y,) being an (A, g)-nominal and
q having a d-component that J-satisfies o,y A . Note that if ¢ is d-marked
by a, then (a,)T is an (A,¢')-nominal for all §-states ¢’. The weaker notion
of an (A, g)-nominal ¢ has the advantage over (a,)T that the set Noma(yp) of
modal formulas allows the modal formulas satisfied by a state J-satisfying ¢y,
to vary with 0. We can use the set Noma(p) U {Op} to lift the notion of an
(A, q)-particular to that of a (A, ¥)-particular, given a set ¥ of modal formulas,
requiring that Noma () U { O} follow from ¥ in that

Moda(¥) C Moda(Noma(p) U{<p}).

Having described how a particular can be understood as a formula (or
attribute a via (a)T), it is perhaps worth emphasizing that we need not under-
stand particulars as formulas (or attributes). In the present context, particulars
are first and foremost J-states in an A-deterministic system d. For any d-state ¢,
we can speak of types to which ¢ belongs without introducing an attribute that
(relative to an extension of §) represents q. What is important is that we build
into A all the structure in particulars we wish to analyze.

4 Finite Approximations and Signatures

Throughout this section, we shall work with a set A of labels that is large enough
so that we may assume trace equivalence ~ is equality. Identity of indiscernibles
in an A-deterministic system ¢ reduces a state g to traces(q), allowing us to
identify a state with a prefix-closed, non-empty subset of A*. As huge as A can
be, we can form the set Fin(A) of finite subsets of A and use the equality

A* = U o

YeFin(A)

® By contrast, for a language ¢ over A, all formulas in the set
{0{ag) T D () TA(s)T)) | s€ qand s € A" — q}

must be satisfied for a4 to mark gq.

tim.fernando@cs.tcd.ie

Types from Frames as Finite Automata 33

to approach a language L C A* via its intersections L N X* (for X' € Fin(A))
L= |J @nx
YeFin(A)

at the cost of bounding discernibility to X. For X € Fin(A) U {A}, we define an
X-state to be a non-empty, prefix-closed subset ¢ of X* on which transitions are
given by derivatives

d(q,a) =q, fora € ANg

making J,(s) = ¢s for s € q. Henceforth, we put the notation ¢ aside, but track
the parameter X, which we set to a finite subset X' of A to pick out what is of
particular interest.

Two subsections make up the present section. The first illustrates how the set
A of labels can explode; the second how, after this explosion, to keep a grip on
satisfaction |= of formulas. We associate the formulas with sets X € Fin(A)U{A},
defining sen(X) to be the set of formulas generated from ¢ € X and Y C X
according to

p = T|-p|len¢ |{ae]|Dye.

We interpret these formulas over A-states ¢, treating T, = and A as usual, and
setting

g F(a)p <= acqgandq, EF ¢
which generalizes to strings s € X*
g (s)p < s€qandg ¢
(recalling that (a1)--- (an)@ is (a1) - - - (an)p). As for Oy, we put
¢FOvp < (VseqnNY') g =g

relativizing O to Y for reasons that will become clear below. When O appears
with no subscript, it is understood to carry the subscript A; i.e., O is Oa. Also,
for s € A*, we will often shorten the formula (s)T to s, writing, for example, —a
for =(a)T.

4.1 Labels Refining Partitions

For any X' € Fin(A) and Y-state ¢, we can formulate the Myhill-Nerode equiv-
alence ~, between strings s,s’ € X* with the same extensions in ¢

sy, 8 = (YweX*) (sweq < sweq)
(e.g., Hopcroft and Ullman 1979) in terms of derivatives

/

sy s = g =gy

tim.fernando@cs.tcd.ie

34 T. Fernando

from which it follows that ¢ is regular iff its set

{gs | s € X"}

of derivatives is finite. There are strict bounds on what we can discern with X
and Y-states. For example, the regular language

¢ = FATHER® + FATHER man

over Y/ = {FATHER, man is a model of
man A O(man DO (FATHER)man)

(i.e., ¢’ is a token of the record type man given by eq(man)= {(FATHER, man)}),
with derivatives

q if s € FATHER"

q. = { {€} if s € FATHER*man
() otherwise

so that according to the definitions from the previous section (with § given by
derivatives of ¢'), the X'-state {e} is null, and the label man is terminal. The
X -state ¢’ does not differentiate between distinct tokens of man, although it is
easy enough to introduce additional labels and formulas

O (man D (John V Peter V Otherman:john,Peter)) (8)

with
O (John O —(FATHER)John)

unless say, John could apply to more than one particular, as suggested by
O (John D (Johnl V John2V Other jopn:12))-

Generalizing line (8) above, we can refine a label a to a finite partition from a
set X € Fin(A), asserting

Partition,(X) := 0O (a D Uniq(X))

where Uniq(X) picks out exactly one label in X

Uniq(X) = \/(a/\ /\ —a’)).

acXy a'€eX¥—{a}

Co-occurrence restrictions on a set Y of alternatives

Arx) = o A A\ -aArd)

acX a’'e¥X—{a}

(declaring any pair to be incompatible) is equivalent to the conjunction

/\ Partitiong(X).
acX

tim.fernando@cs.tcd.ie

Types from Frames as Finite Automata 35

And if the labels in Y are understood to specify components, we might say a
label marks a X-atom if it rules out a’-components for a’ € X

Atomy(a) := 0O(aD /\ —a')
a'eXy
<= Partition,(X U {a}).

That said, we arrived at Partition,(X) from man above through the example
Y = {John, Peter, Otherman:iohn, Peter} Of labels that differentiate between
tokens of man rather than (as in the case of the record label FATHER or AGENT
or THEME) specifying components. We can extend the example

Partitionyan ({ John, Peter, Other man: john, Peter })

through a function f : T'— Fin(A) from some finite set T" of labels (representing
types) such that for a € T, f(a) outlines a partition of a (just as {John, Peter,
Otherman:John,Peter } does for man). An f-token is then an A-state ¢ such that

q = /\ Partition,(f(a))

a€eT

making (as it were) a choice from f(a), for each a € T.

4.2 Reducts for Satisfaction

Given a string s € A* and a set X € Fin(A), the longest prefix of s that belongs
to X* is computed by the function 7y : A* — X* defined by 7x(€) := € and

ary(s) ifae X
€ otherwise.

x(as) = {
The X -reduct of a language ¢ C A* is the image of ¢ under 7y
g1 X = {ms(s) | s€q} .
If ¢ is an A-state, then its Y-reduct, ¢ [X, is a X-state and is just the intersection

g N X* with X*. Y-reducts are interesting because satisfaction = of formulas in
sen(X) can be reduced to them.

Fact 4. For every X € Fin(A), ¢ € sen(X) and A-state q,

I E¢ = qlX Eyp

and if, moreover, s € q[X, then

g F (s <= (q¢1X)s F o (9)

tim.fernando@cs.tcd.ie

36 T. Fernando

Fact 4 is proved by a routine induction on ¢ € sen(X). Were sen(X) closed
under O = Op, Fact 4 would fail for infinite A; hence, the relativized operators
Oy for Y C X in sen(X).

There is structure lurking around Fact 4 that is most conveniently described
in category-theoretic terms. For X € Fin(A), let Q(X') be the category with

— MY -states g as objects.
— pairs (g, s) such that s € ¢ as morphisms from ¢ to g5, composing by concate-
nating strings

(@,8) 5 (g5,8") = (g,55")
with identities (g, €).

To turn @ into a functor from Fin(A)°? (with morphisms (X', ') such that
Y C X' € Fin(A)) to the category Cat of small categories, we map a Fin(A)P-
morphism (X’, X)) to the functor Q(X’, %) : Q(X') — Q(X) sending a X’-state
¢’ to the Y-state ¢’ | X, and the Q(X")-morphism (¢’, s’) to the Q(X)-morphism
(¢ 1 X, 75(s")). The Grothendieck construction for @ is the category [@ where

— objects are pairs (X, ¢) such that X € Fin(A) and ¢ is a X-state.

— morphisms from (X' ¢) to (X, q) are pairs (X', X),(¢",s)) of Fin(A)°P-
morphisms (X/; YY) and Q(X)-morphisms (¢”,s) such that ¢ = ¢’ | X and
q=qq.-

(e.g., Tarlecki et al. 1991). [@ integrates the different categories Q(X) (for

XY € Fin(A)), lifting a Q(X)-morphism (g, s) to a ([@)-morphism from (X’,¢’)

to (X, qs) whenever X C Y/ and ¢’ [X = ¢.

Given a small category C, let us write |C| for the set of objects of C. Thus,
for X € Fin(A), |Q(X)| is the set

IQ(X)| = {¢C X" | q+# 0 and qis prefix—closed }

of Y-states. Next, for (X, q) € | [Q|, let Mod(X,q) be the full subcategory of
Q(X) with objects required to have ¢ as a subset

|Mod(%,q)| = {¢' €|Q(X)||q¢Cq}.

That is, |[Mod(X, q)| is the set of X-states ¢’ such that for all s € ¢, ¢’ &= (s)T.
The intuition is that ¢ is a form of record typing over X’ that allows us to simplify
clauses such as

¢ E (s)p <= seqdandq, E ¢ (10)

when s € ¢ C ¢'. The second conjunct in the righthand side of (10), ¢, &= ¢,
presupposes the first conjunct, s € ¢’. We can lift that presupposition out of (10)
by asserting that whenever s € ¢ and ¢ C ¢/,

¢ E(s)p <= dq Fe¢

tim.fernando@cs.tcd.ie

Types from Frames as Finite Automata 37

This comes close to the equivalence (9) in Fact 4, except that Y-reducts are
missing. These reducts appear once we vary X, and step from Q(X) to [Q.
Taking this step, we turn the categories Mod(X,q) to a functor Mod from [Q
to Cat, mapping a [Q-morphism o = (X, X), (¢' [X, s)) from (X’,¢’) to (X, q)
to the functor

Mod(c) : Mod(X',q") — Mod(X,q)

sending ¢" € |Mod(X',q")| to the s-derivative of its X-reduct, (¢” [X)s, and a
Mod (X', q')-morphism (¢, s") to the Mod(X, q¢)-morphism (¢ | X, 7x(s")).

The syntactic counterpart of Q(X) is sen(X'), which we turn into a functor
sen matching Mod. A basic insight from Goguen and Burstall (1992) informing
the present approach is the importance of a category Sign of signatures which
the functor sen maps to the category Set of sets (and functions) and which
Mod maps contravariantly to Cat. The definition of Mod above suggests that
Sign’ is [Q.° A [Q-morphism from [Q-objects (X,¢') to (X,q) is deter-
mined uniquely by a string s € ¢’ [X such that

q=(¢'1X)s and X C 3. (11)

Let (X,q) = (X',q') abbreviate the conjunction (11), which holds precisely if
(X", %), (¢ 1 X,5)) is a [@-morphism from (X', ¢’) to (¥,q). Now for (X, q) €
| [Q. let

sen(X,q) = sen(X)
(ignoring q), and when (X, q) > (X', ¢), let
sen(o) : sen(X) — sen(X)

send ¢ € sen(X) to (s)¢ € sen(X’). To see that an institution arises from
restricting = to [Mod (X, q)| x sen(X), for (¥,q) € | [Q|, it remains to check
the satisfaction condition:

whenever (X,q) > (X',¢') and ¢" € |Mod(X',q')| and ¢ € sen(X),

" E (s = ("1Y)s E ¢

This follows from Fact 4 above, as s must be in ¢/ [X and thus also in ¢” | X.

® That said, we might refine Sign, requiring of a signature (X, q) that ¢ be a regular
language. For this, it suffices to replace [@Q by [R where R : Fin(A)°? — Cat is
the subfunctor of @ such that R(X) is the full subcategory of Q(X) with objects
regular languages. We can make this refinement without requiring that Y-states in
Mod(X, q) be regular, forming Mod(X, q) from @ (not R).

tim.fernando@cs.tcd.ie

38 T. Fernando

5 Conclusion

A process perspective is presented in Sect.2 that positions frames to the left
of a satisfaction predicate = for Hennessy-Milner logic over a set A of labels
(or, from the perspective of Blackburn 1993, attributes). A is allowed to become
arbitrarily large so that under identity of indiscernibles relative to A, a frame
can be identified with a non-empty prefix-closed language over A. This identi-
fication is tried out in Sect.3 on frames as types and particulars. A handle on
A is provided by its finite subsets X, which are paired with languages ¢ C X*
for signatures (X, q), along which to reduce satisfaction to X-reducts and/or s-
derivatives, for s € ¢ (Fact 4). This plays out themes (mentioned in the introduc-
tion) of “semantics in flux” and “natural languages as collections of resources”
(from Cooper and Ranta) in that, oversimplifying somewhat, s-derivatives spec-
ify transitions, while Y-reducts pick out resources to use. The prominence of
transitions (labeled by A) here contrasts strikingly with a finite-state approach
to events (most recently described in Fernando 2015), where a single string (rep-
resenting a timeline) appears to the left of a satisfaction predicate.” A Y-state
q to the left of |= above offers a choice of strings, any number of which might be
combined with other strings from other X’-states over different alphabets X’. A
combination can be encoded as a string describing a timeline of resources used.
This type/token distinction between languages and strings to the left of satisfac-
tion has a twist; the languages are conceptually prior to the strings representing
timelines, as nonexistent computer programs cannot run. Indeed, a profusion of
alphabets Y and X-states compete to make, in some form or other, a timeline
that has itself a bounded signature (of a different kind). The processes through
which a temporal realm is pieced together from bits of various frames call out
for investigation.

While much remains to be done, let us be clear about what is offered above.
A frame is structured according to strings of labels, allowing the set X' of labels
to vary over finite sets. That variation is tracked by a signature (X, q) picking
out non-empty prefix-closed languages over X' that contain the set ¢ of strings
over . For example, Cooper’s meaning function

AGENT : all

: anitmate(r. AGENT
THEME : all p2 ()

] p1 : smash(r)
ps : concrete(r. THEME)

is approximated by the signature (X, q) as the language L, where

Y = {AGENT, THEME, smash, animate, concrete}
g = {AGENT, THEME, €}
L = qU {smash, AGENT animate, THEME concrete}.

Further constraints can be imposed through formulas built with Boolean con-
nectives and modal operators dependent on X' — for instance, Nom({(a)T). The

" This is formulated as an institution in Fernando (2014).

tim.fernando@cs.tcd.ie

Types from Frames as Finite Automata 39

possibility of expanding ' to a larger set makes the notion of identity as Y-
indiscernibility open-ended, and X' a bounded but refinable level of granularity.
A measure of satisfaction is taken in a finite-state calculus with, as Conway
(1971) puts it, Taylor series

L = o(L)+ Z aL,

(from derivatives L,), and a Grothendieck signature

Sign = /Q.

Acknowledgements. My thanks to Robin Cooper for discussions, to Glyn Morrill
for help with presenting this paper at Formal Grammar 2015, and to two referees for
comments and questions.

References

Barsalou, L.: Perceptual symbol systems. Behav. Brain Sci. 22, 577-660 (1999)

Blackburn, P.: Modal logic and attribute value structures. In: de Rijke, M. (ed.) Dia-
monds and Defaults. Synthese Library, vol. 229, pp. 19-65. Springer, Netherlands
(1993)

Brzozowski, J.: Derivatives of regular expressions. J. ACM 11(4), 481-494 (1964)

Conway, J.H.: Regular Algebra and Finite Machines. Chapman and Hall, London
(1971)

Cooper, R.: Type theory and semantics in flux. In: Philosophy of Linguistics, pp. 271—
323. North-Holland (2012)

Cooper, R., Ranta, A.: Natural languages as collections of resources. In: Language
in Flux: Dialogue Coordination, Language Variation, Change and Evolution, pp.
109-120. College Publications, London (2008)

Davidson, D.: The logical form of action sentences. In: The Logic of Decision and
Action, pp. 81-95. University of Pittsburgh Press (1967)

Fernando, T.: Incremental semantic scales by strings. In: Proceedings of EACL 2014
Workshop on Type Theory and Natural Language Semantics, pp. 63-71. ACL (2014)

Fernando, T.: The semantics of tense and aspect: a finite-state perspective. In: Lappin,
S., Fox, C. (eds.) The Handbook of Contemporary Semantic Theory, 2nd edn. Wiley,
New York (2015)

Fillmore, C.: Frame semantics. In: Linguistics in the Morning Calm, pp. 111-137.
Hanshin Publishing Co., Seoul (1982)

Goguen, J., Burstall, R.: Institutions: abstract model theory for specification and pro-
gramming. J. ACM 39(1), 95-146 (1992)

Hennessy, M., Milner, R.: Algebraic laws for non-determinism and concurrency. J. ACM
32(1), 137-161 (1985)

Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages and Computa-
tion. Addison-Wesley, Reading (1979)

Kallmeyer, L., Osswald, R.: Syntax-driven semantic frame composition in lexicalized
tree adjoining grammars. J. Lang. Model. 1(2), 267-330 (2013)

tim.fernando@cs.tcd.ie

40 T. Fernando

Lobner, S.: Evidence for frames from human language. In: Gamerschlag, T., Gerland,
D., Osswald, R., Petersen, W. (eds.) Frames and Concept Types. Studies in Linguis-
tics and Philosophy, vol. 94, pp. 23-67. Springer, Switzerland (2014)

Muskens, R.: Data semantics and linguistic semantics. In: The Dynamic, Inquisitive,
and Visionary Life of ¢,7¢, and ¢¢: A Festschrift for Jeroen Groenendijk, Martin
Stokhof, and Frank Veltman, pp. 175-183. Amsterdam (2013)

Osswald, R.: Semantics for attribute-value theories. In: Proceedings of Twelfth Ams-
terdam Colloquium, pp. 199-204. Amsterdam (1999)

Petersen, W., Osswald, T.: Concept composition in frames: focusing on genitive con-
structions. In: Gamerschlag, T., Gerland, D., Osswald, R., Petersen, W. (eds.)
Frames and Concept Types. Studies in Linguistics and Philosophy, vol. 94, pp. 243—
266. Springer, Switzerland (2014)

Rutten, J.J.M.M.: Automata and coinduction (an exercise in coalgebra). In: Sangiorgi,
D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 194-218. Springer,
Heidelberg (1998)

Tarlecki, A., Burstall, R., Goguen, J.: Some fundamental algebraic tools for the seman-
tics of computation: Part 3. indexed categories. Theoret. Comput. Sci. 91(2), 239—
264 (1991)

Veltman, F.: Logics for conditionals. Ph.D. dissertation, University of Amsterdam

(1985)

tim.fernando@cs.tcd.ie

