
1

University of Dublin
Trinity College

Index Structures for Files

Static Indexes

Static Indexes 2

Why do we index
in the physical world?

The last few pages of many books contain an index
Such an index is a table containing a list of topics (keys)
and numbers of pages where the topics can be found
(reference fields).
All indexes are based on the same concepts - keys and
reference fields
Consider what would happen if we tried to binary search
the words in a book

• Sorting the words would have a bad effect on the meaning of the
book

• Adding an index allows us to impose an order on a file without
actually re-arranging it

2

Static Indexes 3

We want to find some books in a library. We want to
locate books by a specific author, by their title or by
their subject area.
One way to organise the books so we can do this is to
have 3 separate copies of each book, and three
separate libraries.
All the books in one library would be arranged (sorted or
hashed) according to author, another would arrange
them by subject and a third by title.

Why do we index
in the physical world?

Static Indexes 4

Why do we index
in the physical world?

A better system is to use a card catalogue
• A set of three indexed, each based on a different key field
• All of the indexes use the same catalogue number as a reference

field
• Each index allows us to efficiently search a file based on a different

data we are looking for
• An index may be arranged as a sorted list which can be binary

searched, a hash table, or a tree structure of the type we'll look at
in the coming lectures

3

Static Indexes 5

Indexing files in IT?
Indexes are auxiliary access structures

• Speed up retrieval of records in response to certain search
conditions

• Any field can be used to create an index and multiple indexes on
different fields can be created

The index is separate from the main file and can be
created and destroyed without affecting the main file.

• The index must be updated when records are inserted or deleted
to/from the main file.

The issue is how to organise the index records for
efficient access and ease of maintenance.

Static Indexes 6

Advantages over Hashing
Multiple indexes can be built for the same file, allowing
for efficient access over multiple fields

4

Static Indexes 7

Static/Dynamic Indexes
Static Index structures

• Static indexes are of fixed size and structure, though their contents
may change.

• As we will see requires periodic reorganisation
• IBM’s ISAM (Indexed Sequential Access Method) uses static index

structures
• Covered in these lectures

Dynamic Index structures
• Dynamic indexes change shape gradually in order to preserve

efficiency.
• Implemented as search trees (e.g. B-Trees, AVL Trees etc.)
• Covered later in course

Static Indexes 8

Dense Index
Index record appears for every search key value

5

Static Indexes 9

Sparse Index
Sparse Index: contains index records for only some
search-key values.

• Applicable when records are sequentially ordered on search-key

To locate a record with search-key value K we:
• Find index record with largest search-key value < K
• Search file sequentially starting at the record to which the index

record points

Less space and less maintenance overhead for
insertions and deletions.
Generally slower than dense index for locating records.
Good tradeoff: sparse index with an index entry for
every block in file, corresponding to least search-key
value in the block.

Static Indexes 10

Sparse Index

6

Static Indexes 11

A single level index is an auxiliary file that makes it
more efficient to search for a record in the data file
The index is usually specified on one field of the file
One form of an index is a file of entries
<field value, pointer to record> which is ordered by field
value
The index is called an access path on the field
The index file usually occupies considerably less disk
blocks than the data file because its entries are much
smaller
A binary search on the index yields a pointer to the file
record

Single Level Index

Static Indexes 12

Types of Single Level Indexes
Primary Index
Clustering Index
Secondary Index

7

Static Indexes 13

A primary index is an ordered file whose entries are of
fixed length with two fields:

<value of primary key; address of data block>

• The data file is ordered on the primary key field and requires
primary key for each record to be unique/distinct

• Includes one index entry for each block in the data file; the index
entry has the key field value for the first record in the block, which is
called the block anchor

• A similar scheme can be used for the last record in a block

Primary Index

Static Indexes 14

8

Static Indexes 15

Example Performance Gain
Ordered file of r=30000 records
Block size B =1024 bytes
Records Fixed sized and unspaned with record length R=100 bytes
Bfr = B/R = 1024/100 = 10 records per block

Number of blocks needed for file is
b= r/bfr = 30000/10 = 3000 blocks

A binary search on the data file would need approx
log2b = log23000 = 12 block accesses

Static Indexes 16

Example Peformance Gain
Now suppose ordering key V=9bytes long and block pointer P=6bytes long
Size of each index entry Ri = 9+6 = 15 bytes
Blocking factor bfri = 1024/15 = 68 entries per block
Total number of entries ri= total number of blocks in data file =
3000
Number of blocks needed for index is

bi= ri/bfri = 3000/68 = 45 blocks
A binary search of index file would need

log2bi = log245 = 6 block accesses
PLUS one block access into the data file itself using the pointer

Therefore 7 block accesses needed

9

Static Indexes 17

Problem with Primary Indexes
Insertion or deletion of record in ordered data file
involves not only making space or deleting space in the
data file
… but also changing the index entries to reflect the new
situation

Possible solution
• Use deletion markers for records
• Maintain linked list of overflow records for each block in the data file
• Reorganise periodically

Static Indexes 18

A clustering index is an ordered file whose entries are of
fixed length with two fields:

<value of clustering key; address of data block>
• The data file is ordered on the clustering field but the clustering key

does not have distinct value for each record
• Index includes one index entry for each distinct value of the

clustering field; the index entry points to the first data block that
contains records with that field value

Insertion/Deletion still problematic due to ordering of
main data file

• To solve it is common to reserve a block or contiguous blocks (see
diagram Separate Block Clustering)

Clustering Index

10

Static Indexes 19

Static Indexes 20

11

University of Dublin
Trinity College

Index Structures for Files

Static Indexes 22

A secondary index is an ordered file whose entries are
of fixed length with two fields:

<value of key; address of data block or record pointer>
• The secondary key is some nonordering field of the data file

Frequently used to facilitate query processing
For example say we know that queries related to genre
are frequent

• SELECT * FROM movie WHERE genre=“comedy”;

We can ask the DBMS to create a secondary index on
genre by issuing the following SQL command

• CREATE INDEX Gindex ON Movie(genre);

Secondary Index

12

Static Indexes 23

Secondary Index
where unordering field is a key

If the unordering field has distinct values (i.e. could be
considered a secondary key) then

• One index entry for each record in the data file
• Pointer points to the block in which the record is stored or to the

record itself

Index entries are still ordered so can do binary search
but will need to know if pointer is a record pointer or a
block pointer in order to process search correctly

Static Indexes 24

Secondary Index
of block pointers and

secondary key type

13

Static Indexes 25

Option #1
• Include several index entries with the same first value, one for each

record. This is a dense index

Option #2
• Have variable length index entries, with a repeating field for the

pointer. For example <K(i),P(i,1)… P(i,k)>

For these two options the binary search algo needs
modification

Secondary Index
where unordering field is not a key

Static Indexes 26

Option #3

• Keep one index entry per value of fixed length with a pointer to a
block of pointers, that is add a level of indirection

• If pointers cannot fit in the allocated space for the block of pointers
use an overflow or linked list approach to cope

Secondary Index
where unordering field is not a key

14

Static Indexes 27

Secondary Index
of record pointers and

nonkey type using Option#3

Static Indexes 28

Performance
Generally Secondary Indexes leads to more storage
space and longer search time (due to larger number of
entries) than for primary indexes
However for an arbitrary record than improvement
greater as otherwise we would have to do a linear
search!

15

Static Indexes 29

Consider Earlier Example
Recap

• r = 30000 fixed length (100bytes) records of block size B=1024bytes
• File has 3000 blocks as we already calculated

Linear search would require b/2=3000/2=1500 block accesses
Suppose a secondary index on a field of V=9bytes
Thus Ri = 9+6 = 15bytes
bfri = B/Ri = 1024/15 = 68 entries per block
Number of index entries ri = number of records = 30,000
Number of blocks need is bi= ri/bfri = 30000/68 = 442 blocks
A binary search of index file would need

log2bi = log2442 = 9 block accesses
PLUS one block access into the data file itself using the pointer

Therefore 10 block accesses as oppose to 1500 block accesses

Static Indexes 30

Another way of organising
Secondary Index: Inverted File

The inverted file contains one index entry for each value
of the attribute in question. The entry contains a list of
pointers to every record with that attribute value.

For example, secondary key of car manufacturer
Audi 11
BMW 3 9 16 17
Ford 1 4 5 7 10 14 18 19 20
Honda 15
VW 2 6 8 12 13

16

Static Indexes 31

Why called an “inverted file”?
Consider the main file as a function which maps
addresses to (attribute, value) pairs :

• file (address) -> (attribute1, value), (attribute2, value), ...

Inverted files are functionally the inverse of the main file
• inv_file (attribute, value) -> address, address, ...

A number of attributes can be inverted. Degree of
inversion of a file is the percentage of attributes indexed
in this way. 100% inversion is when every attribute is
indexed.
Queries on multiple keys need not refer to the main file
if all the keys in the query are indexed.

• Consider a query for the record numbers of "green Fords" if both
colour and manufacturer are indexed.

Static Indexes 32

Yet another way of organising
Secondary Index: Threaded Files

Each record has a pointer field for each indexed
secondary key value. This field is used to link (thread)
all records with the same attribute value for that key.
The threaded file has a number of separate threads
running through it.
The index then contains a pointer to the head of each
list.
To find all records with a particular secondary attribute
value, find that value in the index, and follow the thread.

17

Static Indexes 33

Example Retrieval in Threaded Files

To find all green Ford cars (i.e. a query based on two attributes) we
have three options:

1. traverse the list of Fords (using the Manufacturer index and the
associated thread) checking each to see if it is green.
2. traverse the list of green cars checking each to see if it is a Ford.
We would prefer to traverse a short list - index entries could include
a thread length.

3. traverse both threads simultaneously (cf. sequential file merge).
Requires that records are threaded in pointer order.

Static Indexes 34

Yet another way of organising
Secondary Indexes: Multilists

Like threaded files, but index contains a pointer to every
kth record with the particular attribute value.

• Speeds up merge operations
• Can skip over the rest of a sublist if the next pointer in the index is

still smaller than the current pointer in the other thread.
• Note that threaded files can be considered as multilists with =

Cellular Multilist
• Like an inverted file but only list the secondary storage blocks

which contain records with the attribute value.
• Searches must access the main file blocks to ascertain exactly

which record has the value.
• Compromise between threads and inverted files.

∞ ∞=k

18

Static Indexes 35

Review
Basic Operations involving Indexes

Retrieve a record based on a key
Create the original empty index and data files

• Both the index file and the data file are created empty
Add records to the data file and index

• Adding a new record to the data file requires that we also add a record to
the index file

• Adding to the data file is easy. Just add at the end or at an existing gap
between records

• Adding to the index is not easy, because entries of the index file have to be
sorted.

• This means that we have to shift all the index records after the one we are
inserting

• Essentially, we have the same problem as inserting records into a normal
sorted file

• One solution is to use a hash table file for the index, rather than a sorted file
• Another solution is to use sorted structures that are very cheap to add to

Static Indexes 36

Review
Indexes allow access using different keys without
duplicating all the records

• avoiding duplication saves storage
• avoiding duplication makes modifying the data easier - we don't

have lots of different copies to keep up to date

Indexes allow a lot of flexibility in the layout of the data
file

• We don't need fixed length records
• We can store records in any order

