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Abstract

The goal of this project is to implement a Motorola 68008 op-code compatible mi-
croprocessor capable of functioning on an FPGA. The CPU is to be specified fully in
VHDL and is designed to emulate the functionality of the MC68008 in terms of in-
struction set decoding, operand addressing and bus operation. The ultimate target
device is a custom designed FPGA-Board used in education of Computer Science
and Engineering Students in TCD. As a result of this a large emphasis has been
placed on structured, correct design flow and specification as well as readability of
the code.
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Chapter 1

Introduction

This chapter serves as an introduction to the Motorola 68008 VHDL1 CPU project.
The background and motivations behind such a project are outlined. In doing so,
current project-board design is introduced along with the improved board design
as proposed and implemented by Ross Brennan, together with arguments for the
continued use of the MC68008 in an educational context. This chapter also explores
the design approach taken and reasons for such an approach.

1.1 Current Project

This project branches directly from the final year project completed by Ross Bren-
nan entitled, The Design and Evaluation of an FPGA based Microprocessor Project
Board [2]. The core objective of Brennan‘s project was to explore the possibil-
ity and feasibility of introducing configurable hardware devices into Architecture
courses taken by Computer Science students and Computer Engineering Students
with a view to upgrading the project system-boards to take advantage of recent
hardware advances.

1.1.1 Computer Architecture Coursework

As a coursework section in the Computer Architecture I module of the B.A. (Mod)
Computer Science degree at TCD. Students are required to build a functioning
microprocessor system using core components. By completing such a project stu-
dents become acquainted with the fundamentals of CPU-to-peripheral interaction,
bus operation, asynchronous communication and board-level programming. The
project is centred on the Motorola MC68008 processor with which students are re-
quired to interface two 8k static RAM chips, an 8k EEPROM and a Rockwell R6551
Asynchronous communications adapter. Wire wrap is used to connect the devices
together after they have been placed on a purpose built system board.

The MC68008 processor is a 16-bit CISC2 design released in late 1982 as a
replica of the MC68000 except with a reduced data-bus width of 8-bits. This reduc-
tion was implemented in order to preserve compatibility with legacy 8-bit devices.

1Very High Speed Integrated Circuit Hardware Description Language
2Complex Instruction Set Computer
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As an early CISC computer the 68000 strikes a nice balance between a powerful
instruction set, advanced memory addressing capability and simplicity of interface.
Largely due to the absence of legacy instruction support, floating point arithmetic,
or multi-media extensions commonly found in todays processors, this balance is very
desirable in an educational context, particularly when introducing junior freshmen
students to low-level programming.

The MC68008 possesses a 20-bit address bus, allowing 1MB of in total ad-
dressable memory space. An 8-bit bi-directional data bus allows the MC68008 to
communicate external on-board devices using asynchronous bus protocols defined
by Motorola. The package is described in Fig. 1.1 and the pin functions detailed in
Table 1.1.

Figure 1.1: The 68008 package

Pins Description Function
A19 : A0 Address Bus
D7 : D0 Data Bus
/DTACK Bus Read Acknowledge Asynchronous bus control

/AS Address-on-bus
/DS Data Strobe
R/W Read Write
/VPA Valid Peripheral Address Peripheral Control

E Peripheral Clock Synchronisation
/IPL[2:0] Interrupt Level External Interrupt Control
/BERR Bus Error System Control
/RESET Reset Signal
/HALT Processor Halt
/BR Bus Request Bus Arbitration Control
/BG Bus Grant

Table 1.1: 68k Pin Description
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Components Used

• 1 x Motorola MC68008 Microprocessor

• 1 x R6551 Serial Interface

• 1 x 2764 8k EPROM

• 2 x HM6116P 2Kx8-bit Static RAM

• miscellaneous components including A 7404 Hex Inverter, 7407 Hex Buffer,
74LS73 J-K Flip Flops, Dual 4-bit binary counter and a resistor pack.

Students are given access to a pre-designed project board. This board has a
5V power supply and a parallel interface for connection with a logic state analyser.
A 14.7465Mhz Crystal Oscillator is also integrated to provide clock signals for the
ACIA3 and the MC68008. The board acts as a basis on which to place the 5V TTL
pin packages supplied. Once placed in the pin-holders students use copper wire wrap
to connect the pin packages together.

The project stages

• Verify the board is generating a 15MHz clock signal using an oscilloscope.

• Use the 4-bit counter and the resistor pack to generate an 8Mhz clock signal
for the MC68008 and a 1Mhz clock signal for the ACIAs.

• Use the hex-inverter package, and Schmitt triggers to create a debounce circuit
which ensures the RESET signal is kept asserted for at least 3 clock cycles.
This ensures correct reset of internal circuitry and the peripherals.

• Memory map the RAM chips, the EEPROM and the ACIA using the GAL4 to
generate appropriate chip-enable signals depending on the processor Address
Strobe (/AS), Data Strobe (/DS) and Address Bus (A19 : A0). The students
use PALASM to generate equations which are then programmed to the GAL
chip.

• Program the EEPROM to provide the processor with a means of testing the
bus interface. A suggested approach is through repeated JMP instruction
execution.

• Establish and verify the functionality of the RAM. This can be done with a
similar loop to the above, with the additional use of the MOVE instruction to
test the memory space where each of the RAM chips resides.

• Use the JK Flip flop package provided to generate correct VPA and IPL sig-
nalling to enable the ACIA to operate as a peripheral component. Use these
signals to provide an EEPROM program to handle interrupts generated by the
ACIA and create a transparent link with a PC using a hyper-terminal session.

3Asynchronous Communications Device
4General Array Logic — A simple programmable device
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• Upon successful completion of the above, the students are then asked to create
a simple monitor program using the EEPROM and 68k Assembly language.

1.1.2 The FPGA Design

FPGA devices are re-programmable and offer unparalleled flexibility for hardware
specification. With recent advances in re-programmable logic devices, such as de-
creased FPGA device scale and increased speed as well as the evolution of synthesis
software tools like Xilinx Foundation[13] it has become increasingly more feasible to
develop fully-specified CPUs within a programmable hardware paradigm. The open
source movement has seen a spiral in such core implementations.[4]

The advantages of using an FPGA implementation are numerous. The stu-
dent is no longer only exposed to bus interfacing, but allowed to examine how
such a device may be logically implemented using a hardware description language.
Furthermore, the flexibility of the FPGA design allows students to compare and
contrast specific technologies. For example, the student may wish to switch off the
on-chip cache of a microprocessor to measure performance, or, switch between a
RISC and CISC CPU to use different instruction sets, all without having to re-wire
the microprocessor board set up. Lastly, an FPGA design could replace the 68008
pin-packages which are obsolete in their current form and are becoming increasingly
difficult to replace.

Board Hardware

Ross Brennan prototyped a replacement project board that was centred on a Xilinx
Virtex-II XV1000-256 FPGA. As 1 Million Gate Device, this FPGA would provide
ample basis in which to situate a RISC HDL-CPU 5 as well as space for additional
student design or a second CPU. The RAM and GAL components used in the
original project are still used here, although adapted to LL3V voltage operation to
suit the Xilinx FPGA voltages6. A PROM has also been added to the design. This
feature allows on-board programming of the FPGA on power up. As the FPGA is
based on SRAM technology the programming is lost at power down. The PROM
provides a quick way to program the FPGA with a selected architecture without
having to connect the system to a synthesis tool. [2, R. Brennan]

When the HDL design is synthesized, a bit file is generated by the synthesis
tool. This is then downloaded onto the FPGA using an interface port. However,
because the FPGA is based on SRAM, the programmed design is lost at power-
down. The PROM remedies this by providing the FPGA with a bit file at power on.
The PROM may also contain different designs, e.g. the bit-files for a RISC design
and a MC68008 design allowing the user to change between the two without having
to synthesize and download a new design from scratch.

5The proposed RISC design would use 80% of these resources at full-specification
6The original packages are 5V TTL
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LEON CPU Core

The LEON[5] core is a fully featured SPARC V8[12] compatible Core specified in
VHDL and developed by the European Space Agency. It has a 32-bit data bus,
floating point units, on-chip caches and a memory control unit. This core was chosen
because it is an OpenSource VHDL implementation that is highly configurable, thus
lending itself to the ideal educational environment described above.

Figure 1.2: The Leon Core. Source : ESA[5]

In order for the LEON to suffice as a replacement for the MC68008 pin-package
modifications were necessary. The main objective was to emulate the simplicity
of MC68008 bus interaction and to ensure compatibility with the currently used
RAM, ROM and GAL devices. The LEON was cut down to those components
only necessary for the function of the CPU. Although the LEON is capable of a
58Mhz clock speed [2, Brennan], an 8Mhz clock has been provided. Caches were
also removed from the design as caching would inhibit the ability of the student to
use an oscilloscope and logic state analyser to monitor bus activity. If the executed
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program, such as the JMP loop, was read from memory once, it would be cached
in one bus cycle. Subsequent bus cycles would not occur, thus causing difficulty
when testing for correct bus function. Likewise, The Memory Management unit
was removed. The internal UARTS also needed to be removed as interfacing an
asynchronous communications device to the processor is a core requirement of the
Computer Architecture project therefore use of internal serial communication is
not required. For the same reason, internal reset circuitry was removed. The LEON
data-bus was reduced to 8-bits, to preserve component compatibility. It is calculated
that an approx 95% decrease in performance would result from the changes, however
it is noted here that the result is not a disadvantage for the student. A functional
system is much more desirable than a fast system in and educational context. [2]

1.2 Motivation

There are several purposes to this project. The main purpose is to provide a VHDL
68008 microprocessor for the above project board. As described by Brennan and
Manzke [3], a 68008 HDL CPU would provide students with a CPU on-which they
could learn assembly programming using a small, simple but powerful instruction
set. More importantly once the processor had a bus interface capable of being used
on the existing project board, it opens possibilities for expanding FPGA based mi-
croprocessor boards to allow users to configure various parts of the design to their
particular needs and use different architectures within the same physical hardware
paradigm. The 68008 CPU could also help preserve the use of the Motorola pro-
cessor as a teaching tool. It is currently heavily used in Computer Science and
Computer Engineering hardware modules due to its simplicity when compared to
other processors. However, as the processor ages, it has become more and more
difficult to obtain replacement 5VTLL packages when necessary. An FPGA design
may eventually be a cheaper and simpler way of maintaining 68000 resources within
the college.

Also, a motivation is to provide students of Computer Architecture with an
understandable implementation of a micro-programmed CISC architecture as im-
plemented using VHDL. Currently, Junior Freshmen studying for the B.A. (Mod)
are exposed to digital fundamentals such as adder design and multiplexer design
using primitive digital logic gates. Senior Freshmen are exposed to multiple-cycle
CPU design and more complex primitives such as Arithmetic Logic Units (ALU).
It would be very desirable for students of these courses to be able to break down a
CPU implementation into its core components and examine the design. A VHDL
design programmed in an efficient and modular manner allows a user to examine
a core component, completely ignoring the surrounding implementation. Therefore
students can not only see where a primitive component may be used, but also how
such a primitive may be implemented using a hardware specification language.

6



1.3 Design Approach

There were several tasks to be completed before implementation work began. The
first was to master the VHDL programming language. This was done by completing
a selection of second-year assignments involving simple CPU design. Several VHDL
exercises using primitive components were also completed. This coupled learning
VHDL with re-familiarisation of digital logic concepts.

Sources used for learning VHDL programming were http://www.vhdl-online.de[6],
Xilinx[13]and VHDL, From Simulation to Synthesis [14]. These resources also pro-
vided tutorial on how the Xilinx FPGA design and simulation platform is used.

The next task was to research CPU design implementation. A large part of
this research work involved the study of Computer Architecture and Digital Design.
Digital Design[8] and Logic and Computer Architecture Fundamentals both by M.
Morris Mano[9] provided coverage of these two topics. Once a comfortable level
of VHDL proficiency had been obtained it was necessary to turn attentions to the
68008 microprocessor.

The 68000 Programmers manual[10] and the 68000 users manual[11] were in-
valuable resources when it came to detailing 68000 internals and operation, especially
when it came to instruction decoding and bus cycles. The Motorola instruction set
was examined and broken down into smaller, more visibly structured chunks from
which decisions about instruction decoding and hardware support were made. Next,
information about the 68000 software model was gathered. The 68000 Microproces-
sor: Hardware and Software Principles by James L. Aontonakos [1] was found to be
a good resource that provided a useful abstraction from the meticulous detail and
formality of the Motorola manuals.

Once this initial research had been completed, the hardware design process
could start. The design is implemented entirely in VHDL using Xilinx v5.1 tools
for programming and synthesis together with ModelSim 5.6 for simulation. The
CISC CPU as described by Mano and Kime [9] in Logic and Computer Design
Fundamentals has been extensively adapted to create a VHDL CPU capable of
executing Motorola 68000 op-code. The following modifications were necessary.

• Implement the CISC CPU in VHDL.

• Add support for variable sized operands i.e. 8/16/32-bit and correct condition
codes.

• Add support for 68008 Arithmetic.

• Devise and implement enhanced branching capabilities.

• 16-bit 68000 instruction decoding.

• Exception generation and handling.

• 68000 memory addressing mode support.

• Add an FPGA board compatible Bus Interface.

7



The CPU has been built in an incremental fashion starting with the register
file. Each individual module has been programmed and tested under a behavioural
simulation to verify functionality and post-synthesis simulation to verify the result
could operate on an FPGA. The design approach taken is in-line with the VHDL
design flow specified in VHDL From Simulation To Synthesis [14]. Firstly, the
hardware was specified and programmed. Secondly, a behavioural simulation was
performed to verify functionality of the design. Next, a post-synthesis simulation was
carried out to verify the design still functions correctly in the target environment.
This design flow was applied to every component of the project from full-adder up
to CPU package.

1.3.1 VHDL Programming

The design is implemented wholly in VHDL, mainly to maintain compatibility with
the existing LEON design on the FPGA board. Also, second year Computer Science
students are exposed to VHDL programming and it makes sense to maintain this
trend in hardware education within the course. It is also argued here that VHDL is
a more reader-friendly language than the alternative, Verilog.

VHDL is a hardware specification language that infers a hardware model by
reducing a hardware design specified in a software model to primitive components.
This automatic hardware compilation is a very powerful way, although not always
resource-optimal way, of creating a functional hardware designs from a specification
without having to wire primitive gates manually.

RTL Style

A key requirement for this project is synthesizability7 of design. Not only would a
synthesizable design be downloadable to the target project board but would prove
that a somewhat efficient and modular design is in place. In hardware design spec-
ification for FPGA it is a necessity to keep the hardware that may be generated
as a result of coding in mind. In doing this the synthesis tool is helped greatly
with inferring an efficient, functional design free of undesirable side effects such as
unwanted latches and multi-sources.

Although VHDL supports many language constructs and methodologies only
a subset of it is synthesizable. The only VHDL language constructs (aside from
declaration constructs) used in the design are process, case,if,then,else,and concur-
rent signal assignment. This project adheres to these constraints not only to create
an efficient, synthesizable design, but a readable one capable of being modified and
enhanced in the future. With this in mind a Register Transfer Level of abstraction
has been kept consistent throughout the design. As a result both synchronous and
combinatorial logic has been defined through use of concurrently running processes.
The Xilinx synthesis tool will deduce synchronous logic for processes that rely on a
global clock. Otherwise, the synthesis tool will try to infer combinatorial logic. The
code listing below shows an example of using a process to infer a multiplexer.

7A synthesizable design is capable of being implemented correctly on an FPGA or other target
device

8



Care has been taken to avoid the inference of unwanted latches at every stage
of the project thus ensuring the Model is always in a known state during operation.
In fact, the only use of latches is in the bus interface when latching lower order bytes
of a higher order operation. Wherever data needs to be stored, registers have been
instantiated and wired manually using port-maps.

−− Source : Contro l . vhd
−− I n f e r a mu l t i p l e x e r to manage the MicroCCR load enab l e
Manage T CCR : process (TC)
begin

case TC i s
when ’ 0 ’ =>

T CR Load Enable <= ’0 ’ ;
when ’ 1 ’ =>

T CR Load Enable <= ’1 ’ ;
when others =>

T CR Load Enable <= ’X’ ;
end case ;

end process ;

1.4 Motorola 68000 Microrocessor Overview

The 68000 is internally a 32-bit CPU. Eight 32 bit data registers, numbered D0-D7,
are provided for data manipulation. In addition, 32-bit address registers A0-A6 are
designed to hold memory addresses in order to aid data movement within the system
and increase the complexity of memory addressing modes. Register A7 is a special
case of such a register. It is known as the system stack pointer (SSP) when handling
system control instructions (i.e. in supervisor mode), and user stack pointer (USP)
in user programming mode (i.e. executing user code). A 32 bit program counter, of
which the lower 24-bits are valid (20 in the 68008,due to its decreased address bus
size), provides memory addressing for the currently executing instruction. A 16-bit
system register holds information necessary for system functions such as branching
condition codes and interrupt information. Figure 1.3 shows a graphical outline of
the system register contents. The lower 8-bits, or user byte, hold condition codes
such as overflow which are generated by the functional unit. The higher order byte,
or the system byte, holds the current interrupt level priority mask used in peripheral
control, the trace bit (whether or not to call a trace exception after each instruction)
and the supervisor bit which is set when performing system control tasks.

Twelve addressing modes are available, detailed in table 1.2. Direct mode
addressing transfers the data to or from any of the data or address registers. Indirect
addressing is performed using an address register which contains the address in
memory that that data to be manipulated resides. Post increment, pre-decrement
and displacement variations of indirect addressing are implemented as modes useful
during loop instructions and stack manipulation. Immediate addressing involves
specifying an operand directly i.e. by encoding it in an extension to a core instruction
word. Absolute addressing is similar with the exception that the immediate data
specifies a location in a specific part of memory.
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Figure 1.3: The 68000 System Register

Mode Use
Data Register Direct Data register holds data
Address Register Direct Address register holds data
Address Register Indirect Using data pointed to by an Ar
Address Register Direct with Post-Increment Increment the Ar after fetch/write
Address Register Indirect with Pre-Decrement Decrement the Ar before fetch/write
Address Register Direct with Displacement Data at X+/-(Ar)
Address Register Direct with Index Data at X+/-(Ar)+/-(Dn or An)
Absolute Short A 16-bit address specifies dest/srce
Absolute Long A 32-bit address specified dest/srce
PC Indirect with displacement Data at PC +/- (Dn or An)
PC Indirect with index Data at PC +/- (An) +/- (Dn or An)
Immediate Data encoded in instruction

Table 1.2: Addressing Modes [1]

The Motorola 68000 family instruction set is very much a CISC entity. The
68000 boasts powerful and numerous addressing modes and multiple-cycle instruc-
tions such as multiply and divide. Such features are not found in comparable RISC
processors, such as the SPARC-II, which is a load/store architecture with a mini-
mal instruction set. The eighty-one (counting branch as one and omitting no-op)
instructions available to the 68000 programmer can be grouped loosely into four
categories. Data Transfer Group, Arithmetic, Logical and Bit-manipulation group,
program control group and system control group.[1] The data transfer group includes
instructions to move data between memory and the processor and also between inter-
nal registers. There are also instructions, such as LINK and PEA that aid memory
manipulation and the use of stack data structures. A complete list of this grouping
is shown in table 1.3.

As is typical of a CISC instruction set, arithmetic instructions are plentiful.
The 68000 is capable of manipulating 8, 16 or 32 bit signed operands. Instruc-
tions include ADD, SUB, MULU (Multiply Unsigned), DIVS (Divide Signed),TAS
(Test and Set) and CMP(Compare). The 68000 is also capable of performing simple
arithmetic on binary coded decimal. Shift operations are also available to the pro-
grammer. ASd (Arithmetic Shift) and LSd (Logical Shift) as well as ROd (Rotate)
are the main shift instructions.

10



Program control accomplished using the instructions illustrated in table 1.4.
These instructions aid the implementation of subroutines and conditional branching.

Instruction Description
EXG Exchange Registers
LEA Load Effective Address

LINK Link
MOVE Move Data

MOVEA Move Address
MOVEM Move Multiple
MOVEP Move Peripheral
MOVEQ Move Quick

PEA Push Effective Address
SWAP Swap Register Halves
UNLK Unlink Stack Frame

Table 1.3: Data Transfer Instructions [1]

Instruction Description
Bcc Branch on Condition defined by cc
DBcc Decrement and Branch
Scc Set Condition Codes defined by cc
BRA Branch Always
BSR Branch to Subroutine
JMP Jump to Address
RTR Return and restore
RTS Return from Subroutine

Table 1.4: Program Flow Control Instructions

The last group deals with system control and features instructions that reset
the processor, call external subroutines, handle exceptions and manipulate stack
pointers. Examples include RESET, AND to CCR, ILLEGAL and TRAP.

An instruction can have no, one or two operands which can be encoded in the
instruction or specified using one of the addressing modes. Instruction.size op1,op2
is the general syntax for two operand instructions. Instruction is any two operand
instruction defined by the set, size is one of B, W, L for Byte, Word and Long
operation and Op1 and Op2 are effective address that specify the location of the
operands and the location to place the result, which is in most cases op2. One and
zero operand instructions take the same form, e.g RESET or NEG (A0). A more
detailed discussion of the 68000 instruction set is considered as the design of the
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VHDL CPU instruction decoder is explained in chapter 2. An exact dissection of
the instruction set can be found in the Motorola 68000 Programmers Manual [10].
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Chapter 2

Hardware Design

Although implemented in VHDL this project is essentially hardware based. This
chapter explores in detail the 68008 is terms of the hardware implemented to create
the functioning model. Firstly, the functionality of the design is explained followed
by how such a design is implemented on the VHDL platform. Initially the design
of the data-path including functional unit and register file is considered. Next, Bus
Interfacing as well as sequencing and control hardware are examined. Where code
listings occur, the source file is quoted and can be found on the accompanying CD
in either the 68000-VHDL folder (Xilinx 5.1i) or the X 6800-VHDL folder (Xilinx
4.1). Appendix B contains a listing of these files.

2.1 Overview

The hardware design follows loosely the outline of a CISC CPU as detailed in Logic
and Computer Design Fundamentals [9, Mano, Kime Pgs: 511 to 542]. However,
extensive modifications were necessary to make an MC68008 op-code compatible
CPU and to ensure a Bus Interface was implemented that could support the CPU
on an FPGA board. The data-path is modified to perform arithmetic on 8-bit, 16-bit
and 32-bit signed or unsigned integers. It was also necessary to add support for the
correct generation of condition codes as specified by Motorola [11]. The control path
is modified to cater for 16-bit Motorola instruction decoding, the addressing modes
outline earlier and CPU interrupt and exception handling. Control ROM capacity is
increased and the control word expanded to 64 bits. More complex sequencing has
also been added, to cater for branching within micro-programs and the insertion of
wait stages when interfacing the CPU with peripherals. All internal data transfer
occurs through a 32 bit bus. The lower order byte of this bus is valid for a byte
(8-bit) operation and the lower order word is valid for word (16-bit) operation. The
remaining bits are either 0 or to be ignored. If a register is being written using
a byte or word operation the lower 8 or 16 bits are the only ones affected by the
operation. An overview of the hardware put in place is found in the schematic on
the following page.
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2.2 Functional Unit

Figure 2.1: Functional Unit Block Diagram

It is necessary to be able to perform the essential arithmetic and shift oper-
ations in this module. Condition code generation must also be considered. The
Functional Unit consists of two main components, an ALU and a shifter. Two in-
puts, A and B feed the ALU operands while The B input feeds the shifter. A size
control input signal is also needed to distinguish between operation sizes. This is
particularly important for the rotate instructions of the shifter and for correct con-
dition code generation. In keeping with the Motorola instruction set 00 represents
a byte operation, 01 a word operation and 10 a long-word operation. The ALU and
shifter are fed simultaneously and each generates a result and appropriate condition
codes. It is then the function of MUX F and MUX FC to choose the correct condi-
tion codes to send to out of the functional unit and to the condition code registers.
An operation control inputs selects the desired ALU function. This is detailed in
table 2.1. F Select is a 7 bit word that controls the entire operation of the unit. Bit
6 is fed to MUX F and MUX FC to distinguish between ALU and shift operations.
Bits 5 and 4 respectively carry the extend bit (X) and the carry bit (C) from the
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system register to the shifter. Bits 3 down to 0 choose ALU operation, and bits 2
down to 0 select a shifter operation. A 32-bit result is always generated, however the
correctness of the generated result is dependant on the size of the operation. This
is also true for the condition codes generated. The operations supported provide
functionality identical to the Motorola instructions add, subtract, logic and shift op-
erations and a basis on which to perform more complex operations such as multiply,
divide and add binary coded decimal through the use of micro-programming.

F Select Function
00000 Transfer A
00001 Increment A
00010 A + B
00011 A + B + 1
00100 Negate B
00101 Decrement A
00110 A B (A + (/B + 1))
00111 Transfer A
0100x A and B
0101x A or B
0110x A xor B
0111x Negate A
1x000 Arithmetic Shift Right
1x001 Arithmetic Shift Left
1x010 Rotate Right
1x011 Rotate Left
1x100 Rotate Right with extend (ROXR)
1x101 Rotate Left with extend (ROXL)
1x110 Logical Shift Right
1x111 Logical Shift Left
Table 2.1: Functional Unit Operation Select

This block is also responsible for generation of the negative (N) and zero (Z)
condition codes. The Z condition is generated by examining the result and setting a
flag if the lower order 8, 16 or 32 bits are all zero. In twos complement arithmetic, the
most significant bit determines the sign. If it is 1 then the integer can be interpreted
as negative.[8]

2.2.1 The Arithmetic and Logic Unit

The ALU is 32-bits wide and controlled by a 4 bit select input (GSELECT) and a 2
bit size input (SZ). Bit 3 of the control signal chooses between logical and arithmetic
operation within the unit. The arithmetic has been implemented using an array of
full adders. Following Digital Design [8, Mano pgs 119-120] a HDL description has
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encapsulated the functionality of a 1 bit adder, correctly generating a sum and carry
out given a carry in and inputs X and Y and Z. This full adder was then instantiated
32 times using the generate VHDL synthesis function. This function allows multiple
instantiations of the same entity using a loop counter. Other than the first carry in,
which is zero, each carry out is fed into the carry in of the more significant adder.

Figure 2.2: ALU Block Diagram

Performing operations

Addition is performed by feeding each individual bit of A and B in to the X and Y
inputs of the full adders. The carry will propagate from LSB to MSB and be set in
the most significant carry out. Subtraction is performed by the twos complement
method. The B operand in first negated, and then incremented to obtain its twos
complement form and the fed into the Y inputs. The A input is fed as normal into
the X inputs When decrementing A, a twos complement minus 1 is sent into the Y
inputs of the full adders. Similarly, for single operand operations such as transfer a
zero is applied to the Y inputs.

The logic is implemented by feeding each input into the gates in question.
These gates are automatically generated by the synthesis tool given correct HDL
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−− Source : ALU32. vhd
BIN <=LongZero when G SELECT=”0000” else −− Transfer A

LongOne when G SELECT=”0001” else −− Increment A
B IN when G SELECT=”0010” else −− Add B to A
B IN+1 when G SELECT=”0011” else −− A + B + 1
Not B IN when G SELECT=”0100” else −− !B
Minus1 when G SELECT=”0110” else −− Decrement A
(not B IN)+1 when G SELECT=”0101” else −− 2 s Compliment o f B
LongZero ;

Figure 2.3: BIN control CSA. BIN Feeds the Y input of the adder array

specification. For example, AOUT <= AIN xor BIN is the VHDL statement that will
perform exclusive-or on the inputs AIN and BIN

Condition Codes

The MC68008 uses 5 condition codes to perform branching functions. Overflow, or
V, is set when a sign change occurs on an operand. In twos complement arithmetic,
which relies on a modulo numbering system, this flag can be generated by an XOR
on the MSB entered to functional unit input with the MSB of the desired operation
result. A 1 will indicate the sign has changed. The Carry or C flag indicates a carry
out of an addition or a borrow out of a subtraction. The C flag is set when the
most significant carry of an ALU operation is 1 except for subtraction. The borrow
in subtraction is only set if the input operand A is greater than input operand B,
otherwise carries generated by twos complement subtraction are ignored and C is
0. Extend or X is set to the value of C for arithmetic functions only and is simply
fed out as a replica of the C signal. It remains unassigned for logical operations.
The position of the most significant bit of the result in the ALU is dependant on
the size input. When generating Carry and Overflow condition codes for Word and
Byte operations it is necessary to consider the 16th and the 8-th input and carry
bits respectively. Any output more significant than these should be discarded as
they are not guaranteed to be correct.

Implementation and Example

To implement the above two multiplexers decide what enters the X input and what
enters the Y input of the adder array. These MUXs are controlled by G Select. 1
for increment, -1 for decrement and (not B) + 1 for subtract are three of the choices
for the Y input. When only one input is required a Zero is sent through B to the
adder array. A bit-vector of 32 bits is used to store the carries, which then can be
operated on using concurrent assignments. A MUX decides which result to send to
the ALU output.

In an example operation we feed 2 into input A and 3 into input B. Subtraction
is desired so GSELECT is set to 0110. Twos complement of B is fed from the MUX
into the adder array while A is fed directly. The size of the operation is set to byte
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(00). Since 2-3 is -1 the output is 11111111 or -1 in byte twos complement form.
Carry is set because a borrow has occurred, similarly a sign change has occurred on
A and therefore the V flag is set.

2.2.2 The Shifter

The Motorola supports arithmetic shift through ASL and ASR, logical shift through
LSL and LSR, bitwise rotation through ROL and ROR and rotation with the extend
bit (X) acting as an expansion to the operand in question through ROXL and ROXR.
Arithmetic shifting influences the C and X condition codes. When shifting left the
MSB sets carry and extend. A zero is shifted in from the right. Shifting right, the
LSB sets the carry and the MSB is shifted in from the left. When rotating the carry
is set to be the bit that has been rotated from the MSB to the LSB or LSB to the
MSB, the extend bit is not effected unless rotating with extend. In this instance X
is set from C but acts as the LSB or MSB of the operation. Logical shift is exactly
the same as arithmetic shift except 0 is filled in from the left when shifting right.
This functionality is encapsulated in the following diagrams.

Figure 2.4: 68000 Shifting. Source : MC68000 Programmers Reference

Implementation and example

The VHDL CPU shifter takes carry in and extend in from the system register.
Depending on the size of the operation, combinatorial logic will shift the input left
or right and produce a result. A requirement of shifting is that writing to the system
register is enabled. This is to ensure condition codes are set correctly and correct
operation of the ROXL instruction. The shifting operations have been implemented
in VHDL using combinatorial logic. An example listing is found in figure 2.4. This
code piece ensures proper rotation under each operand size. The shifter code causes
the Xilinx synthesis tool to infer a set of multiplexers that generates a barrel-shifter
capable of shifting and left or right once per clock cycle.
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−− Source : S h i f t e r . vhd
−− Rotate Right s e t t i n g carryout to be the ro t a t ed b i t
case SZ i s
when ”00” =>

S OUT(6 downto 0) <= S IN (7 downto 1 ) ;
S OUT(7) <= S IN ( 0 ) ;
C OUT <= S IN ( 0 ) ;
X OUT <= ’0 ’ ;
V OUT <= ’0 ’ ;
S OUT(31 downto 8) <= ”000000000000000000000000” ;

when ”01” =>
S OUT(14 downto 0) <= S IN (15 downto 1 ) ;
S OUT(15) <= S IN ( 0 ) ;
C OUT <= S IN ( 0 ) ;
X OUT <= ’0 ’ ;
V OUT <= ’0 ’ ;
S out (31 downto 16) <= ”0000000000000000” ;

when ”10” | ”11” =>
S OUT(30 downto 0) <= S IN (31 downto 1 ) ;
S OUT(31) <= S IN ( 0 ) ;
C OUT <= S IN ( 0 ) ;
V OUT <= ’0 ’ ;
X OUT <= ’0 ’ ;

when others =>
S OUT(31 downto 0) <= 32 X ;
V OUT <= ’X’ ;
C OUT <= ’X’ ;
X out <= ’X’ ;

end case ;

Figure 2.5: VHDL Rotate Right using case for combinatorial logic

In an example using the shift-and-add method of multiplication, we are re-
quired to shift left and shift right at different stages. Given two byte operands
00001000 and 00000011 we are to obtain the result 00011000. Firstly, 00000011 is
shifted right one, setting C. This is accomplished by F Select 10110. The carry flag
is set and we can branch to the addition part of the algorithm given that code. Next
we shift 00001000 left one to get the next partial addition. This is accomplished
using F Select 10111.

2.2.3 Control Registers

The microprocessor uses two registers to control the flow of micro-program and
user-program execution. In order to maintain compatibility with existing 68000
code the system register has been designed to match it. As with the 68000 the user
byte contains the condition codes, X,N,Z,V,C. The system byte contains support
for seven levels of interrupts in IPL2,1 and 0. This holds the current interrupt level
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and is used in processing external interrupts after every instruction. The S bit, or
supervisor bit, is designed to inform the system whether or not it is executing in user
or supervisor mode. In the 68000 programming model certain instructions, such as
RESET, may only be executed in supervisor mode. This bit is set when executing
system level operations such as handling exceptions. The trace bit (T) is set when
the CPU is operating in trace mode. A trace exception loads in the trace vector
handler which may contain code to push the system registers to a stack. This is
useful in debugging software as the programmer can see exactly what is contained
in all the system registers after every instruction execution.

Figure 2.6: The System Register

The second control register is the Micro-CCR. This register is 4 bits wide and
is identical to the SR for bits 0 to 3. The function of the Micro-CCR is to provide a
separate means of tracking conditions generated by micro-instructions. In Microcode
that performs multiple cycle operations it may be necessary to consider condition
codes generated without affecting the condition codes in the system register. This
distinction is illustrated by taking the example above. In a micro-coded shift and add
multiplication we can branch to an addition micro-subroutine if the bit in question
is a 1. This could be done by shifting and using the carry as explained earlier.
However, since unsigned multiplication in the 68000 will never produce a carry or
overflow, it is necessary to ensure that the system register carry is not set. Thus,
the Micro-CCR provides the codes necessary.

Implementation

The system register is implemented as a 16-bit positive edge triggered register. Load
control of the SR is implemented using combinatorial logic in VHDL and s controlled
by the CWORD field MC. Motorola instructions will set condition codes in one of
5 ways. Either the SR remains unchanged, C,V,Z,N are changed, C,V,Z,N,X are
changed, Z is changed only, N is changed only or the SR is loaded from the internal
data bus. Also, the trace and supervisor bits must be modifiable and the interrupt
priority mask must be changeable. The Micro-CCR has simpler loading logic. TC
is the CWORD field that dictates whether or not the CCR is loaded with the codes
that are provided by the functional unit.
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MC Function
0000 Not Loading SR
0001 Changing C,V,Z,N
0010 Changing C,V,Z,N,X
0011 Changing Z only
0100 Changing N only
0101 Set IPL Mask
0110 Set Trace Bit
0111 Clear Trace Bit
1000 Set supervisor Bit
1001 Clear Supervisor Bit
1111 Load SR
Table 2.2: SR Load Control

2.3 Data Storage and Movement

The processor overview diagram shows how data is moved within the processor.
There is an internal 32-bit data-bus that circulates data to the register file, through
the ALU and to the control-path. MUX D is responsible for choosing between
external data and data from the ALU and placing it on the internal data-bus where
it feeds the rest of the processor. It is controlled by the CWORD field MD and
when set to 1 reads external data from the Bus Interface.

2.3.1 Register File

The register file contains a bank of 32 registers. Each register is 32-bits wide and
is has a load control dependant on the CWORD SZ field. When the size is byte
the lower order 8 bits are loaded and the rest of the register remains unchanged.
This is also the case for word writes, except the lower order 16-bits are considered.
The register file contains the registers D0-D7, A0-A6 the System Stack Pointer and
the User Stack Pointer (A7). It also contains an internal bank of registers only
addressable by micro programs. A Memory Data register and Memory Address
register are provided to allow the creation of a memory read and memory write
micro-routines. A micro-program can simply place the data that should be written
to memory and the address to where it is to be written into these registers and branch
to a micro-routine. The RRW field of the CWORD controls whether a register is
written or not.

In the Motorola 68000 each instruction will contain at least one effective ad-
dress (EA) which will act as a source or destination for operand fetching and write
back. In the same vein as the memory registers EA Data and EA Address are
provided to allow the exploitation of common operand addressing modes within in-
structions. The vector address register stores the base address of a to-be-executed
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Figure 2.7: Register File and Control

exception handler. The remainder of the register file consists of temporary registers
T0 to T8 and a Zero provider. The temporary registers are to be used in the storing
of intermediate results of micro-operations and micro-programs. The Zero register
simply provides a constant zero for clearing registers.

Register Address
D0-D7 00xxx
A0-A7 01xxx
System Stack Pointer 10000
EA Address 10001
EA Data 10010
Memory Address 10011
Memory Data 10100
T0 T8 10100 11100
Vector Address Register - 11110 Zero Provider 11111

Table 2.3: Internal Register Map

Register Addressing and Selection

Register writing is controlled by an RW signal. A 5 bit destination control is provided
to choose a register to write. There are two output ports from the register file to
cater for the input of 2 operands into the ALU and to cater for simultaneous selection
of an address register and a data register for placement onto the data and address
busses.

Since destination and source selection is encoded in a 68000 instruction word
the register file must be capable of being controlled by the CWORD and by the
instruction currently being executed.
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The multiplexer FUCTL,FBCTL and SZCTL dictate which entity is control-
ling the register file and how. When SZCTL is set to 0 then the CWORD field
SZ controls the size of an operation. When SZCTL is set to 1 the SZ field is con-
trolled by the 68000 instruction word bits 7 and 8, the bits that specify the different
operation sizes in the 68000 instruction set.

FUCTL feeds the register destination and port A output selection while FBCTL
controls the B output selection. These multiplexers are instrumental in generating
the correct register file addresses for destination and selection. When FUCTL and
FUBCTL select lines are 000 the CWORD field ASEL,BSEL and DEST control
register file addressing and all 32 registers are accessible. In a typical 68000 two
operand instruction the instruction bits 3:0 and 11:9 control destination and source
registers. When FUBCTL and FUCTL are not 000 these are the bits that control
destination and source selection.

The maximum number of registers addressable with 3 bits is 7. It is therefore
necessary to modify these bits in order to enable access to the Address Registers,
located from register 8 to 15. When FUBCTL and FUCTL selections are 001 and 010
a 1 is concatenated onto the instruction bits 3:0 and 11:9 to allow the instruction
to access a total of 16 registers. It is noted that it is still not possible for the
instruction to access registers reserved for internal operation, this can only be done
by the CWORD. The CWORD must be aware of the addressing mode in order to
append the 1 to any instruction address and access the address registers. Table 2.3
gives a list of data registers while Table 2.4 defines FUBCTL and FUCTL operation.

Binary FUCTL FBCTL
000 BSEL from CWORD DEST/ASEL from CWORD
001 IR[11:9] to B Out IR[11:9] to A Out and Data Reg. Destination
010 IR[3:0] to B Out IR[3:0] to A out and Data Reg. Destination
011 IR[11:9] to B Out IR[11:9] to A out and Addr. Reg. Destination
100 IR[3:0] to B Out IR[3:0] to A out and Addr. Reg. Destination

Table 2.4: Destination and Source Selection in the Reg-
ister File

2.3.2 Data Bus and Address Bus Selection

It is necessary in any CPU to provide a means of selecting what is put on the data
bus and the address bus. This function has been tied into what operands are selected
for entry into the Functional Unit. MUX A controls the address bus and input A of
the ALU while MUX B controls the data bus and the B input of the ALU.

MUX A and B assignments

Controlled by the CWORD field MA, this multiplexer has 4 inputs. Firstly, it
provides a means of transferring what is selected on the A port, and the B port of
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the into the ALU and the address bus. This is done through input 0, A out and 3,
B out. This allows any register to be used for addressing, any register to be passed
to the ALU or through the ALU to the IR or PC and back into the register file.
The second input is the PC. The program counter needs to be placed on the address
bus during instruction fetching and immediate operand fetching. The last input to
MUX A is a vector address input. It is necessary to load the PC with a vector
address when executing and exception handler routine. MUX A provides a means
by which this address can be transferred from the vector decoder into the register
file.

Mux B is fed the B output of the register file. The next input is the displace-
ment register. This register is used in conjunction with the PC input of MUX A
when executing instructions that adjust the PC using a 32-bit displacement. The
current IPL mask is also an input to MUX B as it is necessary to compare it with
the requested IPL when processing interrupts. Lastly, the entire system register has
been specified as an input. This is to allow for any arithmetic manipulation of the
SR that may be deemed necessary and allows the SR to be directly put on the data
bus when saving the SR during interrupt processing.

MUXes A and B are implemented in code using processes to infer combinatorial
logic.

2.3.3 The IPL control Module

This module is a small entity that stores a pending interrupt request. If multiple
interrupts are requested between interrupt handling then this module will latch the
highest value request. In practical terms this is done using a comparator connected
to the IPL pins and a 3 bit register. This hardware is inferred using the VHDL
constructs detailed below. The signal MUXI is connected to an insanitation of a
3-bit positive edge triggered register.

−− Source : Contro l . vhd
IPLControl : process (P IPL w , SIG R out )
begin

i f P IPL w < SIG R out then
MUX I <= P IPL w ;

else
MUX I <= SIG R out ;

end i f ;
end process ;

2.4 The Bus Interface

It is necessary for any CPU to communicate with memory and peripheral devices.
As outlined in the introduction, any CPU that is to be put on the FPGA board
must use a bus interface compatible with the existing bus implementation. The bus
interface protocols as defined by Motorola for 68008 8-bit operation are compatible
with the ROM, RAM and ASIC and therefore are sufficient for this purpose. This
design does not strictly follow the timing of the Motorola 68008 bus cycle as defined
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in the Programmers Manual [10], as it contains certain cycles that are not applicable
in this design context (such as empty clock cycles). The atomic Read-Modify-Write
cycle has been omitted here as it is only deemed useful in multiprocessor situations
when using the Test and Set instruction in creating locks. There is scope, however,
to add this in at a later time. Similarly bus arbitration cycles have been omitted.
However, the strobe generation, insertion of wait states and data bus operation are
identical.

Figure 2.8: Bus Interface Block Diagram

2.4.1 Implementation

To provide abstraction from the CROM, the bus interface has been designed as a
separate entity capable of performing independent bus cycles. Control signals /DS
(Data Strobe), /AS (Address Strobe) are generated as necessary. It receives address
data and operand data from MUXes A and B. The bus interface is connected directly
to the address bus, and through a tri-state buffer to the data bus. A separate tri-
state buffer module is used for the data-bus as its abstraction makes it easier to
handle bi-directional communication. The address bus is simply placed in Hi-Z
when it is not being used and would not benefit from such an abstraction. When
data is read from the data bus it is passed to MUX D and enters the data and
control paths. Due to the fact that data bus is only 8-bits wide the bus interface
needs extended functionality to handle reads and writes of words and long words.
This essentially entails the BI being capable of multiple read and write cycles in a
single operating mode.

The bus cycles generate signals in a finite sequence and it was decided that a
VHDL finite state machine would be the simplest and most readable way of designing
such an interface. The bus interface is implemented in VHDL using a two-process
state machine. The first process handles clocking. On the positive edge of each
clock cycle it updates a CurrentState register with a NextState register. The second
process generates the combinatorial logic to handle state changes. The bus interface
advances states depending on assigned inputs and outputs.
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Figure 2.9: Sample Read Operation State flow (Simplified)

When BIE is high the module is either performing a write cycle, a read cycle
or an interrupt acknowledge cycle depending on the input field BI. While these
operations are being performed the CAR address remains constant and the micro-
sequencer only advances the CAR when the bus interface generates a finished signal
(PDTACK). The reason for this implementation is to allow for the insertion of wait
stages in bus cycles. Since it can not be certain how many wait states will be
inserted, simple micro-program NOPs will not suffice and the progression of the
micro-program must be blocked until the bus cycle has completed. Any form of
read or write cycle must use the third form of the CWORD, as outline later in this
document.

2.4.2 Read and Write Cycles

In order to perform a read cycle BIE is set to enable. It is necessary to choose an
operation using the BI input and provide the bus interface with a pointer to the
location of the base byte i.e. an address. According to the operation size the bus
interface will start at state RO and generate the bus signals as indicated in figure
2.11. The BI stays in the state R1 until DTACK is pulled low by the peripheral
device, indicating data is on the bus. The lower byte is then latched in R2 by
ensuring the tri-state buffer output enable is pulled low in order to read the data
driven by the peripheral device. If the operation is a read-byte operation then
PDTACK is pulled low, causing the CAR to be incremented and the data to read
to the CPU registers. In order for PDTACK to effect the CAR in such a way it
is necessary for the wait-for-DTACK condition to be set in the CCOND field and
the address of the next micro-instruction to be specified using the 3rd form of the

26



−− Source : BusIn ter face . vhd
i f ENABLE= ’0 ’ then−− Wait T i l l We’ re Asked .

ADDR OUT <= ”ZZZZZZZZZZZZZZZZZZZZ” ; −− Not us ing A Bus
DATA BUS OUT <= ”00000000” ; −− Or data bus
D OE <= ’0 ’ ; −− d i s a b l e t r i s t a t e output
LatchInt <= ’0 ’ ; −− not l a t c h i n g i n t e r r u p t l e v e l
P nBERR <= ’1 ’ ; −− no bus error excep t i on
P nHALT w <= ’1 ’ ; −− no h a l t
p nDTACK <= ’1 ’ ; −− no dtack to the microsequencer
L LByte <= ”00000000” ; −− not l a t c h i n g any by t e s
L HByte <= ”00000000” ;
H LByte <= ”00000000” ;
H HByte <= ”00000000” ;
OpSize <= Byte ; −− d e f a u l t o p s i z e
RnW <= ’1 ’ ; −− not wr i t i n g
nAS <= ’1 ’ ; −− no address on bus
nDS <= ’1 ’ ; −− no data from us
NextState <= i d l e ; −− wai t f o r enab l e

Figure 2.10: Setting outputs for the idle state

CWORD. If the operation is word or long-word then this cycle is repeated 2 or
4 times each time incrementing the address pointer and latching the higher order
bytes. PDTACK is not pulled low until the full operation is complete. This way a
read-byte or read-longword operation does not have to enable the bus interface 2 or
4 times, it is done independently.

In performing a write cycle the CPU sends the address and data to be written
into the bus interface and selects a write operation and again waits on PDTACK.
The strobes are set in as illustrated in figure 2.12 and the write cycle begins. Like
the read cycle the data is written in one-byte increments. When writing to the data
bus, the tri-state buffer is set to output enable causing the data bus to be driven
out of the high-impedance state.

2.4.3 Interrupt Acknowledge and Bus Error Cycles

68008 supports 3 levels of interrupts, however in keeping with the 68000 7 levels
are supported by the project hardware. Interrupts are processed at the end of
every instruction, and those generated during an instruction execution are labelled
as pending by the IPL control module and processed after the execution. When
handling interrupts the bus interface must perform an interrupt acknowledge cycle.
When instructed to do so by the control word the Bus Interface module will start an
interrupt acknowledge cycle as illustated with figure 2.13. /AS and /DS are pulled
low, R/W high and the requested interrupt level is fed into the bus interface and on
to the address bus lines A0 to A2. If the peripheral wishes to request its own vector
number /DTACK is pulled low and the vector number is placed on the data bus. It
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Figure 2.11: Bus Read Cycle

Figure 2.12: Bus Write Cycle

is now up to the micro-program to load and execute the appropriate vector.
When opting for auto-vectoring, i.e. when the interrupting device requests

a pre-defined vector address, the peripheral pulls /VPA low instead of /DTACK.
The bus interface will generate one of seven vector address and send it to the CPU
to be loaded into the Vector Register. The vector handler can now be loaded and
executed.

The last function performed by the bus interface is Bus Error control. If the
bus error flag is pulled low by an external device during a bus cycle then PBERR
is pulled low and a bus error exception is generated. During this error handling
FAULTIN is pushed high. If a second bus error occurs during bus fault exception
processing then a double bus fault has occurred and the processor enters the halt
state only to be restarted by reset. This in done by pulling PHALT low.
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Figure 2.13: Auto-vector peripheral bus cycle

BI Input Function
000 Read Byte
001 Read Word
010 Read Long-Word
011 Write Byte
100 Write Word
101 Write Long-word
110 Interrupt Acknowledge
111 Reserved for Read-Modify write

Table 2.5: BI Select

29



2.4.4 Bus Interface Hardware

All Bus Interface hardware is inferred automatically with the exception of an 8-bit
register which is a temporary storage register designed to hold the interrupt vector.
Latches are used to store intermediate read cycle values, such as the first three bytes
of a long-word memory read.

2.5 Sequencing and Control

The most complex section of the CPU hardware design is the control path. The
control path contains logic to generate control signals for the data path and is
responsible for program sequencing and specifying how operands are manipulated
in the design.

There are two common design approaches when considering control unit de-
sign. Hardwiring is physically implementing control using a state machine designed
with often complex logic. Hardwired design involves considering the states neces-
sary to provide functionality in the data-path and subsequently deducing a state
machine capable of providing this functionality. This approach is the fastest and
most hardware-economical approach to the design. However, this approach is also
a very inflexible way of creating a design. Specifying hardware control for a CISC
instruction set, which by definition has complexity built in at processor level, is
a difficult task. Moreover, once the design has been implemented it is difficult to
expand control without re-wiring the control design in order to add in new states.

Figure 2.14: CROM and Control Address Register

Micro-programming is a less hardware-economical but more flexible approach.
An on chip control ROM is used to provide control signals to the data-path. The
control words are provided by an address kept in a Control Rom Address Register.
This register is combined with program flow logic to provide Micro-program flow
functionality. The CROM can be programmed to provide the functionality necessary
an can be easily modified and expanded without modification of the surrounding ar-
chitecture [9, Mano, Kime] This is the methodology that has been used in the CPU
design. It is felt that a micro-programmed design would be easier to understand for
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anybody wishing to examine the design as it is based on a simple hardware specifi-
cation. Also, and more importantly, a CROM design would be reprogrammable and
expandable in future giving the design an increased adaptability. Since the FPGA
is based on SRAM look-up tables for interconnection of primitive components there
is no performance advantage in opting for a hardwired approach. A motivation of
this project is to show how a CISC design may be implemented. The fact that
Micro-coding is used in CISC designs such as the Pentium IV and the 68008 was
another deciding factor in choosing micro-coding over hardwired control[7]

2.5.1 Control Path Registers

A Motorola instruction consists of a single 16-bit word plus an optional set of exten-
sion words that are used to specify addressing mode information and displacement
information in branching. As a result a 16-bit instruction register is provided and is
loaded with the information on the internal data bus when the CWORD field IL is
high. This register is the outputted to the instruction decoder which is responsible
for CAR address generation.

The program counter is a 32-bit register, 20 bits of which generates a valid
memory address for instruction and immediate operand fetching. It is implemented
using a register and combinatorial logic that generates a load signal depending on
the PL CWORD field. The PL can be incremented in one clock cycle by setting PL
to be 01. When PL is 00 the register holds its value. If a 11 is set the PC is loaded
with whatever data is on the internal data-bus. This is necessary to facilitate use
of jumping and branch instructions that apply a displacement to the PC.

−− Source : Control . vhd
PCControl : p roc e s s (PL w , PCout w , PCInc out , Data In )
begin
case PL w i s

when ”00” =>
MUX P <= PCout w ; −− Hold PC

when ”01” =>
MUX P <= PCInc out ; −− Increment PC

when ”10” =>
MUX P <= Data In ; −− Load PC

when ”11” =>
MUX P <= Data In ; −− Load PC

when othe r s =>
MUX P <= ”XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX” ;

end case ;
end proce s s ;

When processing branching instructions such as BRA or BCC a signed exten-
sion word of 32-bits is used to specify a displacement to be added to, or subtracted
from the PC. In order to facilitate this addition or subtraction in a quick manner,
without having to use a temporary register in the file, a displacement register has
been provided. Fed into MUX B, it is possible to select the displacement register as
a B input to the functional unit, together with the PC into the A input from MUX
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A and perform the subtraction or addition and subsequent write back to the PC in
a single clock cycle.

2.5.2 Micro-sequencing

A micro-sequencer is the lynchpin of any micro-programmed architecture. It is
responsible for the generation of the next CAR address thus defining the next set of
control signals to be applied to the data-path.

Figure 2.15: Microsequencer Block Diagram

The CROM has been designed as 4096 words deep, meaning a 12-bit address is
required. This gives ample space for micro-coding the 68008 instruction set provided
the micro-programs are written in a modular fashion and take advantage of common
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operations between code. For example, the micro-code for a memory write will
be the same for every instruction write-back, therefore it makes sense to re-use
commonly invoked micro-addresses. A 12-bit Control Address Register (CAR) holds
the address of the currently executing microinstruction. The loading of the CAR
is controlled by the CAR increment register and multiplexers MEX, MCA, MNA,
MCD and B/SEL. At every stage the CAR increment register contains the value
CAR + 1. The CAR is loaded on the positive edge of the clock, so it is necessary to
make the CAR increment register negative edge triggered, to allow for propagation
through the register and back to the CAR in a single clock cycle when a CAR
increment is desired. The CWORD field MCA controls the multiplexer that loads
the CAR. Table 2.6 details the effect of this field on the CAR.

MCA Function
000 Increment CAR
001 Load From MicroStack
010 Load From Single Branch Register
011 Load CAR from Instruction Decoder
100 Load CAR using Motorola Conditions

Table 2.6: MCA Selection

The Micro-Stack and SBR

To aid the use of micro-routines a Micro-Stack architecture has been implemented.
There are 5 registers provided in which are placed return addresses when imple-
menting branching within the micro-routine. Registers BR0 to BR3 are part of the
Micro-Stack and provide 4 levels of branching within micro-routines. The Micro-
sequencer contains a two bit counter, the Micro-Stack pointer, which controls the
loading and selection of these four registers. When calling a micro-subroutine the
MSPI field must be set to 01 in order to increment the stack pointer. In the next
clock cycle BRLoadControl must be set to 01. This causes the next CAR address
+ 1 to be placed into a specified load register. It is now possible to load the CAR
with a micro-routine address specified by next address. During the execution of
the sub-routine, the micro-stack can be used again for the same purpose. When
returning from a subroutine it is necessary for the micro-routine to load the CAR
with a return address. This is done by setting BRControl to 11 and MCA to 01.
The address popped off the stack is equal to the calling address + 1. The calling
micro-program must now decrement the stack pointer by setting MSPI to 11 before
it can continue processing. This micro-architecture mimicks how a stack may be im-
plemented in software. A pointer holds the location of the next point on a stack. A
micro-stack operation i.e. push or pop, is an atomic micro-operation but in practice
at this low level takes two clock cycles, once to ensure the pointer is at the correct
location, one to perform a push.

This implementation provides a very powerful means of branching within mi-
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crocode. For example, when an instruction is decoded the CAR is loaded with an
address for the micro-program that must be executed. This micro-program will most
of the time need to fetch operands on which to perform operations. If an effective
address is designated as the source, one of the addressing modes must be used to
fetch this operand. With the micro-stack implementation it is possible for an in-
struction micro-program to branch to an addressing mode micro-routine, e.g. fetch
address register indirect, which will place the result in the EA Data register. When
finished fetching operands the instruction and continue execution and write-back.

The Single Branch Register, or SBR is a branching register that is not part of
the stack. Its intended use is for memory access. Since a memory access will never
contain a branch, it is spared the need to use up 3 cycles manipulating the stack
pointer and micro-stack. Instead it simply loads and unloads the Single Branch Data
Register as necessary. This also means that even micro-routines with addresses at
the top of the stack may use the Bus Interface for memory reading and writing. SL
loads the SBR and when MCA is 10 the CAR is loaded with the value in the SBR.

Figure 2.16: Micro-Branching Flow

Conditional Branching

MNA, MCD and the Next-Address input allow conditional loading of the CAR. It
is necessary to support a variety of conditional load conditions that may arise from
both the Micro-CCR and the User Byte of the SR. When the MCA is set to 100
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the inputs CCOND and ACC decide what to load the register with next. Table 2.7
details the operational values of the 5 bit CWORD field CCOND. When performing
a branch in a micro-routine it is necessary to provide the micro-sequencer with an
address to load if the branch is taken. If the condition chosen is high at the time
specified, and the allow condition (ACC) field is 1 then the CAR is loaded with a
branch address from the NA field. If the condition is a zero at the time specified
then the CAR is simply incremented.

Value Description
00000 Branch Carry Set (Micro CCR)
00001 Branch Overflow Set (Micro CCR)
00010 Branch Zero Set (Micro CCR)
00011 Branch Negative (Micro CCR)
00100 Branch Carry Clear (Micro CCR)
00101 Branch Overflow Clear (Micro CCR)
00110 Branch Positive (Micro CCR)
00111 BCS Motorola (C)
01000 BVS Motorola (V)
01001 BEQ Motorola (Z)
01010 BMI Motorola (N)
01011 BCC Motorola (/C)
01100 BVC Motorola (/V)
01101 BNE Motorola (/Z)
01110 BPL Motorola (/N)
10011 Wait for Bus Interface Finished Set
10110 BHI Motorola (/C*/Z) Branch Higher
10111 BLS Motorola (C + Z ) Branch Low or Same
11000 BGE Motorola (N*V + /N*/V) Branch greater than or equal
11001 BLT Motorola (N*/V + /N*V) Branch Less than
11010 BGT Motorola (N*V*/Z + /N*/V*/Z) Branch Greater Than
11011 BLE Motorola (Z + N*/V + /N*V ) Branch Lest than or equal
11100 Force Load of NA

Table 2.7: CCOND Possible Branching Conditions and
CCR Codes

In the shift-and-add multiplication example detailed previously it was sug-
gested that the multiplicand be shifted left one place setting the carry to be a 1
if the LSB is a 1. It was suggested that a branch be taken if the carry is not
set to avoid adding a partial product un-necessarily. The following describes how
this is implemented using the micro-sequencer and the Micro-CCR Carry and Zero
conditions.

ADDRESS CCOND MCA NA DESCRIPTION
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$4 0000 000 N/A −− S h i f t the mu l t i p l i e r l e f t
$5 1010 100 $7 −− Branch i f Carry Clear to $7
$6 0000 000 N/A −− Otherwise add p a r t i a l product
$7 0000 000 N/A −− S h i f t the sum of product s l e f t
$8 0000 000 N/A −− Sub t rac t 1 from a loop counter
$9 1010 100 $4 −− Branch Zero Clear to the s t a r t
$10 1010 100 $11 −− Write Back Operation us ing BI
$11 0101 100 $24 −− Jump to f e t c h next i n s t r u c t i o n

There is one exception to this general application. When CCOND is set to
wait for DTACK, the current CAR address is reloaded, rather than CAR + 1. This
is designed to allow the bus interface to complete its cycle fully. In this instance
the next CAR address must be specified by using the Next-Address input. When
performing a bus cycle that requires the insertion of wait stages it is necessary to
have the address of the next instruction to be executed in the next-address field.

Handling Bus Error and Halt Exceptions

The final multiplexer feeding the CAR is concerned with the loading of exception
handlers. There are three possible exception handler addresses that may be loaded
into the CAR. If a Bus Error occurs, the bus interface will generate the exception
signal. This causes the CAR to be loaded with the bus error exception handler. This
handler can simply load the vector register with the bus error vector number. This
loading in necessary since if the BI is active, the car NA will remain stationary. The
only other exception that is supported using this method of loading is the HALT
handler. A programmer may wish to push information to the stack before entering
the halt mode.

An Internal Exception field IE has been placed in the CWORD for future
use. The use of this function is to enable the generation of exceptions within micro-
programs. The Motorola generates exceptions upon the results of certain operations.
For example a divide by zero will cause and exception handler to be run. Similarly
if the TRAP instruction is called a handling program must be loaded. The IE field
allows these software exception handlers to exploit commonality. Each exception
may place its exception handler address on the stack and push high the IE field.
This IE field may load an exception handler that pulls this vector address off the
system stack and processes as necessary.

2.5.3 Instruction Decoding

An MC68000 Instruction consists of at least one 16-bit word. In order to facilitate
various addressing modes there may be up to 11 extension words. These words may
contain information such as immediate operands, source and destination effective
address information or branching displacement information.

An instruction may specify zero, one or two effective addresses within an in-
struction word. An effective address is a 6-bit substring of the full instruction word.
It provides information as to the source and/or destination of operands as well as
the addressing mode that is used in order to fetch those operands. The majority of
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instructions will use a single effective address which may specify the destination of
the operation or the source operand.

Figure 2.17: Effective Address Field

The mode field of the effective address gives information as to the addressing
mode of the effective address. The register field will either specify a register in which
the operands or information about the operands is contained. It may also contain
information relating to addressing mode. Table 2.8 shows how the effective address
may be decoded.

MODE REGISTER DESCRIPTION
000 xxx Data Register Direct
001 xxx Address Register Direct
010 xxx Address Register Indirect
011 xxx Address Register Indirect with Postincrement
100 xxx Address Register Indirect with Pre Decrement
101 xxx Address Register Indirect with Displacement
110 xxx Address Register Indirect with Index
111 000 Absolute Short
111 001 Absolute Long
111 010 PC indirect with Displacement
111 011 PC indirect with Index
111 100 Immediate

Table 2.8: Decoding an EA

When using the immediate addressing mode the immediate data is specified in
an extension word. When using the displacement or index addressing modes the ex-
tension words will contain the displacement that is needed to perform the necessary
operation. Figure 2.18 shows how a MOVE instruction is encoded and stored in
memory. The MOVE is the only instruction that may have two effective addresses.
Other instructions must store the results in destinations specified elsewhere in the
instruction.

Figure 2.18: MOVE.B #5,(A0) Instruction
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Bits 15 down to 6 of a 68000 instruction are used for decoding the instruction
type. Bits 15 down to 12 can be used to form a loose grouping of instructions. For
example, 0000 in bits 15 down to 12 will indicate that the instruction is either an im-
mediate instruction, such as ANDI, or a bit manipulation instruction such as BTST.
As detailed in figure 2.19 it is possible to break up the remainder of the instruction
in to well defined pieces in order to work out what instruction is being executed. In
fig 2.19 bit 7 differentiates between Bit Manipulation and immediate instructions.
Bits 11-8 specify the sub-group of these instructions and the remainder specifies
operand size and effective address. For example when 8 is 0 and OPC is 000 we are
dealing with an ORI instruction, a member of the immediate instruction functional
group. Not all instruction formations are as regular but a similar breakdown can be
applied to the majority of instructions.

The form 1111 of the leading 4 bits is reserved for interrupt processing, but the
remainder will specify one of several instruction groupings such as the Immediate/Bit-
manipulation grouping. The accompanying CD-ROM contains an excel spread sheet
which is a guide to the instruction groupings proposed and used in this project.

Figure 2.19: Instruction encoding for group 0000

If the instruction is a two operand instruction, bits 11 down to 9 will always
specify a register number. How this number is interpreted depends on the instruc-
tion. For example, ADD (ea),Dn will interpret this register as the source for the
second operand in the addition, and also the destination for result write-back. In
this instance the EA will specify the source operand. Size is encoded in one of two
ways. Bits 7 and 6 (SZ) contain size information for applicable instructions except
in the case of MOVE where bits 13 and 12 (SZ2) dictate operation size.

The Instruction Decoder

A mapping ROM with an address manipulated by combinatorial logic is used to
provide the CAR with CROM addresses depending on the operation desired. The
select input ISEL controls the operation of the decoder and allows decoding of dif-
ferent parts of the instruction such as the EA and the main op-code. The instruction
decoder will provided CAR addresses in one of four ways. Firstly, it will provide the
CAR address for the execution of one particular instruction. In this instance the
CWORD field ISEL is set to 000. The mapping ROM address is constructed from
the instruction word bits 15 down to 6 concatenated with a 0. All mapping ROM
addresses that start with 0 are responsible for the decoding of the function of an
instruction. For example mapping ROM location 00000001000 contains the CAR
address that will run the micro-program dealing with the ANDI instruction.

When the ISEL input is 001 the instruction decoder is performing a decode
on an EA and is using this EA to fetch operands. 100—SZ—EA is fed into the
mapping ROM giving the location of the required address. For example, location
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Figure 2.20: Instruction Decoder and mapping ROM

100—00—010000 will contain the CAR address for a byte-operand fetch using the
address register indirect addressing mode.

ISEL 010 is identical to the above operation except it performs decoding on bits
11 down to 6 for a move instruction. Locations for such CAR addresses are produced
by the word 101&SZ2&EA. 011 and 100 operate in a similar fashion except they are
responsible for supplying the CAR with addresses necessary for operand write back
when the effective address is a destination.

The locations of thee words in mapping ROM and CROM memory are done
in Xilinx through the use of constants. For example, the write micro-routine.

−− Source : CROM4096x64 . vhd
−− Dec lara t ion
constant Read Byte Wait : s t d l o g i c v e c t o r (63 downto 0) := . . .
constant Read Byte Latch : s t d l o g i c v e c t o r (63 downto 0) := . . .
constant Read Byte Return : s t d l o g i c v e c t o r (63 downto 0) := . . .
−− Mapping
when ”111111110011” => output <= Read Byte Wait ;
when ”111111110100” => output <= Read Byte Latch ;
when ”111111110101” => output <= Read Byte Return ;

2.5.4 The Control Word

The CROM is a 4096 deep ROM that produces control words of 64-bits in length.
It is possible to restrict the size of the word to 64-bits by defining the word three
forms shown in figure 2.21. The first form of the word is intended for operation of
the system that does not involve jumping or branching. In this instance bit AA is
0 and bits 22 down to 17 influences loading of control path registers.

In order to use the functional unit and the system control registers it is neces-
sary to use this form of the CWORD. The second form of the word sees the inclusion
of an 8 bit vector number. This form is only used for the decoding of an 8-bit vector
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Figure 2.21: CWORD Formats

number which is subsequently loaded into the Vector Address register for execution
of an exception vector. The third form of the control word sees the inclusion of the
CCOND field and the next address field. The CCOND field selects the condition
for branching and the next address specifier will give the next address if a branch
is taken. The functional unit field have been used in this instance since when func-
tional operation is used in a micro-program it will always occur before the branch
and never in the same clock cycle.

Table 2.9 gives a breakdown of the function each field performs. Appendix A
gives a full list of the valid values of each field.
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FIELD BIT NUMBERS FUNCTION
BSL 2:0 Bus Interface Operation Select
BE 3 Bus Interface Enable
FI 4 Processing a Bus Fault
FBC 7:5 R/File Port Control Select
FUC 10:8 R/File A Port/Destination Control Select
MCA 13:11 MicroSequencer CAR Address Source Select
MP 15:14 MicroStack Pointer Control
ACC 16 Allow Condition Codes to effect CAR
PL 18:17 Program Counter Load Control
DP 19 Displacement Register Load Enable
IL 20 Instruction Register Load Enable
CCOND 21:17 Branch Condition Select
SL 22 Single Branching Register Load Enable
D 61—24:23 Instruction Decoder Function Select
ASEL 29:25 Register File Port A Select
BSEL 34:30 Register File Port B Select
DEST 39:35 Register File Destination select
SZ 41:40 Operation Size Select
SS 42 CWORD/Instruction for Size
MC 46:43 System Register Load Control
FS 51:47 Functional Unit Operation Select
Vector No 51:44 8-bit Vector number
Next Address 61:59—51:43 Next Address Loader
MA 53:52 Mux A Select
MB 5:54 Mux B Select
MD 56 Mux D Select
TC 57 Micro-CCR Load Enable
RW 58 Register File Read Write
BR 60:59 MicroStack Load/Unload Control
IE 62 Generate Internal Exception
AA 63 Allow Next Address field

Table 2.9: CWORD Field Function
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Chapter 3

Micro-programming the design

Once all needed hardware was in place and individually tested was necessary to con-
sider micro-coding. This chapter explores the micro-programs necessary to control
the system by specifying how micro-program algorithms may be implemented using
the hardware in place.

3.1 Control Word Generation

Micro-coding a 64-bit word is a tedious, error prone task when done by hand. To
combat this tedium and to decrease the chance of errors during CPU operation a
simple Visual Basic application has been developed to automatically generate control
words given specified inputs. The generator has been programmed in Visual basic
because of its ability to quickly generate forms and automatic generation of essential
MFC code.

The application contains a series of drop-down boxes detailing possible values
for each control word field. The user specifies the desired value for each field and
the application constructs the appropriate CWORD, which then can be copied to
the Xilinx application or ROM bit file.

Operation is intuitive for programming a CWORD of the standard form. How-
ever, when programming branching and vector addresses there are some necessary
omissions. In keeping with the CWORD format, the fields Micro-Stack Control(BR),
Function Select, SR Load Control, SQ, IR Load, Displ Load and PC load must all
remain blank. Allow CC must be set to conditions for a conditional branch. This
field can be ignored when supplying a vector number to the vector address regis-
ter. Next address locations and vector numbers can be inputted into the provided
text-boxes. Although not yet implemented, it is intend that a drop-down list of
commonly used next CAR addresses, such as instruction fetch and memory accesses
will be able to provide next address values. Similarly, it is intended the complete
68008 memory addressing list be added.
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Figure 3.1: Generating a CWORD to Add D0 to D1

3.2 System Control Programming

In order for the system to function correctly a number of system control micro-
programs must be implemented. These micro-programs provide a skeleton set of
micro-routines on which actual micro-programs can be constructed.

3.2.1 Memory Access

Since the first instruction of any program will be held in memory the first micro-
program necessary is one that will control memory access. All memory accesses in
the system are implemented using the memory access micro-routines. It is intended
that these routines be called from micro-programmes that require memory access,
such as memory operand fetch or instruction fetch. There are routines for memory
write and read of each size of operand.

12-bit Hex Address Routine
FF3 Read Byte
FF0 Read Word
FC0 Read Long-Word
FC8 Write Byte
FCA Write Word
FCC Write Long-Word

Table 3.1: Memory Access CROM Locations
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Each of the memory reads takes three micro-instructions while the memory
writes take two. The number of clock cycles taken depends on the size of the bus
cycle and the number of wait stages inserted by the bus interface.

The reserved memory address register provides the Bus Interface with a lo-
cation from which to read a memory address. If the operation is a write then the
result is placed in the reserved memory data register.

The first micro-instruction sets the bus interface to enable and waits for the
PDTACK signal. For example when reading a byte, the BIE field is set to 1 and the
BI field is set to 000 for a read. The third CWORD form is used and the branch
condition is PDTACK. The next address is fed from the CWORD and is set to FF4
in order to load the next micro-instruction when the data has been received from
the peripheral device. MCA is set to next address in this instance. For memory
read an address must be provided from the register file. Similarly source data must
be provided for a write. MUX A must be set to transfer an address and MUX B
must transfer the necessary data to the bus interface

Upon assertion of PDTACK the second micro-instruction is loaded. This in-
struction is responsible for the reading of data from the bus interface. The memory
data register must be selected as the destination register and the register file must
be set to CWORD control (FUCTL = 000, FUBTL = 000). Register write must
also be enabled. The size field must be set to 00 for byte and the SS field must
indicate that size selection is under CWORD control. The last micro-instruction is
common to all memory access subroutines and is a return from routine instruction.
This instruction simply loads the CAR with the value located in the single branching
register, thus returning to the calling micro-program.

3.2.2 RESET Handler

When the 68008 is powered on for the first time, or is reset it must initialise the PC
and the system stack pointer. The first long-word of memory, location 0, will contain
the initial system stack pointer. The second long-word will contain the initial PC.

In the 68008 VHDL model the PC is reset to 0 by the nRESET signal. It
therefore makes sense to use the PC as a pointer to retrieve the initial stack pointer
and the initial PC. Branching to the memory micro-routine is not used in this
instance as we intend to us the PC as a memory address pointer. Ten instructions
are required the first of which is located at CROM location 0.

We must initialise the bus interface and wait for PDTACK as if performing a
memory read. On the next micro-instruction we are required to load the SSP. This is
done by setting the register read field to write and selecting system stack pointer as
the destination. The same must be done for user stack pointer, as, although in theory
the same register, they are represented in hardware by two different registers. The
PC is then incremented 4 times by setting PL to load for 4 consecutive instructions.

The next bus interface cycle required field is a read-long word for the PC. This
accomplished using the initial PC as a source like before. On the next instruction
it is necessary to set the PL field to Load and MUX D to External in order for it
to latch data fed from the bus interface. The final instruction simply jumps to the
location of the Instruction Fetch micro-routine.
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3.2.3 Fetch-Decode-Execute Sequence

All processors need to perform this cycle in order to fetch and execute instructions.
Located at CROM location 0x00F the instruction fetch micro-programme operates
in exactly the same way as the initial PC fetch routine except a 16-bit word is
fetched and the IL field must be set to load instead of PL.

Once the instruction register has been loaded the PC is incremented twice to
point to the potential location of the next instruction in memory. It is now desirable
to jump to instruction decode. In order to do this the third CWORD form must be
used and the location of the ID routine, or 0x808, must be fed to the next-address
microsequencer port. MCA is set to Load Next Address, ACC to Conditions and
the condition field CCOND must be set to NALOAD. The CAR is now loaded with
the ID routine.

Figure 3.2: The Fetch-Decode-Execute Cycle

The ID routine itself is a simple jump. MCA is set to Instruction Decoder and
the ISEL field is set to Opcode. The instruction decoder will decode the instruction
and provide a location for its execution which is then fed into the CAR.

The processor is now in the execution phase. Due to the varied nature of
the location of operands in the 68008 instruction set, and to the fact that not
all instructions may access all addressing modes, each execution micro-program is
responsible for the fetching and write back of all operands as well as instruction
execution.

Interrupts

Once write back has been completed it is necessary to check for interrupts. Any
interrupt requested during execution is processed by the IPL control module. If
multiple interrupts are requested during an instruction, the highest level one is
considered only.

The CWORD field SQ allows the register file to be loaded with the value
emanating from the IPL control. Temporary register T0 is loaded with this value.
On the next clock cycle this register becomes an A input to the ALU by setting
ASEL to T0 and MUX A to 00. MUX B IPL select will provide the ALU input
with the current interrupt level. A subtraction is performed and the MicroCCR is
set using the appropriate signals for TC and FS.
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If the result of the operation is negative the current interrupt level is higher
and the interrupt is rejected. This is accomplished by setting MCA to Next Address
and the condition in question set to branch not negative from MicroCCR. If N is set
it will cause a jump over the instruction that deals with processor interrupts and
back to instruction fetch for the next instruction.

If this jump is not taken then a jump to interrupt processing will take place.
The procedure is as follows

• Save the status register to the system stack.

• Save the PC to the system stack.

• Perform an interrupt acknowledge cycle using the Bus Interface.

• Obtain vector and load to PC.

• Return from interrupt (RTI) is called and original PC and Stack Pointer are
restored.

3.3 The MOVE instruction

This section explains in detail how the MOVE instruction is implemented and defines
the process by which all micro-programs should be written. It includes details of
the addressing mode fetch and write-back micro-routines implemented to date. The
MOVE micro-program is located at 0xC20 in the CROM and is 7 words deep.

3.3.1 Decoding

In order to provide the CAR with the correct address for the MOVE instruction
it is necessary to place that address in the decoder mapping ROM. Since we are
decoding a main instruction, the MSB of the mapping ROM address is 0. The
Motorola programmers manual specifies the first two bits of an instruction to be 00.
We firstly want to deal with word operands, therefore the next two bits are 11. The
MOVE instruction form is shown again in figure 3.3. It is necessary to place 0xC20,
or the MOVE micro-program address, at locations 00011xxxxxx of the mapping
ROM in order for correct decoding to be performed for all addressing modes for the
destination.

Figure 3.3: MOVE Instruction Form
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3.3.2 Fetch using Addressing Modes

Once the MOVE instruction micro-program address has been decoded the micro-
sequencer will start executing the MOVE micro-program itself. As previously ex-
plained, it is necessary to fetch the source operand for the operation. As a result the
first 2 instructions of the MOVE routine simply increment the MicroStack pointer
by setting MSPI to 01 and push a return address on the MicroStack by setting the
BRLoad field to 01. It is necessary to decode the source effective address for a
MOVE so 101 is fed into DSEL field.

Five forms of operand fetch addressing modes have been implemented in micro-
coding and hardware support exists for the remainder. These are Data Register
Direct (CROM location 0x03F), Address Register Direct (0x041), Address Register
Indirect (0x043) and Immediate (0xE00).

All addressing mode micro-routines will use at least one of the registers re-
served for effective addresses and the memory read and write registers. Taking the
Immediate addressing mode as an example it is possible to show how a typical fetch
micro-routine will operate.

Immediate operand fetch will move the data encoded in an instruction exten-
sion word to the Effective Address Data register. An immediate operand of length
16-bits is located in memory at the address immediately following the core instruc-
tion word. The instruction op-code for an immediate fetch is encoded in the lower
effective address. Motorola uses 111 for mode and 100 for the register field to in-
dicate an immediate data addressing mode. Instruction decoder mode Fetch for
Move is used and therefore the micro-routine address must be located at address
10111111001. When source effective address decoding has taken place the Imme-
diate micro-routine is in execution. A Bus read cycle for a word operation must
be performed. As before the DTACK condition is fed into the CCOND field, AA
is set to 1, bit 16 is set to 1 and the next address (the location of the next micro-
instruction) is fed into the NA field. After the bus cycle the register Effective Data is
written. The PC must now be incremented twice following which the micro-routine
will return to the MOVE instruction by setting BRLoad to 11 and MCA to 001.

MOVE3 is concerned with setting the correct condition codes. It is necessary
to circulate the Effective data Register around the ALU using the Transfer function
in order to set the correct condition all condition codes except eXtend are affected.
MUX A simply reads the register circulates as the A input of ALU and MC is set
to allow all codes except X to be set.

3.3.3 Write Back

Most instructions give the option of using the effective address as a destination
instead of a source. The MOVE instruction allows both to be an EA. In either case
a write-back micro-routine must be called.

Write back routines have been implemented for the MOVE instruction only.
These include Data Register Direct (CROM location 0xE05), Address Register Di-
rect (0xE07), Address Register Indirect (0xE09), Address Register Indirect with
Post Increment (0xE11) and Address Register Direct with Pre-Decrement (0xE18).

Decoding is performed by setting ISEL to 100. The address for the write-back
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micro-routine must be put in its correct mapping ROM place for EA write back on
a MOVE instruction. ”111” & SZ2 & EA2 is the address string that will determine
this. SZ2 is instruction bits 13 down to 12. EA2 is the destination effective address
in a move instruction and consists of bits 11 down to 6. For example, data register
direct write back for a MOVE.W instruction must be located at mapping ROM
addresses 11111000xxx.

The write back routine will expect to find data to be written back in the
Effective data register. If an address is necessary then it is expected to be located in
the Effective Address register. All memory-modifiable addressing modes will move
this data to the Memory Data and Memory Address register before branching to a
Bus-write cycle.

3.4 The MULU instruction

The MULU instruction performs a multiply on two, at maximum, 16-bit unsigned
numbers and stores the result. This instructions micro-coded implementation is
explored in order to give an example of how one might implement a complex in-
struction that requires multiple-clock cycles to execute. Operand fetch and write
back for MULU are performed in a similar way to that of the MOVE instruction
and have not been considered here. The MULU instruction has been located at
CROM 0xA0F and requires thirteen instructions six of which are repeated sixteen
times for a total of 97 clock cycles. It is noted here that a hardware multiplier
can complete such a task in less clock cycles however micro-coding instructions this
way is consistent with the CISC design approach and is good way of testing correct
function of the control and sequencing logic.

3.4.1 The Shift-and-Add Algorithm

The Shift-and-Add algorithm of binary multiplication is used in this example. This
method adds the multiplicand Y to itself X times, where X denotes the multiplier.[15,
Zargham CH:2 S:2.5.2].

The first task of shift-and-add multiplication is to set up the temporary regis-
ters necessary to perform the operation. The multiplicand is placed in T0 and the
multiplier in T1. T3 is used as an accumulator register and stores the results of
partial products at every stage of the multiply. A constant value of 16 is placed in
register T8. This will count the number of iterations necessary for the multiplication.

MUL4 shifts the multiplier right and allows the MicroCCR condition codes
to be set. This is done by choosing logical shift right for the FS field and setting
TC to 1. The result is stored back in register T1. MUL5 uses the branching form
of the CWORD, sets Branch Carry Clear to be the condition in the CCOND field,
bit-16 to be a 1, AA to be 1 and the location of MUL7 to be the next address. If
the MicroCCR has shifted a 1 into the carry then MUL6 will be executed. MUL6
simply adds T0 to T3. If carry is clear then MUL6 is not executed and MUL7 is
the next address. MUL7 shifts T0 left one. MUL8 subtracts 1 from T8 and sets the
MicroCCR again. MUL9 is a branching Micro-Instruction that returns to MUL4 if
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T8 is not zero, otherwise proceeds to MUL10 which is responsible for operand write
back.

−− Source : CROM4096x64 . vhd
constant MULU S . . . −− Clear accumulator r e g i s t e r
constant MULU 0 . . . −− Move 8 to Temp 8
constant MULU 1 . . . −− Move source to Temp 0
constant MULU 2 . . . −− Move d e s t i n a t i o n to Temp 1
constant MULU 3 . . . −− Move Temp 0 to Temp 2
constant MULU 4 . . . −− Log i ca l S h i f t r i g h t T1 s e t t i n g MicroCCR
constant MULU 5 . . . −− Branch Carry Clear to MULU 7
constant MULU 6 . . . −− Add Temp 0 to Temp 3 s t o r e in temp 3
constant MULU 7 . . . −− Log i ca l S h i f t Le f t Temp 0
constant MULU 8 . . . −− Sub t rac t 1 from Temp 8 s e t c . codes
constant MULU 9 . . . −− Branch i f Temp 8 not Equal to 0 to MULU 4
constant MULU 10 . . −− wr i t e back to de s t . S e t t i n g codes

3.4.2 Other Instructions

Other instructions have been implemented in exactly the same way using the Micro-
Word generator and using the following technique.

• Assign a CROM Location.

• Ensure correct decoding of the instruction suggested groupings.

• Use the Micro-Word Generator to generate micro-instructions.

Other implemented instructions to date are JMP, ADD, SUB (for Direct ad-
dressing) and BMI (branch on minus).
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Chapter 4

Testing and Conclusions

This chapter details what has actually been accomplished during the project by ex-
ploring some test results and stepping through a demonstration of a 68000 assembly
program. Suggestions for further avenues of work on this project are also explored.

4.1 Design Testing and Development Progress

All design testing has been performed using ModelSim. A simulation on this plat-
form allows the designer to isolate any wire, register or signal contained within the
design. This very powerful tool was a vital component in debugging the operation
of the VHDL CPU and

Each individual module has been tested using test-benches designed to verify
the functionality on all possible inputs, or when that is not feasible, a set of in-
puts that practically verifies module operation. Top-level testing was accomplished
through strategic implementation of micro-code. As micro-coding the system for the
full instruction set is a time consuming task, a focus has been placed on using se-
lected micro-coded applications to test the fully inter-connected system. As a result
the micro-code in place to-date will verify the inter-operation of all the modules. For
example, MULU will test branching and sequencing, MOVE the addressing mode
capability and the bus interface and RESET the handling of exceptions.

Most of the problems encountered throughout this project were results of im-
plementation mistakes. For example, an early implementation of the control path
attempted to specify the unit in such a way that the Xilinx synthesis tool would au-
tomatically infer control logic. This proved to be an error-prone and unreliable way
of implementing control as the design was unnecessarily complex and hard to follow.
It was at this early stage that the decision to keep to an RTL level of abstraction
was made.

Other problems stemmed from common mistakes such as incorrect behavioural
implementation results. In an example the ALU was not generating proper results
and condition codes for the subtract function. The ModelSim platform enabled
examination of each part of the design to isolate this problem to a programming
mistake.

As previously outlined, the project has been developed to a stage where all
necessary hardware needed for a VHDL op-code compatible CPU has been put in
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place. All modules have been tested and confirmed operational under behavioural
and post-synthesis simulation. In addition a substantial subset of the micro-coding
necessary for full instruction set decoding has been completed and tested under
simulation.

4.1.1 Synthesis

A successful synthesis has been performed on the design using the Xilinx synthesis
tool targeting the Virtex-II VC1000-256fg FPGA. A synopsis of the synthesis report
can be found below.

The design uses 3,131 slices of Virtex-II resources, or approximately 61% of
the slice resources available to the FPGA. In comparison, the modified LEON core
utilises approximately 62

Design Summary:
Number of errors: 0
Number of warnings: 4

Number of Slices: 3,131 of 5,120 (61%)
Number of Slices containing
unrelated logic: 0 of 3,131 (0%)

Total Number Slice Registers: 1,267 of 10 ,240 (12%)
Number used as Flip Flops: 1,233

Number used as Latches: 34
Total Number 4 input LUTs: 5,547 of 10 ,240 (54%)

Number used as LUTs: 5,495
Number used as a route -thru: 52
Number of bonded IOBs: 105 of 172 (61%)
Number of Tbufs: 20 of 2,560 (1%)
Number of GCLKs: 1 of 16 (6%)

Total equivalent gate count for design: 47 ,675
Additional JTAG gate count for IOBs: 5,040
Mapping completed.

The gate count for the designs differ dramatically however, with the LEON
core using almost three times the number of gates used by the 68008 design. This
is most probably due to the more complex pipelined logic of the LEON core, which
has hardware such as a floating point unit which are not found in the 68008 model.

Implementation timings are shown below. The maximum clock period attain-
able by the current design is 11.718Mhz. The FPGA project board has an 8Mhz
clock port, therefore the design is more than capable of handing this clock speed.
It is noted that it may be possible to increase this clock speed by examining the
design for critical paths and re-organising the design to suit, however, as previously
outlined, the nature of the project requires the 68008 model to be functional rather
that quick and work emphasis has been placed on this functionality to suit.

Minimum period: 85.342 ns (Max Frequency: 11.718 MHz)
Minimum input arrival time before clock: 13.712 ns
Maximum output required time after clock: 88.281 ns
Maximum combinational path delay: 10.146 ns
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4.1.2 A 68008 demonstration

Figure 4.1: The Virtual Board Simulation Setup

For demonstration purposes a 68008 project style environment has been mod-
elled in VHDL. A 68008 has been instantiated within this model and a ROM and
RAM compatible with the 68008 bus interface have both been memory mapped to
the specified locations through proper generation of chip enable signals as would
be done by a student in the Architecture project outlined in the introduction. The
ROM has been loaded with an initial stack pointer, an initial PC and a demonstra-
tion program.

Figure 4.2: Multiplication of 2D Matrices

A simple 2D matrix multiplication program has been written in 68000 assem-
bly language and assembled using the 68kasm cross assembler. The first couple of
instructions are placed to demonstrate branching at instruction level and the cor-
rect generation of condition codes under a subtraction. 2 is subtracted from 1 and a
branch is taken if the CCR correctly identifies the result is a negative number. Next,
512, or the first location in RAM is placed in an address register with the view of
using it as a stack pointer. The matrix multiplication routine will take the matrices
outlined in figure 4.2 and multiply them together yielding a result. When each result
is generated it is pushed onto the stack by using the move instruction which utilises
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the indirect-with-post increment addressing mode to ensure correct stack operation.
The following listing shows the program as implemented in assembler on the right
and shows the raw machine code as generated by the assembler on the left.

1
00000008 2 org $08

3
4
5 BEGIN

00000008 303C 0001 6 move.w #1,d0
0000000C 323C 0002 7 move.w #2,d1
00000010 343C 0003 8 move.w #3,d2
00000014 307C 0200 9 move.w #512,a0
00000018 9041 11 sub.w d1,d0
0000001A 6B00 0002 12 bmi MATRIX
0000001E 303C 0001 14 MATRIX: move.w #1,d0
00000022 323C 0005 15 move.w #5,d1
00000026 C2C0 16 mulu d0,d1
00000028 343C 0002 17 move.w #2,d2
0000002C 363C 0007 18 move.w #7,d3
00000030 C6C2 19 mulu d2,d3
00000032 D641 20 add.w d1,d3
00000034 30C3 21 move.w d3 ,(a0)+
00000036 303C 0001 23 move.w #1,d0
0000003A 323C 0006 24 move.w #6,d1
0000003E C2C0 25 mulu d0 ,d1
00000040 343C 0002 26 move.w #2,d2
00000044 363C 0008 27 move.w #8,d3
00000048 C6C2 28 mulu d2,d3
0000004A D641 29 add.w d1 ,d3
0000004C 30C3 30 move.w d3 ,(a0)+
0000004E 303C 0003 32 move.w #3,d0
00000052 323C 0005 33 move.w #5,d1
00000056 C2C0 34 mulu d0,d1
00000058 343C 0004 35 move.w #4,d2
0000005C 363C 0007 36 move.w #7,d3
00000060 C6C2 37 mulu d2,d3
00000062 D641 38 add.w d1,d3
00000064 30C3 39 move.w d3 ,(a0)+
00000066 303C 0003 41 move.w #3,d0
0000006A 323C 0006 42 move.w #6,d1
0000006E C2C0 43 mulu d0 ,d1
00000070 343C 0004 44 move.w #4,d2
00000074 363C 0008 45 move.w #8,d3
00000078 C6C2 46 mulu d2,d3
0000007A D641 47 add.w d1 ,d3
0000007C 30C3 48 move.w d3 ,(a0)+
0000007E 55 END
No errors detected
No warnings generated
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This program executed successfully. The timing diagram below details the
first few microseconds of the program operation. Cycle 1 shown in the diagram is
the microprogram run to fetch the initial SP and PC from the ROM. Note how the
CAR will stay at location 001 until the bus interface has received and processed the
second DTACK signal from the ROM. The data-bus and address bus show the data
being transferred from the ROM is pulled low. The initial SSP is 768 (the top of
the RAM). The initial PC is the next thing to be fetched and this is set to 8 or the
location of the first instruction.

Figure 4.3: A timing diagram for the first 9ns of operation

The second cycle highlighted sees the CAR perform the Fetch and decode stage
of execution. At CROM location 0x009 the instruction fetch micro-program resides.
The diagram demonstrates a word-sized bus interface read cycle. Once this has
been performed the IR is loaded with the first instruction, 303C is the first MOVE
instruction, and the CAR loaded with 0x808, the instruction decode micro-program.
Next C20 is decoded and loaded to the CAR and the MOVE micro-program begins
execution.

Figure 4.4 shows the final write back instruction performing a write-word bus
cycle. The stack pointer, A0, is also shown.

Figure 4.5 shows the final contents of the first few locations of RAM after
the program has completed. The correct results have been placed in their correct
locations at this stage.
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Figure 4.4: The final write back

4.2 Conclusions

The first motivation behind this project was to generate a Motorola 68008 CPU
using VHDL. The 68008 package is in place ready for instantiation in any VHDL
design. All necessary hardware is in place and while full micro-coding has not been
completed enough instructions exist to verify the validity and functionality of this
hardware.

A requirement of the design was to be capable of download to the FPGA
project board. The design has been demonstrated as synthesizable and download-
able to the FPGA. As required a compatible bus interface has been successfully
implemented in VHDL. The 68008 CPU model, as demonstrated, is capable of ex-
ecuting code as generated by the 68k cross assembler. While only a subset of the
instruction set is implemented the instructions that have been demonstrate there is
a solid foundation on which to add the remainder.

A goal of the work currently being put into the FPGA board design is to have
two co-existing CPU architectures on the one FPGA. When considering download-
ability of the design it is necessary to take into account the fact that when the two
CPU designs are put side by side they take up more than the available resources for
the Virtex-II FPGA in use. It is noted here that a re-arrangement of hardware in
the 68008 design, perhaps omitting hardware duplicated for ease of operation e.g.
the Displacement Register or the Vector Decoder could reduce the resources used
by the 68008. It may be also possible to exploit common hardware features of both
CPU‘s e.g. by having a common functional unit and only differing control paths.
The results of both of these operations would remove replicated hardware across
both CPU models and decrease the resources taken up by both CPUs thus allowing
the designs to co-exist. Further reduction in the use of the most valuable resource,
FPGA slices, may be accomplished by taking better advantage of the FPGA Se-
lectRAM resources. The SelectRAM resources are dedicated on board RAM blocks
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Figure 4.5: RAM contents after the program has finished

designed for the implementation of memory structures such as ROM. Modification
of the ROMs used in the 68008 may free up some slice resources and further reduce
the size of the design.

The second motivation behind this design was to create a readable, well docu-
mented design model with a view to teaching Computer Architecture students how
such a design may be implemented in practical terms. In completing the project the
design constraints outlined in the introduction have been adhered to and a modular,
understandable design produced. Sufficient documentation exists for a student to
understand and expand on the current design. Also, a basic software tool has been
provided to ease the future micro-coding process.

To conclude, the main objectives of the project i.e. a functional, readable
VHDL 68008-opcode compatible CISC implementation have been achieved to an
extent allowable given the time constraints of the project.

4.2.1 Skills Acquired and Lessons Learned

The main skills acquired in implementing this project are proficiency in VHDL
programming, knowledge of the HDL design flow including design specification and
simulation for FPGA. Also a more detailed knowledge of processor design has been
acquired together with a more in-depth insight into how a processor, such as the
68008, is implemented in real terms.

There have been several lessons taken from the completion of this project.
Firstly, I have learned that time management skills are important when balancing
a large project with course-based study. Secondly, when building a substantial
project using an incremental prototype-functional-enhanced design technique is key
to generating an all-round functional design.
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4.2.2 Further Work

Opportunities exist for further work both in the completion of the current design
and the expansion of the current design. The first goal has to be the completion of
micro-coding. Some suggestions for such a project include.

• Re-design of the MicroWord Generator program to include generation of com-
ments, reverse-encoding of a control word and full inclusion of branching lo-
cations.

• Design of an efficient memory map for the CROM

• Implementation of the full set of decoding.

• Efficient implementation of all complex instructions such as divide signed.

On the hardware side of the project further work suggested stems from making
the implementation operable on the FPGA project board. Suggestions include

• Downloading of the current VHDL unit to the project board.

• Implement the supervisor/user programming model as defined by Motorola.

• Examine design efficiency and how it may be improved. For example, reduce
FPGA slice resource use by using FPGA SelectRAM resources for CROM or
an external dedicated ROM.

• Attempt to enable the co-existence of the LEON and the 68008 on the board
through optimisation of both designs and removal of common hardware.

• Attempt to exploit the complex hardware already built into the LEON unit, for
example using the LEON floating point unit to add floating point functionality
to the 68008 model.

• Devise a more efficient, user friendly manner of programming the CROM i.e.
other than the use of constants. For example, exploring SelectRAM generation
and initial value specification using the CoreGEN synthesis tool.
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Appendix A

Control Word Field Guide

Field Signal Function
BI 000 Read Byte Cycle
BI 001 Read Word Cycle
BI 010 Read Long-Word Cycle
BI 011 Write Byte Cycle
BI 100 Write Word Cycle
BI 101 Write Long-Word Cycle
BI 110 Interrupt Acknowledge Cycle
BIE 1/0 Bus Interface Enable
FAULTIN 1/0 Bus Fault processing flag
MCA 000 Increment CAR
MCA 001 Load CAR from top of MicroStack
MCA 010 Load CAR from single branching register
MCA 011 Load CAR from instruction decoder
MSPI 00 Hold MicroStack pointer value
MSPI 01 Increment MicroStack
MSPI 10 Increment MicroStack
MSPI 11 Decrement MicroStack
SL 1/0 Load the Single Branching Register with CAR + 1
PL 00 Hold PC Value
PL 01 Increment PC
PL 10 Load PC
PL 11 Unused
DP 1/0 Load Displacement register
IL 1/0 Load Instruction register
REGISTER 00xxx D0 D7
REGISTER 01xxx A0 A7
REGISTER 10000 System Stack Pointer
REGISTER 10001 EA Address Register
REGISTER 10010 EA Data Register
REGISTER 10011 Memory Address Register
REGISTER 10100 Memory Data Register
REGISTER 10101 11101 Temporary Registers T0-T8
REGISTER 11110 Vector Address Register
REGISTER 11111 Zero Provider
MC 0000 No Condition Code Write
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MC 0001 Set C,V,N,Z
MC 0010 Set X,C,V,N,Z
MC 0010 Allow Z to be set only
MC 0011 Allow N to be set only
MC 0100 Set the IPL bits from internal bus
MC 0101 Set Trace Bit
MC 0110 Clear Trace Bit
MC 0111 Set Supervisor Bit
MC 1000 Clear Supervisor Bit
MC 1111 Load SR
FUC 000 CWORD Destination / A Port Control
FUC 001 Instruction[11:9] as Data register for A Port / Dest.
FUC 010 Instruction[3:0] as Data Register for A Port / Dest.
FUC 011 Instruction[11:9] as Addr. Register for A Port / Dest.
FUC 100 Instruction[3:0] as Addr. Register for A Port / Dest.
FBC 000 CWORD B-Port ontrol
FBC 001 Instruction[11:9] as Data register for B Port
FBC 010 Instruction[3:0] as Data Register for B Port
FBC 011 Instruction[11:9] as Addr. Register for B Port
FBC 100 Instruction[3:0] as Addr. Register for B Port
MA 00 Register File A Select
MA 01 PC to Address Bus
MA 10 Vector Address from Decoder
MA 11 Register File B Select
MB 00 Register File B Select
MB 01 SR[IPL]
MB 10 System Register
MB 11 Displacement Register
TC 1/0 MicroCCR Load
Next Address 12-bits Next CAR Address
Vector No 8-bits Vector Number from CWORD
SQ 1/0 Load destination port with IPL control
AA 1/0 Allow next address to be specified
ACC 1/0 Allow condition codes to be specified
IE 1/0 Generate Internal Exception
CCOND 00000 B. Carry Clear (MicroCCR )
CCOND 00001 B. V Clear (MicroCCR)
CCOND 00010 B. Not Zero (MicroCCR)
CCOND 00011 B. Positive (MicroCCR)
CCOND 00100 B. Carry Set (MicroCCR)
CCOND 00101 B. V. Set (MicroCCR)
CCOND 00110 B. Zero (Micro CCR)
CCOND 00111 B. Negative (Micro CCR)
CCOND 01000 BCC
CCOND 01001 BVC
CCOND 01010 BNE
CCOND 01011 BPL
CCOND 01100 BCS
CCOND 01101 BVS
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CCOND 01110 BEQ
CCOND 01111 BMI
CCOND 10011 Wait on DTACK
CCOND 10110 BHI
CCOND 10111 BLS
CCOND 11000 BGE
CCOND 11001 BLT
CCOND 11010 BGT
CCOND 11011 BLE
CCOND 11100 Next Address Load
SS 1/0 Set Size from Instruction / CWORD
SZ 00 Byte
SZ 01 Word
SZ 10 Long
DS 000 Decode Opcode
DS 001 Decode EA for Fetch
DS 010 Decode EA for Write Back
DS 011 Decode EA for Fetch (MOVE)
DS 100 Decode EA for Write Back (MOVE)
MD 1/0 Load External Data / Data From ALU
RW 1/0 Register Write / Read
BR 00 MicroStack Idle
BR 01 Push
BR 10 Push
BR 11 Pop
FS 00000 Transfer A
FS 00001 Increment A
FS 00010 A + B
FS 00011 A + B + 1
FS 00100 Negate B
FS 00101 Decrement A
FS 00110 A B (A + (/B + 1))
FS 00111 Transfer A
FS 0100x A and B
FS 0101x A or B
FS 0110x A xor B
FS 0111x Negate A
FS 1x000 Arithmetic Shift Right
FS 1x001 Arithmetic Shift Left
FS 1x010 Rotate Right
FS 1x011 Rotate Left
FS 1x100 Rotate Right with extend (ROXR)
FS 1x101 Rotate Left with extend (ROXL)
FS 1x110 Logical Shift Right
FS 1x111 Logical Shift Left

61



Appendix B

Design Hierarchy

For demonstration and simulation purposes a Virtual Board has been constructed
consisting of an instantiation of the 68008 VHDL CPU, a ROM and a RAM. The
ROM is memory mapped from memory locations 0-128 while the RAM is mapped
from location 512-768.

The following outline shows the full hierarchy of the design from board level
to register level. The accompanying CD-ROM contains a Xilinx 4.1 project in the
X 6800-VHDL folder and a Xilinx 5.1 project in the 68000-VHDL folder.

\- 68008 [MC68000.VHD]
\- Bus Interface [BusInterface.VHD]
\-Register_3bit [Register_3.vhd]

\- Control Path [Control.vhd]
\- CROM4096x64 [CROM4096x64.vhd]
\- Instruction Decoder [Instdecoder.vhd]
\- ROM256x11 [BlockROM.vhd]

\- MicroSequencer [Microsequencer.vhd]
\- Register_12bit [S_Reg_12.vhd]
\- Register_CAR (CAR) [SReg_12CAR.vhd]
\- Register_12bit_NegEdge [S_Reg_12neg.vhd]

\- Register_32bit_0 (PC) [R32.vhd]
\- Register_32bit_0_NegEdge (PC + 1) [R32neg.vhd]
\- Register_16bit (IR / DISPL) [Register_16.vhd]
\- Register_3bit (IPL Pending) [Register_3.vhd]
\- Vector Decoder [VectorDecoder.vhd]

\- Data Path [Datapath.vhd]
\- Functional Unit [Functional_Unit.vhd]
\- 32Bit ALU [ALU32.vhd]
\- 1 bit Full Adder [FullAdder.vhd]

\- Shifter [Shifter.vhd]
\- Register_4bit [Register_5.vhd] (MicroCCR)
\- Register_16bit [RegisteR_16.vhd] (SR)
\- Register File [RegisterFile.vhd]
\- Register_32bit_Motorola [Register32.vhd]

\- Tri -State Buffer [tristatebus.vhd]
\- RAM [RAMC.vhd]
\- ROM [spblockrom.vhd]
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