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Abstract

This project involves testing an interactive rendering system, Chromium,

on a cluster of machines in real-time, using serial and parallel OpenGL ap-

plications. It draws together hardware and software systems in an effort to

find a viable alternative to expensive custom-built supercomputers, the tradi-

tional system required to render intensive graphical applications. Exploiting

its aggregate optimised graphics hardware and processing power, Chromium

enables parallel applications to execute interactively across a cluster. ROAM,

Real-time Optimally Adapting Meshes, is the terrain generation algorithm

used for the majority of the testing applications designed. Serial and parallel

versions of this program are implemented and their performance with and

without Chromium evaluated. The improvement in the frame rate of the

applications suggests that Chromium, running on a modest-sized cluster, is

a worthwhile consideration for rendering demanding graphical applications

in real-time.
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Chapter 1

Introduction

Constantly expanding research fields, industrial and academic, in both hard-

ware and software are actively exploring all avenues in an attempt to address

the increasing demand for rendering power in computing. A plethora of tech-

niques are under exploration in an effort to increase rendering and computa-

tional capabilities, employ available hardware and software more efficiently

and reduce unnecessary and redundant rendering. It is into this category of

research this project falls.

Brookshear [6] emphasises that computer science is a combination of the-

oretical research and rapidly progressing technology, where they coexist in a

mutually beneficial relationship, each influencing the other. From this per-

spective, this project really does embody the ideas behind computer science,

as it combines existing technology with new and current research areas, the

theoretical findings not yet fully realised in practise. The goal of the project

7



CHAPTER 1. INTRODUCTION 8

is to substantiate the theories behind improving the performance of applica-

tions by running them concurrently on a graphics rendering system over a

cluster of machines. It amalgamates a number of well-documented areas of

efficient resource usage with new and experimental fields. In its own way, it

is pioneer work, which has yet to be successfully realised.

1.1 Objective of the Project

The motivation for the project was to evaluate the performance of a scalable,

interactive rendering system using graphical applications upon a compute

cluster.

Interactive frame rates are still not being achieved by many real-time graph-

ical applications in spite of the development of hardware accelerator technol-

ogy. Even as memory and processing power increases, so too does the size and

complexity of the data sets to be visualised. As far back as 1997, AAB En-

gineering modelled a ‘coarsely tessellated model’ of a coal-firing plant, com-

prising over 13,000,000 triangles - current laser range scans contain billions

of polygons. Solutions to fluid mechanics and dynamics problems require

several hundred million data points per frame, over thousands of frames. Up

to quite recently, computing and rendering such models in real-time could

only reasonably be executed on custom-built supercomputers.

Compute clusters are an evolving, and increasingly popular, architecture

due to the cost-effective approach they offer for a wide range of intensive
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applications requiring multiple node systems, as well as managing complex

graphics with limited resources. Defined as ‘a group of interconnected whole

computers working together as a unified computing resource’ ??, clusters are

basically a group of off-the-shelf, inexpensive components loosely-coupled

together, giving the illusion of being a single machine. They emulate the

computing and rendering power of a custom-built, high-end parallel system,

but are much cheaper, highly scalable and easy to upgrade. Cluster technol-

ogy advances, such as optimised graphics accelerators, improved processing

power, and high-speed memory has drastically improved their performance.

The efficiency and scalability of the cluster are highly dependant upon the in-

terconnect used between the nodes. Networks capable of routing the streams

of graphical commands at acceptable speeds have led to a competitive alter-

native to these high-end parallel systems[13].

While this recent sophistication of clusters, described in some depth in Sec-

tion 2.2, has offered very promising performance, there are still many applica-

tions, such as large scale scientific problem solving programs and simulators,

that are unable to be executed in real-time upon them. Methods to increase

the computational and rendering power of clusters have led to the devel-

opment of rendering display systems. These systems have been designed

and developed to increase the accessibility and abstraction of the underlying

parallel hardware by exploiting the graphics accelerators in each of the pro-

cessors in the cluster.
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For reasons later expounded upon in Chapter 2, section 2.2.3, Chromium

was the chosen graphics rendering system. ‘Chromium makes it possible to

visualise datasets and run applications that would not be able to run on a

single workstations’ [11]. Chromium, an evolution of WireGL, is a relatively

recent system developed to enable streams of graphical API commands to

be intercepted and manipulated on clusters of processors. A completely ex-

tensible architecture, it provides a general mechanism for clusters to run

interactive graphical applications. As a rendering display system, it takes

advantage of the graphics hardware optimisations of each of the nodes, as

well as exploiting the aggregate processing power of all of them. We con-

centrate on the support that Chromium offers for parallelising applications

across a cluster, which is our principal aim in this project. Multiple func-

tions can be performed by each processor on a stream of graphical commands

through Stream Processing Units, SPUs, which will be expanded in the next

chapter.

OpenGL, a graphics API based on C++, is ubiquitous in graphics and was

an obvious choice for implementing the testing applications since Chromium

was oriented to support OpenGL specifically. OpenGL is impressively fast,

enabling two- and three-dimensional features to be rendered at interactive

frame-rates. This becomes particularly relevant if hardware optimisations

are available, a number of which Chromium was designed to exploit. Its

ordered semantics and familiarity were other key reasons for its choice. A

variety of graphical applications was researched and considered, their scala-
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bility and the potential divisibility of their algorithms being decisive factors,

in addition to the size of the input and the preprocessing time required.

Fractals and Terrain Generation were two areas that were dedicated particu-

lar attention; terrain visualisation finally being given preference for the bulk

of the project. This field of graphics has been attracting much attention

of late as it is only in the past five or six years that realistic and believ-

able terrains have been modelledin real-time. The enormous computational

and rendering requirements makes this an ideal prototype for parallelisation.

Some of the diverse algorithms that were considered for implementation are

outlined in Section 2.3.2 , and the eventual choice, Real-time Optimally

Adaptive Meshes (ROAM), is analysed in greater depth.

The implementation of ROAM on the cluster incorporating Chromium, and,

in particular, parallelising the algorithm and enabling coherent communica-

tion between concurrent processes comprised the major part of the practical

programming work on the cluster. Many sample and test programs had to

be developed throughout this stage to fully comprehend different aspect of

the intertwined systems and their interaction with one another. To acquire

a realistic reading and understanding of the difference in performance, it was

necessary to evaluate the system with numerous test programs, each with

various modifications on the basic algorithm. These included serial and a va-

riety of distinct parallelised versions, run both locally on a single node, and

across the cluster of three processors. Chromium’s inbuilt Stream Processing
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Units, SPUs, which accommodate parallelisation, were implemented, as well

as a number of manually parallelised versions of code. The programs were

run both directly on Linux and using Chromium, some versions containing

additional message passing to synchronise events. Separate tests determined

the overhead communication costs associated with Chromium’s own message

synchronisation techniques and the extra message passing functions,( MPI

) incorporated in the code. The results of extensive testing are included in

Chapter 4, along with an analysis of their significance.

The resultant project still has scope for expansion, as discussed in the Future

Work section concluding this report. These include: utilising features of

Chromium currently under development, such as CRUT; further optimisa-

tions in both hardware and software, varying the size and interconnect of the

cluster; upgrading components such as the graphics cards; most particularly,

realising a practical application of the cluster, a CAVE.

1.2 Personal Motivation

From a learning perspective, this was a fantastic project to accept as I knew

practically nothing about the area previous to its undertaking. With an

interest in increasing the efficiency of computing power for graphical appli-

cations, coupled with a brief introduction to Linux from third year, and a

preamble into OpenGL this year to assist me, the bulk of the project was

uncharted territory. The amount of research alone, before any practical cod-
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ing was implemented, made this a challenging project from the outset.

The principle disadvantage in taking on something this novel is, of course,

the lack of documentation and help available. Hours and hours were spent

trying to figure out how different systems interacted or how a line of code

should be defined before use - things that could normally be checked rapidly

on the Internet or located in documentation. From this aspect it took far

longer than anticipated to fully grasp and then implement many aspects of

the project, but because everything had to be dissected and built-up piece-

meal, comprehension of how things actually worked was far greater than if

the answers had been more readily available.

The approach taken to completing the project was first and foremost a seri-

ous commitment to research. A lack of familiarity with most of the areas the

project draws upon meant that a vast amount of study and experimentation

was necessary to grasp the import of the central aspects of it. The initial

research concentrated on the main aim of the project: testing a rendering

system across a cluster using graphical applications, including the principal

factors influencing these, and how they were best achieved. The hardware

implementation of a cluster was an obvious starting point since this was the

architecture upon which the project was executed. A comprehension of the

advantages of cluster configuration over its competitors, how the nodes in

the system were connected together, and how communication takes place

between them was an important base. Gaining a deepened understanding of
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how graphical applications actually work on a more primitive level, as well as

learning OpenGL, GLUT (OpenGL’s Utility Tollkit which allows user inter-

action) and how their various libraries interact was a time-consuming element

of the research. Associated with this was a thorough grounding in Linux and

the editor vim, vi improved, in which both programming and this report are

written, as well as additional features of Linux such as CVS, a current version

system repository.

Regarding the progression of the project: while more concurrent than linear,

researching the different rendering display systems occupied some time, and

a variety are introduced before an in-depth discussion on the final choice,

Chromium, is launched into. Studying the underlying theories and experi-

menting with Chromium’s features was an ongoing part of the project, which

lasted most of its life-cycle. Choosing the methods most appropriate to test-

ing Chromium and, within that scope, which particular algorithms to im-

plement involved another significant milestone. A crucial and fundamental

element of the project was parallelising the application. This involved innu-

merable different attempts and much research into alternative approaches.

The most significant are outlined in Chapter 3, section 3.2. Eventual perfor-

mance testing was a focal part of the project, and a huge amount of testing

was carried out as the final part of the practical work of the project. The

evaluation and significance of these results are also expounded upon in the fi-

nal chapter. The CVS repository of the code can be explored in the attached

CD.



Chapter 2

Background

From the day the earliest computing machines were physically realised, peo-

ple have been working on ways of improving their performance. With an

ever-increasing demand for greater computing and rendering power, it seems

that a stabilising of the supply-demand relationship will never be achieved.

Yet many have dedicated their life to attempting to address this very issue.

With the visualisation of larger and more complex models, the demand for

increasingly powerful computing is ever-growing. With many applications

in educational, medical, commercial, scientific and military fields, as well as

the enormous reliance of entertainment upon them, more versatile tactics to

obtaining the best possible performance from machines at feasible costs are

necessary. On the hardware side, we have seen many drastic and revolution-

ary optimisation techniques involving novel approaches implemented. The

Scalable Rendering Systems, introduced in the previous chapter, abstracts

15
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the hardware and improves upon the performance of the cluster. A number

of these systems and their particular features will be examined later in this

chapter. Moving further into developments in software optimisation tech-

niques, we look at different methods to improve the performance of these

algorithms, in particular examining terrain visualisation, and more specif-

ically ROAM, Real-time Optimally Adapting Meshes, as the main testing

application of the project.

2.1 Improving Hardware Performance

Conventional Von Neumann machines are referred to as ‘control flow’ com-

puters due to the sequential manner in which the instructions are executed.

This is inherently slow, and has led to a substantial research into increas-

ing the throughput offered by such machines. Innumerable alternatives to

this hardware implementation are the areas of research and design of count-

less members of academia and industry alike. Improving the performance of

hardware designs generally focuses in on five areas of interest: throughput of

the system (the number of instructions executed per unit time), Reliability,

Flexibility, Availability and Scalability. The principle aim is to eradicate

bottlenecks and to increase the total system throughput.

Parallelism, in both hardware and software, has long been recognised as a

vital method of combating the under-performance of resources, rather than

the conventional sequential approach. The obvious advantages of parallelis-

ing include more efficient use of these resources, as well as faster execution
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times. Basically, the idea is to decompose a large application into a number

of smaller, more manageable parallel tasks, and then running these concur-

rently. This is a more efficient method of processing data, the philosophy of

which has inundated a huge range of different research fields. Running con-

current activities in the architecture is a cost-effective method of improving

the throughput, and different computer architectures have been categorised

by their degree of parallelism by Tse-yun Feng [16]. The maximum paral-

lelism degree, P, is the maximum number of bits that can be processed within

a unit time.

Pipelining is often viewed as one of the first steps to parallelisation. This tech-

nique allows the overlapping of instruction steps in the machine cycle. From

this rather basic stepping stone, many other implementations have devel-

oped that increase the concurrency of computing systems, from time-sharing

and multi-tasking, to the stage where multiprocessor systems have flooded

the market. Designed to exploit parallelism to the maximum, data flow ma-

chines work by enabling an instruction to be executed as soon its required

operands become available, as opposed to awaiting a program counter’s per-

mission. This is a radically different approach to that of the traditional von

Neumann computers. Other designs embrace artificial neural networks as a

manner of computing vast volumes of data that are too taxing for current

systems. Interactive systems, where the activities occurring in the machine

must be coordinated with those of the machine’s environment, known as real-

time processing, are becoming more significant as users’ interaction with a
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process increases in importance.

Under the aegis of maximising the potential of computers today, distributed

systems are gaining increasing popularity and momentum in academia, in-

dustry and commerce. Our exploration delves into loosely-coupled systems,

one of the two main branches of distributed systems, the other being tightly-

coupled systems. Loosely-coupled, or distributed multiprocessors, are par-

ticularly suited to applications with minimal task interaction[16].

2.1.1 Clusters

Clusters are highly scalable, with the amalgamated processing, memory and

bandwidth capacity increasing linearly with the number of machines in it,

see Figure 2.1.

Figure 2.1: Cluster of PCs

Overhead communication costs, interface, compute, graphics and resolution



CHAPTER 2. BACKGROUND 19

bottlenecks sometimes make this linear growth difficult to actually realise.

The sophistication of PC graphics cards and accessible high-speed networks

has experienced a dramatic escalation in recent years, and has heralded the

development of clusters of PCs across which the rendering of the complex

models are distributed [8]. This means the cluster can take advantage of the

frequent upgrades of these components for each machine, improving their

performance and power to realise such models at greater speeds, on a regular

basis.

Where custom-built, extremely expensive high-end parallel machines were re-

quired for the rendering of highly complex models, the far more attractively

priced PC cluster is becoming a viable alternative. Cluster computing com-

bines the best features of both the network-based and parallel computer, re-

sulting in powerful and, importantly, scalable systems, at competitive prices.

Various considerations, such as Ethernet, point-to-point or SCI (Scalable

Coherent Interface) interconnections are all fields of investigation where the

chosen network, in particular, is an essential design choices. Connecting

the processors in this manner enhances their cooperative ability to work on

shared data with relatively low communication overhead. Clusters are very

flexible, with non-problematic addition and removal of processors and they

can manage a number of different types of tasks (not specialised), and can

even be run on a variety of different machine types. The rate of improving

off-the-shelf components tends to be much higher than that for custom-built

hardware. With new, inexpensive graphics cards becoming available on a
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six-to-twelve month basis, the cluster can easily be upgraded on a regularly

without affecting the other elements of the cluster. Add to this a far more

competitive price-performance ratio than high end machines, and it becomes

apparent that the market for specialised supercomputers will surely dwindle.

This project was implemented on a cluster of three processors, Pentium II

450 MHz machines, each running Red Hat Linux version 7.3. Linux was

an appropriate choice as it really allows one the freedom to fully explore

an operating system, and permits full control over it. This encourages a

far greater understanding of how the system works, supplemented with the

freely available documentation.

2.2 Rendering Display Systems

To improve the performance of graphical applications on a cluster, an idea

emerged to execute them on a software parallel rendering system that exploits

the power and graphics hardware offered by the cluster, while achieving the

same interactive frame rates obtainable from supercomputers. Interactive

frame rates are generally deemed to be above 10 to 20 frames per second.

The enormous three-dimensional models now being modelled require huge

rendering power, and achieving realistic looking output in real-time is proving

a significant challenge to computer graphics developers. Parallelising these

loads is an obvious approach to realising these applications at interactive

frame rates. By merging the rendering power of all the graphics accelerators

in the cluster, a graphics rendering system provides a virtualised interface
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to the graphics hardware through the OpenGL API. This uses immediate-

mode semantics which mean it allows time-varying data to be visualised far

easier than by using retain-mode or scene-graph APIs. However, some effort

at storing display lists and texture objects is made, which is sustained by

Chromium, by saving this data on the server for reuse. A number of Render-

ing Display Systems are currently under development. Some investigation

was required to find a working version that supported high-resolution image

rendering on a cluster-based tiled display; particularly as it had to meet the

challenge of doing so in real-time, with performance comparable to that of

high-end specialised parallel systems. Outlined below are a number of those

explored.

2.2.1 Systems Considered

On researching various software packages for tiled displays, a number sug-

gested themselves as potential choices . Syzygy, Aura, VIRPI and, the even-

tual choice - Chromium, are all outlined below. The aim was to find a suitable

system for rendering graphical applications on a tiled display system. The

obvious disadvantage to these is the fact they are still at a rather experimen-

tal stage of development, and many require the program to be rewritten in

their own particular API.

Syzygy [5] was designed to enable a broad range of Visual Reality applica-

tions (traditionally run on SGI Onyx) to be run on a PC cluster, with optimal

performance. It also focused on allowing cluster-based applications to run
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between different architectures. A product of vrsource.org in the University

of Illinois, Syzygy was designed to provide a set of lightweight tools for build-

ing heterogeneous distributed systems. It attempts to group all the VR and

OpenGL code and libraries together and run it over a cluster of processors.

Unfortunately, it never really took off since it didn’t work very efficiently in

practise, but is still under development. Another exploratory system in this

area was Aura, a WireGL type application which requires the user to learn

another set of calls, separate to OpenGL.

Having rewritten all the OpenGL programs in the low level Aura language,

Aura then ports the graphics using different processors. The necessity of

rewriting all the programs nullifies any performance advantages Aura has to

offer, which eliminated it as a choice of tiled rendering system.

VIRPI is a high-level program which implements Aura, acting on top of it as

such. Boasting an ease of programming equal to that of C++, though this is

yet in a rudimentary stage of development, it is anticipated that VIRPI will

be popular with amateur programmers playing around with virtual reality

capabilities.

Argonne’s Tiled Display(TD) is a graphics library focused on rendering

GLUT applications on a tiled display. It uses MPI (Message Passing In-

terface) barrier calls to keep the animations synchronised in parallel GLUT

applications. The viewing commands are redefined with TD substitutes.

The output is sent to each node in the display, with its rendering split in

accordance with the MPI-appointed identification number. Handling user
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interaction was the main stumbling block for TD. Poor performance resulted

from separate window catch-calls - especially with mouse interaction. Mouse

events generate a vast quantity of tiny packets of data which prove an un-

suitable format for MPI, since it involves huge communication costs. It also

didn’t support a number of expected and quite basic things, such as random

number generation. In its favour, since each process runs locally, TD suffers

no overhead from network transmission and unpacking data, which means

attractive performance rates. Nonetheless, this system is a considerably less

invested venture and incomparable in scope to the WireGL and Chromium

libraries.

2.2.2 WireGL

WireGL was a research project by Stanford University Graphics Depart-

ment to explore Tiled Rendering Displays [15]. The initial software package

developed, WireGL, allowed graphics applications to render to a cluster of

workstations and output to a tiled display. Developed to distribute OpenGL

graphical applications across a tiled display, it at least supported the ap-

plication types of interest to us. WireGL intercepts OpenGL function calls

and packs and sends them over a network to the nodes of a tiled display

where a ‘pipe server’ awaits the incoming data. On receipt of the packets,

the functions are unpacked and rendered to a local window, which is created

by the pipe server. Using a ‘sort-first’ algorithm, WireGL pre-determines

which nodes will be displaying the geometric data, which is sent accordingly,

as illustrated in Figure 2.2, [13].
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Figure 2.2: Communication in WireGL

Many graphical APIs have ordered semantics, which means that if function

A is called before function B, then the resultant image should look as though

A was called before B. However, this sequence is not always maintained with

concurrent programming, and the ordering can be undefined. To ensure the

required and expected results, sorting the output is necessary. Traditionally,

a graphical stream cannot be modified once it has been sent to the rendering

pipeline, and for this reason two main schools of sorting parallelised images

have evolved - sorting the image before it is sent to the rendering pipe,

which is sort-first, and sorting after it has been rendered, sort-last.

Sort-first is the division of the two-dimensional screen into rectangular re-

gions or tiles for parallel rendering, each tile being assigned to a different
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processor. Sort-last splits the dataset into arbitrary subsets, which are then

distributed among the nodes. The renderer computes the pixel values for

its subset, regardless of where on the screen they actually fall. The data is

sent to the compositing processors. These are responsible for the final image

being depth-sorted, or z- buffered, back together from a fragmented frame-

buffer. Objects close to the view-port are rendered, and then those objects

behind the foreground ones that should be visible are shown, so the final im-

age is sorted according to distance from the view-port. The sort-last method

scales well to the data intensity, since each primitive is only rendered exactly

once - no overlap. It does require a high-bandwidth though, and rules out

a number of rendering algorithms, such as anti-aliasing, since the depth of

a given pixel is only computed at the last stage. Sort-first is more suited to

our purposes as it utilises the complete pipeline for a section of the screen,

fully exploiting the graphics cards, which are optimised for this purpose. It

also takes advantage of frame-to-frame coherence - an optimising technique

which plays a vital part in many dynamic applications.

These parallel graphics architectures are an efficient alternative to broadcast-

ing the OpenGL functions to all the nodes, which is far more taxing. WireGL

supported neither multi-rendering contexts nor display lists, which are essen-

tial to many of today’s graphics programs. Though it is relatively straight-

forward to use, requiring that a program be recompiled against WireGL’s

rather than OpenGL’s libraries, and executed by starting the pipe servers

on the destination nodes, WireGL does fail in the performance department,
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which eliminates it as a potential testing tool. It has since evolved, or been

rolled into Chromium.

2.2.3 Chromium

Like WireGL before it, Chromium is an open-source project, which means the

code is completely free and available. It runs on an impressive range of op-

erating systems, including Linux, IRIX and SunOS as well as Window-based

systems. Embodying the idea behind software display systems, Chromium

abstracts the underlying architecture and network topology, and, by inter-

cepting and manipulating the API command streams, enables a range of

applications to run in different environments.

Chromium accommodates the implementation of parallel rendering algo-

rithms, providing an environment that allows the customisation of OpenGL

commands via SPUs, Stream Processing Units, which means the user can

redefine or filter the streams of graphics commands. The entire WireGL li-

brary encapsulated inside the ‘tilesort’ SPU,which redefines the GL calls such

that they are packaged and sent over a network to the destination node(s).

This ‘tilesort’ SPU uses the sort-first approach of WireGL. Chromium also

offers sort-last rendering, which depth-sorts the image, as explained above.

It incorporates hybrid parallel rendering as well, whereby the stream filters

can be set to a combination of sort-first and sort-last parallel sorting archi-

tectures. These SPUs are completely extensible and can easily be modified

programmatically by users, allowing entirely new SPUs to be created and to-
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tal customisation of the stream transformations. Such generality means that

practically any cluster-parallel rendering algorithm can be either inserted

into the Chromium or implemented upon it [14].

Designed with OpenGL as the applications’ environment, Chromium simply

re-links this API’s libraries against its own newly defined SPU libraries, re-

placing the existing ones. This is a huge advantage as, not only do we avoid

the tedious rewriting of the applications in another language, as required

by many of the alternative systems studied, but many applications can be

run directly on Chromium with no modification to the original code. It also

contains its own Chromium-specific synchronisation primitives, barriers and

semaphores, to allow applications to be modified with python for parallelisa-

tion across the cluster. This will be explored in more depth when application

parallelisation is discussed. Another feature of Chromium is the many shared

libraries it builds, identifiable by the .so extension, which can be used by any

program. These are normally linked in the Makefile, a file which defines all

the libraries and tools required by a program, along with their location in

the system.

How it Actually Works

Chromium is based on three primitive nodes: the configuration mothership;

a Chromium application faker, the crappfaker ; and a Chromium server,

crserver. It lies upon the operating system, and communication between

these primitive nodes takes place through the network of the cluster, as
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shown in Figure 2.3.

Figure 2.3: Chromium Structure

The mothership controls all of the programs running on Chromium. Writ-

ten in Python, it supplies all information to the various components as to

what they should be doing in any particular run. This includes which SPUs

should be implemented, the name and directory information of the applica-

tion, and the sorting SPU used. It loops infinitely, awaiting response from

the crappfaker(s) and crserver(s). All of this occurs dynamically with the

starting of the mothership: python2 script.conf where script is the name of

the configuration file the user designs to run the application. Working on the

principle of one or more clients issuing OpenGL commands simultaneously
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to one or more servers. The crappfaker is basically a loader program, or

launcher, that initialises another unaltered application and ensures it finds

the Chromium OpenGL shared library, the replacement library, rather than

the system’s. The manipulated calls are then sent over the high-speed net-

work to the servers. The crserver dispatches the incoming stream of API

commands to the first SPU hosted by the server which renders the geome-

try. All the components configure themselves by questioning the mothership,

which supplies them with the required information. The render SPU creates

an OpenGL rendering context upon its’ startup. SPUs are typically linked

together in chains, where the next link in the chain inherits all from the pre-

vious link. To implement an initial test application, it is necessary to make it

‘Chromium aware’ by linking it directly to the SPU libraries (in the Makefile

in this case), or, alternatively, allow Chromium’s ‘crappfaker’ to launch the

desired OpenGL program and relink it against the SPU libraries. In some

cases the user doesn’t even have to recompile the program.

2.3 Selecting Applications for Testing Chromium

In choosing applications best suited to testing the performance of Chromium,

a number of factors had to be taken into consideration and prioritised. The

program would have to be highly scalable to enable us to evaluate its ability

to meet different computational and rendering parameters. To get a realistic

testing of this rendering system, the selected application should be computa-

tion and rendering intensive. If there is a low requirement of these, then the
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advantages of using the rendering system would be outweighed by the over-

head in implementing it. Another reason for a high processing and rendering

requirement is that these applications are suited to parallelisation as the most

efficient manner of managing demanding workloads. Additional optimisation

techniques incorporated in the algorithm would give a more realistic feel to

the project, as these will be applied to the sort of applications the system

would be used for in industry. A degree of platform-independence would be

helpful since it should be easier to design and write most of the code in the

windows environment and then translate it across to the Linux machines on

the cluster.

2.3.1 Fractal Art

The foray into potential testing applications began with fractals. Highly iter-

ative, fractals were interesting to explore both mathematically and visually.

The first requirement of the potential applications being met immediately

as, by their very nature, fractals are highly scalable. Huge numbers can be

set for the amount of iterations, increasing the level of detail required and

hence the computational and rendering power proportionally. A fascinating

aspect of fractals is that the more you zoom in on a part of a fractal, the

finer the detail you discover. Since they are iterative, the same pattern is

repeated in smaller and smaller dimensions. Found in nature - fossils for

instance - fractals seem to hint at whole Euclidean idea of nature obeying

mathematical laws, or perhaps mathematicians attempts to impose mathe-

matical laws upon nature. Innumerable Internet sites are dedicated to this
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new art form, fractal art, with many packages, some open source, enabling

non-programmers to invent their own, leading to some incredibly beautiful

ones being produced, see websites [4] and [3] in particular.

Beginning with some of the more simple, well-known fractals, the Mandel-

brot and Julia Sets, which were familiar from mathematical studies became

the starting point. The first working program completed was Sierpinski’s

Gasket, or Triangle. This works on the principle of iterating through a the-

oretically infinite loop of an iterative mathematical formula, the underlying

ideology of most fractals. The algorithm involved establishing three initial

points, forming a triangle. The first step requires one to randomly choose

two of the three points and obtain the midpoint between them. From there,

a loop is entered whereby the last point computed is added to a randomly

chosen point of the original three, and the midpoint of these forms the next

point, see Figures 2.4, [7], and 2.5 for clarification of this concept.

This was implemented on the Linux machines, with the necessary modifica-

tions being made for this operating system since all the applications were

developed in Windows environments. The next stage involved running it on

Chromium. Using the in-built capabilities of Chromium, two programs were

developed - one running directly on a single processor; the other split the

program, rendering the application on one node, and outputting the display

on another, all controlled by the mothership, which is set up on the third
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Figure 2.4: Diagram of generation of Sierpinski’s Gasket

node, cagnode12, as seen in Figure 2.6.

The user’s ability to alter features of the program was not as achievable. A

blanked out screen was created on one node to catch the user input, and this

data was then passed across the network to the other nodes where it was

then applied to the rendered object. This was chronically slow, and since

real-time rendering was a vital aspect of the project, too expensive frame

rate wise, to implement. The main reasons for not to persevering with this

particular fractal, Sierpinski’s Triangle, was that it could only be scaled to a

certain threshold intensity before further increases were indiscernible. Added

to this was the fact that the computing and rendering of this algorithm does

not lend itself to parallelisation very readily.
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Figure 2.5: Pseudo-code of main loop of Sierpinski’s Gasket
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Figure 2.6: Output showing Sierpinski’s Gasket

2.3.2 Terrain Visualisation

One of the purposes for which fractals have been adapted is producing recur-

sive artificial terrains. The first of this type of algorithm implemented was a

Mid-point Displacement Algorithm, also known as the Diamond Square Al-

gorithm. This involves a simple algorithm, E = (A+B+C+D)
4

+ RAND(d)

, where RAND(d) is a random value in [-d,d]. The value of d represents

the maximum displacement in the current iteration. This formula is exe-

cuted iteratively, and generates a square terrain with (2n + 1) × (2n + 1)

dimensions, where n is the number of times the function is called, as shown

diagrammatically in Figure 2.7, [17]. The advantage of such an algorithm,
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Figure 2.7: Diamond Square Algorithm

as with the second of its kind implemented, the Circle’s Algorithm, lies in its

simplicity, which means rapid computation. While a working version of the

Mid-point displacement algorithm was implemented on a windows machine,

it was never transferred to the cluster. No significant optimisation is incorpo-

rated in these applications, which is a key element in large-scale models and

therefore important to include in the testing applications. The applications

used to generate highly-complex models of a magnitude normally requiring

supercomputers are of a far more sophisticated nature. For this reason, the

simple applications above were discarded in favour of a more refined and in-

volved graphics application. Further research into terrain generation revealed

a rapidly expanding field. ‘Terrain databases are well beyond the interactive

rendering abilities of even high-end graphics hardware’[19] was the consid-



CHAPTER 2. BACKGROUND 36

ered opinion of some developers as recently as 2001. Terrain Visualisation,

with its ubiquity across so many fields, is an important area in computing as

it is seen as the next big obstacle to be overcome in the pursuit of realistic

interactive entertainment. It makes intensive use of graphics hardware while

trying to achieve acceptable rendering speeds as well as high computational

requirements, which makes it both an attractive field for testing Chromium,

as well as an ideal candidate for parallelisation of the workload. A number of

highly effective and optimised algorithms were explored based on the premise

that these are the type of applications with which Chromium would be most

effectively tested.

The scalability of the application was considered an essential feature as the

eventual testing of the system would involve ascertaining the performance

at different levels of complexity. Many terrain generation algorithms are

amenable to this as the level of complexity can usually be increased from

quite a coarse low polygonal count model to an enormously detailed one

without too much difficulty.

The two main aspects in the rendering of a terrain are the initial representa-

tion of the terrain inside the machine, and turning this into a two-dimensional

image on the computer screen. The simplest form of terrain representation is

as a height field. Consider a regular grid in the plane XZ, with evenly spaced

points, and a height attributed to each point, see Figure 2.8, [17] .

This representation requires little hard disk space, saving a lot of storage
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Figure 2.8: Height Map

as only the heights are needed along with a reference point in the terrain

- the centre point in the plane XZ for instance. Since the grid is evenly

spaced, both x and z values for each point need not be stored. This data in

a two-dimensional array of the heights (a height field) of a landscape taken

at regular intervals. A particularly useful format, the array can be accessed

in linear time and is also compatible with bitmap images, allowing editing

and viewing of the terrains in external applications. The level of complexity

can be modified by sampling the data points less frequently; at every third

instead of every entry for example. The most limiting disadvantage to this

structure is that overhanging terrain cannot be stored, since each point has

only one height value. This is acceptable for our purposes, so height fields

have been chosen as the most appropriate structure to use.
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The data is read into memory and an accurate mesh of it is generated, the-

oretically at least, by the visualisation program. The actual generated mesh

is formed with a seamless merging of the points of the height field, resulting

in a landscape that is then rendered to the screen.

Optimising Terrain Generation

Terrain visualisation can be viewed as a continuous level of detail render-

ing of height fields. Level of Detail (LOD) is a term used to describe using

many different resolutions within a scene - for instance, objects or terrain

blocks in the distance need not be rendered with the same level of complex-

ity as those near the camera. Due to the complexity involved in modelling

real terrains faithfully, it is essential to optimise the applications where re-

ducing the overall complexity of the model naturally improves the runtime

performance since less rendering is required. As early as 1976, James Clarke

outlined the advantages of having several different resolutions within a scene

- a concept which has permeated almost all terrain generation algorithms

ever since. The main approaches taken are simplifying the polygonal geom-

etry of unimportant objects, and flat or distance regions. This elimination

of redundant geometry incorporates techniques such as generating different

levels of detail or complexity for triangle geometry and texture blocks and

triangle stripping. Triangle stripping, see Figure 2.9, where one connects

a number of independent polygons or triangles into a strip using a greedy

algorithm, is one of the easiest ways of speeding up OpenGL applications.

The initial approach was getting a viable working version of an optimised
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Figure 2.9: Triangle Stripping

terrain visualisation algorithm implemented; additional features of the land-

scape could be incorporated at a later stage. After further research into

the huge range of available algorithms, it became apparent that their im-

plementation depended a lot on their motivation. By prioritising a number

of benchmark measures of efficiency it was easier to eliminate options. The

main measurement factors were:

• structural (or numerical) fidelity - how closely the mesh matches the

terrain to be modelled;

• visual accuracy - (popping, silvery triangles, visual defects ;

• preprocess time - algorithm complexity ;

• the size and complexity of the models that could be visualised satisfac-

torily and whether out-of-core preprocessing would be necessary (when

the model is too complex to fit in memory available).

Two main branches of the simplification of such applications are considered,

the latter eventually chosen. Conventional static simplification works by sev-
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eral versions of the same object at differing levels of detail, and converting

them to triangular strips during preprocessing with a final compilation of

these as individual display lists. However, with their increasing popularity,

dynamic polygonal simplification techniques have been incorporated in many

current designs.

Dynamic rendering works on the basis of extracting the desired LOD from

a data structure which encodes a continuous spectrum of detail. Better

granularity is achieved with this method since the LOD for each object is

precisely quantified - rather than choosing from a limited number of precre-

ated options. This is exploited in view-dependant systems, where the LOD

is selected for each new view, as detailed by David Luebke in his analysis of

polygonal simplification [19]. A high LOD gives good visual accuracy but

drastically reduces the frame rate. The other extreme, a low LOD, provides

an interactive frame rate but is visually unacceptable. Popping and cracks,

see Section 2.3.5 appear in the surface of the terrain when it is broken into

blocks of different resolutions. View dependant simplification systems con-

centrate on a balance between high resolution close to the view-port with

decreasing levels of detail proportional to distance, with a smooth transi-

tion between the different resolutions. Disadvantages include the increased

runtime load of choosing and extracting the best level of detail, but this

is combated with frame coherence, where the new frame is computed from

updating the previous frame, as opposed to working from the initial frame

settings.
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2.3.3 Methods Explored

A number of different approaches to terrain generation are under investiga-

tion, including:

• Progressive Meshes;

• Contour lines;

• Hierarchal TINS (Triangular Irregular Networks), which encompass

vertex-morphing with queue-driven top-down refinement[18];

• Quad trees, which include approximate least square fit in pre-processing,

priority queues and top-down refinement of quadtrees.

Some of those studied in greater depth are briefly outlined below.

CLOD

CLOD - Real-Time Continuous Level of Detail Rendering for Height Fields[18],

works by first coarsely simplifying the height field to determine the detail

levels of various blocks of landscape. Consequently these blocks are finely

triangulated according to the predetermined detail levels (the more time con-

suming stage). These finely triangulated blocks are then taken and merged

together, outputting the resulting mesh to the screen [12].

Geometric Mip-Mapping

Fast Terrain Rendering, using geometric mip-mapping, lets the 3D card ren-

der as much as possible, leaving a minimum of rendering for the main pro-

cessor. Regular blocks of the terrain height field are drawn having selected
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a suitable LOD for that block, where the LOD is changed as the camera

moves. Basic view-frustum culling is implemented, where inviable terrain

is not rendered. The lower detail meshes are pulled from the height field

directly by sampling [9].

2.3.4 ROAM

Real-time Optimally Adapting Meshes, ROAM, was actually designed for

a synthetic aircraft sensor simulation and addresses many of the principal

problems associated with real-time visualisation. It provides a real-time dis-

play of complex terrains by computing multi-resolution binary triangle tree

meshes for dynamically changing views. ROAM can be implemented at a

very basic level, just using the central concept, to very sophisticated and ad-

vanced optimisations, where the real advantages of this algorithm crystallise.

It incorporates dynamic updating of the height field and rapid tessellation

of patches. ROAM concentrates on error metrics, frustum culling, priority

updates, split and merge operations, and triangle stripping.

With geometric accuracy as its driving measure of success, a vital feature

of ROAM is the guaranteed error bounds. The distance between where the

point should appear in the screen space and where the triangulation actually

places the point is used as the error metric of the algorithm. A priority is

associated with each triangle according to this dynamic measurement, and

splitting and merging operations are called accordingly. Being a view depen-

dant system, it optimises flexible error metrics which alter with every new
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change in the view-port. This means that the level of detail in the gener-

ated terrain increases with proximity to the view-port and with increased

complexity of the scene, as examined in the next section. Frustum culling

is based on the idea of minimising the computation and rendering by elimi-

nating redundant aspects of the terrain, see Figure 2.10 (diagram based upon

Figure 2 in [10]), where the dark region lies outside the frustum, the white,

within it, and the light grey overlaps the boundary.

Figure 2.10: Frustum Culling, with the eye placed at the purple ellipse,
looking right

With a constantly changing view-port, it is clearly improvident to render the

entire scene. Therefore, only that which is visible within the view frustum

at any given time is actually rendered. The rest of the terrain is clipped to

this view-port, as shown in the screen shot Figure 2.11.

Frame-to-frame coherence is an integral optimisation of the ROAM algo-

rithm. This uses the the last computed frame and updates it, as opposed

to computing the difference from the initial frame. Another measure of the

efficiency of an algorithm is the size of the output; that is the number of

triangles outputted directly - ROAM achieves specified counts directly.
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Figure 2.11: Terrain clipped to rotating View-port
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Underlying Structure

ROAM is based on the Binary Triangle Tree (BinTree) structure - the coun-

terpart of the more familiar square-shaped quadtree - with split and merge

operations. The Binary Triangle Tree stores the implicit screen coordinates

of the triangles, which saves up to thirty-six bytes of memory per triangle

[21]. It is a far more attractive and efficient alternative to maintaining a

vast array of triangle coordinates for the mesh. At the lowest, or root level,

the tree consists of a simple right-isosceles triangle. Recursively splitting the

triangle from its apex to the centre of its’ hypotenuse produces two child

triangles. These are in turn are split, producing higher and higher levels

of detail as required, as shown in Figure 2.12, [10]. Any triangulation can

be acquired from a sequence of split and merge operations, where merging

triangles achieves a coarser level of complexity.

The BinTrees are embodied in the TriTreeNode structure, which defines five

key relationships relevant to all triangles in the mesh. The pseudo-code can

be viewed as such in Figure 2.13: A continuous mesh is formed when two

triangles overlap at a common vertex or an edge, forming a set of bintrees

(bintree triangulation). Each neighbour is either at the same level, or one

level coarser or finer than a given triangle, which prevents cracks in the mesh.

The TriTreeNodes are assigned from a static pool, which enables very quick

and efficient resetting of the state, since invalid nodes are eliminated and new

patches created in the Patch Reset() function. It also means avoiding the

cost of dynamic memory allocation, which is considerable when one bears in
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Figure 2.12: Splitting Binary Tree to increase LOD

Figure 2.13: Binary Tree with Children and Neighbours
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mind the testing includes methods which ran at 25,000 BinTree tessellations

per frame and the frequent creating and destroying of these nodes.

How ROAM Works

ROAM tessellates the mesh using the binary triangle trees for precomputa-

tion, and, at runtime, builds an accurate model by increasingly more precise

split and merge operations. This involves a preprocessing stage and four

runtime components. A view-independent, bottom-up error bounds for a

binary triangle tree is produced during preprocessing. During runtime, the

view-frustum culling is updated recursively; the priority of the output trian-

gles that may be split or merged are amended; the triangulation is renewed;

triangle strips are modified if affected by the culling. To understand how

these are accomplished, we look at a breakdown of how the algorithm actu-

ally works.

The height maps, as explained above, are loaded into memory and are associ-

ated with a landscape object, where terrains of infinite size can be generated

by linking multiple instances of the landscape class together. Each new ob-

ject divides the height field into large square sections and sends them to a

new instance of the Patch class, which achieves two aims: limiting the size

of the areas curtails their depth, and, since the Bintrees expand RAM usage

exponentially with depth, this amounts to a significant saving. The other

advantage to using small areas is that it enables the rapid re-computation of

the height field with the dynamic updates of the view-port. Larger patches
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would be prohibitively slow to recompute to run at interactive frame rates.

Each patch object is comprised of two Binary Triangle Trees merged to form

a diamond shape. Storing the coordinates in this BinTree structure saves

enormously on memory. The output mesh rendered is created from the tri-

angles represented by the leaf nodes of the BinTrees - which are the finest

level of detail of the tree. This is conducted in a two-phase fashion: firstly,

the children are added to the tree recursively, until the desired resolution has

been reached; the second phase involves traversing the tree again, and the

resultant mesh is displayed on screen. Since the triangles to be rendered are

actually computed and rendered during the traversal - there is no need to

store this data - again making substantial RAM available for other use. The

Patch class methods control the most important aspects of the ROAM en-

gine. They are called for each instance of the class by their parent Landscape

functions. Different sized terrains are accommodated by scaling the patch

size appropriately, in the Init() method.

The most important variable in the ROAM algorithm, and the driving force

behind it, is the variance, which is the error metric used for deciding if, and

to what depth, a BinTree node should be divided. Essentially, it is a measure

of the difference between the actual height field area and the BinTree node

representing it. It is computed by calculating the difference in height of the

interpolated midpoint of the hypotenuse of the node, and the sample point

from the height field. It has to be calculated deep inside the tree to get a

more accurate value. ‘A variance tree is a full-height binary tree written into
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a sequential array’ [21]. Each node in the array is filled with a single byte

Figure 2.14: Variance Array with Binary Triangle Tree

value of the difference per node, as depicted in Figure 2.14.

The Patch class contains two such arrays: one for the Left and one for the

Right binary triangles. The variance error metric is checked when deciding

whether or not to split a given Binary Triangle node. If the terrain being

represented by said node is complex, or rough, then the variance will be

high, and the triangle should be split into its children nodes for a more ac-

curate mesh approximation. These children nodes are then followed down,



CHAPTER 2. BACKGROUND 50

and the process is repeated, the variance being recomputed (around halved)

at each iteration of this method, until the difference between the position of

the triangle to be rendered and where it’s supposed to be rendered is deemed

sufficiently low. It is at this stage of the splitting processes that the rule of

neighbouring triangles only being permitted one Level Of Difference, LOD,

is implemented. Pointers to neighbours are used to keep the LODs synchro-

nised during the mesh tessellation. A split is only allowed to occur if the

current node and its base neighbour both point to one another, forming the

diamond shape alluded to earlier, and there exists not more than one LOD

between them, as depicted in Figure 2.15, [10]. ‘Force’ splitting occurs if

Figure 2.15: Splitting a Diamond

a diamond can not readily be formed, requiring the forced division of the

base neighbour to supply the second triangle for the diamond. A split in one

triangle of the diamond can be mirrored by a split in the second without the

possibility of cracks. Subsequent divisions, or merges, require the same op-

eration to be conducted on the other triangle, so that only one difference in

resolution is tolerated. The diamonds are then relinked back into the mesh,
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where this procedure is recursively called until the variance has been satis-

fied. The other influencing factor upon the variance is its distance from the

camera. Since ROAM is a view-dependant system, with greater complexity

nearer the view-frustum, a higher variance is allocated to these nearby tri-

angles, requiring them to be split further than those in more distant regions.

To recapitulate, for each frame, the variance is recomputed for each triangle

as a function of its distance from the point it represents on the height field,

and its distance from the camera. The landscape is tessellated, or created,

by using the variance as a measure of the depth each BinTree node is to

be split to, in order to obtain finer levels of detail. This tessellation step is

reiterated on the child nodes until the desired level of detail is attained.

2.3.5 Aesthetic Appeal

An essential element of terrain visualisation is that it appears realistic and

believable. Certain parameters for visual accuracies are used to ascertain

how well it meets the required standard. A number of research areas are

involved with determining what level of accuracy the human eye requires for

a scene or model to be believable. The Binary Triangle Tree structure, along

with the split and merge operations, which are the backbone of the ROAM

algorithm, eliminate the need for complicated legitimacy rules for changes in

the resolution, which are a fundamental requirement for irregular, or even

quadtree structured spaces.[10]

Common visual discrepancies include slivers, streaks, pops and cracks in the
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terrain. Slivery, thin triangles sometimes appear during the triangulation of

the mesh, but this numerical problem is avoided as the triangles are always

right-isosceles in shape. Streaks occur when too many triangulations are

computed at a given vertex - also not an issue in this algorithm. Popping

occurs when triangles are suddenly inserted and removed from the mesh.

This is not really an issue with ROAM with its control and gradual transition

between multi-resolutions, but one that can be addressed with geomorphing,

an interpolation method on vertex heights. Cracks are breaks in the terrain

often caused by a significant difference in the level of detail of one region and

another. This cannot occur in our program as ROAM ensures only one level

of difference between neighbouring triangles is permitted.

2.4 Parallelising ROAM

The performance of the application could clearly be further improved upon

by parallelising the actual code. Parallel rendering is characterised by two or

more processes simultaneously issuing commands to the rendering system.

Usually, each process will render a part of the entire scene or model, and

the pieces are combined at some stage to form the final image. A number of

different approaches to dividing the computation and rendering are explored

and attempted, as discussed in the next chapter. The running of concurrent

processes does, however, require additional control, and communication be-

tween these processes is often necessary.

There are several different avenues of distribution of the workload on the
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cluster that were under consideration for the project, a number of which

required quite refined inter-process communication and control. Chromium

offers some limited control, namely barriers and semaphores, in an attempt

to address the ordering constraints of OpenGL applications. Functions such

as broadcasting to all the nodes, however, are not supported by Chromium,

hence the need for a more sophisticated message passing system. As Chromium

is not sufficient for more complicated process management, alternative com-

munication techniques between processes have been researched.

Message Passing between the Nodes

The first system explored was the Parallel Virtual Machine (PVM). This is a

software package that allows a heterogeneous network of computers (parallel,

vector, or serial) to appear as a single concurrent computational resource -

a virtual machine. Though used in some older systems, this was rejected in

favour of the industry standard, Message Passing Interface (MPI)22. This, is

a library specification for message passing. Representatives of approximately

40 bodies of academia, industry and government were key in its’ development

[1], from 1992 - 1994. Drawing on years of experience with a number of dif-

ferent systems and libraries, MPI was developed as a common standard, one

which is practical, efficient, flexible and highly portable, for writing message-

passing programs.

The inherent advantages of standardisation in technology - portability and

ease of use - were realised with MPI. This has led to some manufacturers
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providing hardware support which enhances scalability, as well as a very def-

inite base set of efficient functions to build upon. Its features have been

drawn from a range of different message passing programs, notably the work

at the IBM T. J. Watson Research Center, Intel’s NX/2, p4, PARMACS, Ex-

press and nCUBE’s Vertex. While many applications only ever use the six

most common functions of MPI, this is a highly developed system, with an

impressive range of functionality associated with it. MPI also works across

Ethernet, which is the interconnect used in our cluster. It appeared to be by

far the most fitting interface to use for this project.



Chapter 3

Implementation

The implementation of ROAM used in this project incorporates many of

the optimisation techniques discussed in the preceding chapter. Much of the

original implementation was coded by Bryan Turner[21], modified for use in

this project. Having succeeded in getting a version of the algorithm working

on the cluster, the next stage of development was getting this serial version

running with Chromium, removing and replacing GLUT functions, inserting

python commands directly into the program, figuring out how MPI works

through research and writing test applications and, finally, getting all of

these working together - the most significant obstacles to which are outlined

briefly below.

Further to this was the actual parallelisation of the code. Splitting up the

processing and rendering in an effective and balanced manner required inten-

sive redesigning and recoding, as attempts to implement theoretically sound

ideas proved insurmountable at times, and just terribly inefficient at others.
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A few of these are mentioned, along with an analysis of why they were dis-

carded. The most promising implementations, which were eventually used

for testing Chromium are then examined in detail.

3.1 Serial versions of ROAM

The first program was prepared on a windows operating system, in Mi-

crosoft’s Visual Studio environment. This was a sequential version of the

ROAM algorithm illustrated above. The original images are limited in size

so that dimensions are to a power of two as the graphics hardware available

require this constraint. Alterations had to be made to enable the execution

of this program on the Linux operating system. This involved changing defi-

nitions of certain routines and calls, replacing any windows calls with Linux

versions and creating a Makefile to link all the required libraries and direc-

tory paths on the cluster nodes. This done, the application ran without too

much difficulty, once the errors were understood and repaired.

Having successfully initiated a basic building block application, running the

application with Chromium was the next step. Chromium could run the

application directly, with no real requirement for python code to be inserted

into the application itself. This run meant modifying a Chromium python

script, set it up according to the number of servers and application nodes

desired, and giving it such information as required to find the executable

file. With some experimenting and working out how the different calls and

SPUs worked, and building on the experience of getting the Sierpinski’s Tri-
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angle application working, this succeeded. It was run locally on one node,

tilesorted and then distributed across the cluster. Naturally, this was more

a learning experience of Chromium than actually implementing something

worthwhile as no performance improvement was evident. Chromium simply

duplicated the serial code across the cluster as required.

To achieve performance speedup, the program would have to be parallelised,

and some control used to maintain the ordered semantics of the original

OpenGL code. This meant incorporating python script barriers and semaphores

into the code. Since MPI was going to have to be used as well as Chromiums’

own synchronisation techniques, efforts were made to include this in the code

as well. It was decided to first get these working together in the serial ap-

plication, to ascertain the overhead using the Chromium and by initialising

the program with MPI instead of OpenGL.

3.1.1 Problems Encountered

Having researched and implemented enough demonstration and test versions

of code in Linux, Chromium and MPI, familiarity with these fields led to the

first attempted implementation of ROAM, incorporating all of them. Since

GLUT is not supported by Chromium, the first issue was its removal from the

ROAM program. Removing all the GLUT code wasn’t as straight-forward

as I hoped, since it was heavily invested in in the application. Nonetheless,

OpenGL and Linux-friendly replacements were eventually found for all of

the necessary code. Problematic function calls such as glutMainLoop() for
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instance, had no simple substitute as an equivalent method does not exist.

GLUT is a strictly event driven library [2]. Essentially, all GLUT applica-

tions must set up callbacks for all the events they are interested in, whether

it’s input from the keyboard, mouse, resizing or redisplaying the screen, and

it is here that glutMainLoop() is called. This is an event processing loop,

which, once called, will never return. Because it has a central role in control-

ling the entire program, where other library calls have been adjusted to make

allowances for this, attempts to write routines to emulate its functionality

proved more difficult than one would initially suppose. This mastered, some-

thing as undemanding as printing to the screen, a pretty basic operation one

would think, also proved complicated, as this is quite am involved process on

Linux. Even after locating and loading the required fonts and parameters, it

still conflicted with the present OpenGL code.

The first serious problem area encountered was implementing Chromium

and MPI together. MPI alone would work, and, after some experimenta-

tion, Chromium worked alone with ROAM as well. Merging these two test

programs together proved to be a very involved and complicated undertak-

ing. Initial crashing out was being caused by the Chromium library being

called before the MPI one, a very simple problem, but when one gets page

upon page of MPI errors, it seemed reasonable, having checked a number of

potential problematic areas within the code, to look to MPI itself. Having

attempted to link certain required libraries separately, changing pathnames

and locations of different files, moving the order of calling functions and
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swapping things around, the cause of the crashing finally transpired. This

was the first of several difficulties in getting Chromium and MPI to work as

a cohesive system.

After eliminated any reported errors, including repeated p4 errors and innu-

merable unrecorded ones, from the program, executing it led to two empty

tile frames being rendered to the screen. This blanked out screen output

continued for over a week, in which time more and more extreme stripping

and whittling down of the code took place. This included changes to view-

port settings, the frustum parameters, modifying the projection matrices,

and the flushing and swapping of buffers at various stages - a huge number

of alternative versions and approaches to coding this were attempted. Even-

tual stripping of the code to the bare minimum required to run an OpenGL

program, removing all the terrain generation, Chromium and MPI, led to

the printing of a coloured line, and this was gradually built into a simple

cube. Notions of a breakthrough were premature however, as efforts to re-

build the application - inserting snippets of code followed by lengthy and

thorough testing of each piece - proved in vain. The code was impossibly

messed up, and, after another two weeks of hacking it to shreds, stripping

and rebuilding it, a stage was reached where the view-ports and projection

matrices had changed beyond recognition. The code was unsalvagable in the

sense that the time requirement of fixing this program would be too costly.

As more intricate problems were encountered with amplified complexity, it

was decided to abandon this application.
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It taught a good lesson in creating regular backups, the value of using a CVS

repository and why commenting and keeping logs are vital activities for any

programmer. While frustrated at the loss of time, the experience gained in

trying to fix this program, initially written off as over three weeks wasted

effort, proved invaluable when it came to starting from scratch again with the

first ever working version of ROAM that had been run on the cluster. It was

only by tearing the code apart like that, and trying innumerable methods

of getting the Chromium and MPI to work in conjunction with one another

that a far deeper and more precise understanding as to how the components

worked, both as single entities and as part of the system as a whole, was

gained. This was imperative for designing and modifying the applications

from then on.

3.1.2 Resulting Applications

Starting with the first working serial application as a base, a number of

different versions were designed and programmed - this time with proper

CVS backups! Apart from a number of testing applications, incorporating

different functionality and techniques, which were later disposed of, three

main serial versions of ROAM were used in the performance testing. serRoam

is just an unadorned version of ROAM. serChrom has python script included,

the Makefile is relinked to the Chromium libraries and the required SPUs

specified. A number of configuration files were also developed, using python,

to specify how the execution of the program was to be structured. serMpi

was originally developed just using MPI and not Chromium. MPI Init()
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replaces the OpenGL main() call to initialise the application. It is also in

charge of setting the rank and size of the processes, and this information is

shared with the other classes.

The Makefile is modified to compile using mpiCC rather than g++. The

MPI library is wrapped around the g++ compiler, which negates the need

for explicit linking of libraries, as long as MPI is properly installed and the

library is accessible. After thorough testing of this application, Chromium

was also added. This was a more involved venture, as conflicts, between, for

instance, the barrier control of both, had to be carefully avoided. Barriers

are used to ensure all of the data has been processed up to their location

in the code, before the next step in the program is taken. With multiple

processes, it is essential to ensure barrier conflicts, deadlock, more than one

flushing of the buffers and countless other potential inconsistencies do not

occur. The difference in performance of these three applications in particular

are explored in the next chapter - Evaluation.

3.2 Parallelisation of ROAM

Parallelising was the next and a crucial element of the project. As explained

in Chapter 2, Chromium was designed to support parallelised applications,

and it is only with these do the benefits of using it become apparent. Using

various tilesorting and depth-buffering techniques with serial versions, one

does get a feel for how the system works. The performance of serial versions

of code running concurrently, as revealed in the following chapter, is inferior
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to that of the parallel version, as it involves additional duplication of the

workload, rather than the distribution of it. A countless number of tech-

niques for parallelising were explored and developed, some abandoned quite

quickly, others fully implemented before their inefficiency caused them to

be discontinued, before the more promising algortihms were used for testing

purposes.

3.2.1 Methods Explored

I made an initial design error by approaching the parallelisation of the al-

gorithm bottom-up, which meant trying to divide at the lowest levels and

propagating this up through the binary tree, then the patches, until, eventu-

ally, the entire landscape was evenly divided. The first attempt implemented

began at a very basic level where, on dividing a binary tree into its two chil-

dren, the left child would be rendered by one processor, the right by the other,

and the main processor, cagnode12, would act as controller and synchroniser

of these events. note: the ‘cagnodes’ are so called from cag - Computer Ar-

chitecture Group This worked well in theory. Trying to incorporate it into

the original algorithm soon became extremely complicated. The greatest ob-

stacle however, was of a less surmountable nature and the impracticalities

of such an approach soon became apparent. Both nodes would have to be

aware of the level of detail of all the nodes around it, the essential kernel of

how the ROAM algorithm works. Since every triangle can only be at the

same or one value different from the level of detail of its neighbours, each

processor would have to track the LOD of all the nodes bordering theirs that
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were being rendered on other machines. With a constantly rotating view-

port, the overhead of such a feat quickly made this parallelising technique an

infeasible option.

The next division attempt was at a slightly higher level. Every time a Patch

was rendered, it would rotate between, originally two, machines. On being

called initially the patch would be rendered on one processor, and on the

other at the next invocation, controlled by a simple swap method in the

function. This also involved too much duplication of code and didn’t really

improve performance as one processor was idle while the other worked and

then vice-versa. The process was alternating rather than two running concur-

rently. Another divided the workload by allowing one processor to manage

the computing and rendering of all left nodes, another the right nodes, and

the third machine, the apex nodes of the tree and, yet a different effort to

parallelise, meant dividing the split and merge queues among the machines

of the cluster, the principle under which ROAM operates. These were en-

deavours which ended in failure.

The cost of overhead communication in all of these methodologies made them

prohibitively expensive. Efforts to alleviate this overhead led to attempting

higher level approaches. Two of the most promising and efficient algorithms,

which were used extensively and very successfully in the testing are detailed

below.
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3.2.2 Most Efficient Algorithms

The first really successful and worthwhile version of this was quite abstracted

and high-level in comparison to previous efforts. Working on the principle of

dividing the computation and rendering of the patches among the nodes in

the cluster in an alternating fashion. The second highly efficient algorithm

parallelised the application by dividing the view-port angles and partitioning

the rendering and processing accordingly.

Parallelisation by Division of Patch Rendering

The idea of the patch, a combination of two binary tree triangles was intro-

duced in Section 2.3.4. The landscape is comprised of innumerable patches

linked together. This parallelisation technique divides the processing and

rendering of the patches among all the processors in the cluster. It does so

by applying a mod. function to each patch to be rendered, and the resulting

value is matched to the machine that is to process it, using the identification

number assigned to this processor by MPI. Since each patch is specifically

associated with one machine in each frame, no patch is rendered twice. Fig-

ure 3.1 clarifies this concept. If there are six patches, for instance (naturally

the real value is measured in thousands), and three processors on the cluster,

then the function returns the remainder from dividing the number of proces-

sors into the patch number. That is, if patch number five is divided into the

cluster size of three, a remainder of two is obtained. This patch will then be

rendered by processor number two.
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Figure 3.1: Parallelisation by Dividing the Patch Rendering

Parallelisation by Splitting the View Frustum

The division of the viewing frustum angles and allocating each subdivision

to a different processor is the basis of this method. This distributes the work

extremely evenly, and is highly scalable. Some initial problems with clipping

of the view-ports and aligning different angles and divisions needed to be

overcome, which actually took quite some time, where clipping is the process

of limiting the visual representation of the mesh to a specific area on the

display. It is also necessary to clip to each line dividing the viewing frustum

into subsections, to avoid overlap.

Initially, the viewing frustum was divided for tessellation, using interpolation

between the points to achieve smooth transition. The Field of View angles
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were then divided according to the number of subsections created. In this

case, there are three nodes on the cluster and the workload is to distributed

evenly among them. With this in mind, we split the view-frustum into three

equal parts, and associate each with a different processor. When a patch is

to be rendered, a check as to which section its centre lies within is made, and,

on that basis, the work is assigned to one of the three processors. Each patch

is only rendered once, as, having been allocated for rendering by a particular

machine, it cannot be reassigned. This prevents overlap at the meeting points

of the partitions. Figure 3.2 below shows a snapshot of this method running,

where the processing and rendering of each segment is allocated to a different

machine. This could be modified to allow for the scaling of the cluster by

changing the division of the angles and a number of related variables.

Figure 3.2: Parallelisation by Splitting the View Frustum
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3.2.3 Further Difficulties

The desired image accuracy was an important consideration in the testing, as

well as the frame count per unit time. Serious visual defects such as popping

and cracking on the modelled structure could not be tolerated. Indeed, it

was indicative of a problem when they did appear, since ROAM specifically

operates against allowing that to happen. For this reason, problems with the

applications which resulted in freezing, stripped and cracked terrains had to

be sourced and eradicated. This took some time as the potential causes for

such problems seemed an ever-growing, rather than shrinking, list as this

debugging stage progressed.

Firstly there was the issue of swapping and flushing buffers at appropriate

times; this cannot be allowed to occur more than once in a frame. Double

buffering is a technique, implemented in both hardware and software, which

supplies two complete buffers to avoid flicker - one is displayed while the other

is being drawn. Flushing the buffers is function called after drawing which

ensures all the data has been processed and sent to the display. A number

of difficulties arose following the actual parallelisation, often stemming from

simple problems but which sometimes took days to find. On one such occa-

sion it was deduced the cause of blanking out and fragmented outputs was

from the OpenGL code, which led to readjusting and redefining a number of

viewing functions and matrices.

A week later it was discovered the cause had more to do with the placement
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of the synchronisation calls, then with them changing the projection settings.

The entire algorithm has been stripped down to almost a skeleton application

a number of times, only to be rebuilt on finding the problem area. This in-

volved a huge amount of tedious testing of fragments of code, but a learning

experience nonetheless and the final products were satisfactory in effectively

testing Chromium.



Chapter 4

Evaluation

The tests were conducted upon a cluster of three 450MHz Pentium II ma-

chines, each with 256 Mb RAM, and S3 Verg graphics cards. An Ethernet

network is used between the nodes. Each processor runs a Red Hat version

7.3 of Linux. The first step was deciding how to measure the performance.

Then a series of results are laid before us, along with their source and an

analysis of their significance. The serial programs are presented first, fol-

lowed by the parallel and several different tests with varied aims, comparing

a number of these programs. Overall conclusions are then drawn from the

implemented work.

4.1 How to Best Measure the Performance

The first decision to be made for testing was what to use as measurement.

This led to researching a number of alternatives, including Chromiums’ own

support. Chromium has own performance testing SPU, perfSPU, which was

69
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implemented and used in some of the test applications. This Stream Process-

ing Unit takes snapshots of the current state of how a number of features are

performing. Using either a time or frame based method, it obtains a dump

of statistics, which can be saved in a log file. Unfortunately the statistics

reported weren’t really relevant for our purposes, so, although interesting

merely from an academic point of view, they added nothing to the perfor-

mance testing of the system.

The other principle methods considered were measuring the CPU usage, the

time taken to execute an application and the frame rate. Since we are

analysing the performance of parallel and serial programs, we are looking

at ways to compare the speedup of the applications. speedup = runtime of

the fastest sequential algorithm/ runtime of the parallel algorithm

In parallel processing, efficiency is best measured as a function of speed, be

it the run time, or the number of frames rendered per second, since the aim

is to complete the execution as quickly as possible, not the effective use of

the processors. The speedup of a parallelised application run on a parallel

system is computed by comparing of its performance on a single machine to

that on a multiprocessor system - cluster of not. Obviously, one can never

achieve greater than a linear speedup, that is, for N processors, and constant

c, a speedup of cN. This is rarely reached as overhead costs generally have a

notable bearing.

It was decided that the frame rate per second would be the most suitable mea-
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surement of the performance of the applications. This is a very well-known

method of gauging graphics programs performance, which is relatively easy

to implement in GLUT, OpenGL and MPI, which was necessary to traverse

the range covered in the testing.

4.1.1 Frame Rates

The frame rate of the application varies from frame to frame, depending on

the work of the Operating System, moving cameras, and changing dynamics

within the application. For this reason, we concentrate on evaluating the

frame rate per second, fps, and avoid the costly computing of the frame rate

of each and every frame. For the applications running Chromium alone, with

no additional message passing, OpenGL’s Utility Toolkit, GLUT, provides

a function, glutGet() which returns the time the application started and

finished in milliseconds, when called at the appropriate stage. The frame

rate can thence be evaluated. Using the same formula, the frame rate can be

attained for the applications using just OpenGL, the Chromium only versions

for instance, and those containing MPI, using the MPI Wtime() function in

place of the glutGet().

4.2 Results

A huge number of experiments were run to evaluate the performance, image

accuracy and scalability of Chromium. Each test consisted of a modified

version of the ROAM algorithm for a fixed 50 frames. The key difficulty in
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the testing was the graphics cards on the cluster. The easy upgrading of such

components on cluster architecture has not been taken advantage of as the

current cards, S3 Verg, are seriously outdated and produce diabolical frame

rates. Though the processors are only 450 MHz Pentium II, the system

is graphics, and not compute, limited as revealed in Chapter 2. For this

reason, it is difficult to ascertain whether interactive frame rates really are

being achieved. Testing an application on a windows machine with optimised

Intel Brookdale G graphics cards, gives frame rates of up to 30 fps, where

the same application, just slightly modified for Linux, merely achieves 8 - 10

fps (frames per second) run on a single processor of our cluster. Therefore,

even though 10 - 20 and above are considered acceptable real-time frame

rates, we have to re-adjust our parameters in this case, and allow for the

probable fps of the applications, were the cluster updated. Using this as a

rough translation guide, we can get an idea of the potential performance of

the system.

4.2.1 Serial Versions

Running a serial version of ROAM, with GLUT and neither Chromium nor

MPI unnecessary considering this will execute as a single serial process, gave

frame rates of between 8 and 10 fps when executed in wire-frame mode.

Wire-frame simply means that only the perimeter lines of the triangles are

drawn, instead of filled solid or textured polygons. When texture and light

are enabled, these rates fall to an average of 3.05 fps. This drastic plunge

in fps led to a significant amount of the testing and comparisons being con-
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ducted in wire-frame mode - since the other was so chronically slow. While

methods to address this congestion in the rendering, specifically to manage

texturing and lighting in the preprocessing stage, have been designed to some

extent for Chromium, these are not yet fully operational.

To give an idea of the impact such lighting and texture have on different

applications, tables 4.1 and 4.2 outline some of the results from appropriate

test runs. These results were obtained with the number of Binary Triangle

tessellations at 10,000 per frame. Subsequent testing alters this parameter,

pushing the system to test its computing and rendering capabilities. The

Figure 4.1: Test results comparing overhead in Serial versions

above table, 4.1 outputs the results of three serial versions of the same un-

derlying ROAM application, one consisting of just the algorithm, one with

Chromium and a third with MPI. Its purpose is to show the overhead, and

ensuing impact in performance, relating to each. serRoam is just a serial

version of ROAM with GLUT, no Chromium, no MPI, Makefile uses g++

compiler and run with ./roam, where ‘roam’ is the executable file.

serChrom is a Chromium-based serial version of the same algorithm, with

the GLUT removed - hence disabling user interaction with the program. This
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means that Chromium code has been incorporated in the program, and the

Makefile contains the pathname to the Chromium, and links the required

libraries for this application. All three nodes play a part in each Chromium

run, the mothership, server and application faker, as explained previously.

Having compiled the program, it is run by starting the mothership,

python2 serChrom.conf

with the appropriate python script, serChrom.conf. This configuration file

will contain all the required information for the run. The path to the pro-

gram files, the number and location of crservers and crappfakers, (in this case

one of each, both run locally on cagnode12) as well as their rank, size and

order will all be supplied by this script. An example configuration file can

be seen in Appendix A. The ‘crappfaker’ re-links the OpenGL library calls

to the Chromium library and the ‘crserver’ renders it to the display tile. No

visible defects were apparent, despite intensive testing of the application, so

it was deemed to meet the visual accuracy standard. Adding a server node

means two tiles are created (from the AddTile() command, see Appendix A)

and the image is split between them, using the sort-first ‘tilesort’ SPU. This

implements the theory behind tilesorting by producing a large image by tiling

together two individually rendered images. Adding an application node has

a detrimental effect on the performance as, because it is a serial program run

on one processor, it simply duplicates the workload. The fps drop to 3.2 is

evidence of this.

serMpi is another sequential version of ROAM, this time with MPI as well as
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Chromium code incorporated. As it is serial, and if it is run as one process,

there is no requirement for the MPI, but it is used to initialise the program,

and assign rank and size. This is more for testing the overhead of using

MPI than any real test of communication among processes for the stated

reason. The first test program for MPI, cpi.c, simply initialised and issued

some of the more basic commands. An opportunity to get Chromium and

MPI working together and to evaluate the extent of the overhead of using

message passing code arose with serMpi. When the mothership is started, it

looks for the crserver and the crappfaker in the same manner as before (one

of each as above). This time, however, although the crserver is initialised as

previously, the mpirun command: mpirun −np 1 roam, where np means the

number of processes, 1 is the number in this run and roam is the executable

file. launches the application in place of the crappfaker. Executing this appli-

cation with two server and two application nodes results in a dire slowdown,

from 6.2 to 2.8 fps, since the computation and rendering is replicated and all

carried out on one machine, cagnode12.

4.2.2 Parallel Versions

Parallel applications running on cagnode12 alone, shown in table emph4.2

below are noticeably slower in a sequential environment, comparing poorly to

the serial versions outlined in table 4.1. This is an analysis of the additional

computational cost in dividing up the processing and rendering, but running

them all on the same machine, as such, increases the workload, hence the

inferior frame rate.
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Figure 4.2: Test results comparing overhead in Serial versions

parChrom uses the first parallelising technique specified above - where the

rendering of the patches is divided among the nodes of the cluster. The

parallelising works beautifully, with a ‘cycle’ parameter altered with each

call of the Reset() function, sending the patches to be rendered by the ap-

propriate machine, as described in section 3.1, ??. The above table only

shows the results for running the programs locally on a single node, which

means that the advantages of parallelising are not apparent. It is of interest,

however, as a basis for evaluating the overhead costs in using Chromium,

Chromium and MPI together and MPI alone associated with each. Inserting

both Chromium and the MPI incur certain costs, as supported by the lower

fps values obtained.

parRoamMpi is simply the first parallelised method, initialised with MPI

rather than OpenGL commands. There is no Chromium in this version and
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it is executed using mpirun −np 3 roam, where 3 is just a sample number

of applications that could be run. As can be seen in the table, 4.2, this

achieves quite impressive results locally, as there isn’t a huge amount of ad-

ditional rendering required to use mpirun rather than the ./roam execute

command. parMpi, which is parallelises ROAM using the first technique

of the two most efficient, as with parChrom, obtains the best performance

rates locally as the number of server and application nodes increased - with

an average of 4.508 in wire-frame mode, with parChrom and par2Mpi (second

parallelising technique referred to - divided view-port) competitive. par2Mpi

is a highly efficient method of dividing, but a glance at table 4.2 will suggest

that the frame rate when running one server and one application node is

slightly unusual, at 12.68 fps. This is accurate since this algorithm works on

the premise of culling to the view-port associated with it. Hence, if there is

only one application and server node, the algorithm will assign the correct

subdivision of the viewing frustum to this machine, and not render the rest

of the terrain outside these angles. This could be rectified by setting the an-

gles dynamically rather than hard-coding the divisions directly. Not a very

complicated task, but nonetheless a time-consuming one, which is the reason

for not implementing this feature.

The performance results suggest that the overhead in having the program

initialised and ordered by MPI as opposed to the OpenGL main() are negli-

gible. When running on a single node, communication between the machines

is obviously not an issue, nor is inter-process communication when run using
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only one application node - the distribution of multi-processes is examined

in the next part.

This initialises two processes, or three depending on the settings coded in the

configuration script, and output checks prove the patch rendering alternat-

ing between the number of processes initialised. The difference in running

them across the cluster instead of locally, as here, simply means that these

processes are computed and/or rendered on other nodes, not just all on one,

again this information is established in the configuration script, parMpi.conf.

Again, there is an element of additional overhead involved as the parallel

version is slower than its serial equivalent, as apparent from tables 4.1 and

4.2

Dividing the processing and rendering across the cluster

To run MPI across the cluster, it is necessary to assign the appropriate ma-

chines for the application faker in the MPI-shared file: machine.LINUX and

the location of the mothership, since it was set on cagnode12. This was done

by hard-coding:

setenv(”CRMOTHERSHIP”, ”cagnode12”, 1);

into the programs to be run, just after initialisation in the main program.

It is simply a time-saving method, since the alternative, actively exporting

the mothership component to cagnode12 is perfectly viable, just more time-

consuming.
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We can see immediately from table 4.3 that distributing the workload across

the cluster yields improved performance of the applications, not only of the

same applications run locally on one processor, but superior to the serial

applications. This confirms the underlying theory of the project, that paral-

lelising improves performance.

Different LODs - Scalability

This table also shows the results of the next stage of the project - which

involved testing the system at different resolutions - the number of Binary

Triangle tessellations per frame. Previous testing had this parameter set to

10,000. The table below, 4.3, outputs the results gained from some of the

more extreme rates tested, specifically examining fps at 1,000 and 25,000

tessellations per frame. It was discovered in the course of numerous test runs

that all of the applications crashed at greater than 25,000 bintree tessellations

per frame.

Figure 4.3: Test results comparing overhead in Serial versions

These results are pictorially visualised in the chart, chart and the graph 4.5

below.
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Figure 4.4: Comparisons of fps between different Serial & Parallel versions

4.3 Significance of Results

Ideally, increasing the number of nodes on the cluster would lead to a linear

rise in the frame rate with no detriment of the image quality. This depends

however on the complexity of the problem, since, with greater computational

and rendering needs, the scalability is going to be closer to the theoretic linear

improvement. However, with slightly less taxing applications, such costs

as overhead communication, duplication efforts, additional overlap causing

escalating polygonal throughput and I/O bandwidth requirements have a

more discernible impact.

From the illustrated results, complementing further testing, we conclude that

processing images with multiple PCs can be more efficient than processing

images with only one machine. The improvement upon the performance due

to the use of Chromium is also clear. The performance testing indicates that
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Chromium does improve and facilitate the execution of intensive graphical

applications across a cluster, in real-time. As indicated above, there is a slight

overhead associated with using Chromium, as with MPI, but this is negligible

when compared to the increase in the number of frames per second achieved

the more intense applications distributed across the cluster. The chart, 4.4,

above and the graph, 4.5, below attempt to clarify this by depicting the

results in context of one another.

Figure 4.5: Test results comparing overhead in Serial versions
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4.4 Conclusion

Using a cluster of inexpensive PCs to drive the display, a highly scalable

graphics system capable of rendering multi-resolution images of large terrain

visualisation models has been presented. Chromium, the scalable graphics

rendering system used, is explored and tested in depth, the results showing a

significant performance improvement. The generated models are capable of

running at interactive frame rates and, allowing for upgraded graphics cards

and a larger cluster, models of greater size and complexity could also be

rendered. The theory of improving performance with a rendering system has

been validated. Chromium enables graphics intensive parallel applications

to execute in real-time on a modest-sized cluster. This means that a cluster

of off-the-shelf components can be used to render models, which would con-

ventionally require very expensive high-end graphics systems, at a far more

affordable price.

4.4.1 Future Work

This research has shown promising results for implementing image process-

ing techniques in a multiprocessing environment. There are a number of

different aspects of the project that would make interesting further research

areas. One of the features of Chromium which is capricious in this version,

but is promised to be reliable in the next, is CRUT. Implementing CRUT,

Chromium’s Utility Toolkit, would allow user interaction with the applica-

tions in real-time. A greater level of detail management would test the system
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more thoroughly. Optimisations which are not yet fully-developed in this ver-

sion of Chromium, such as computing the texture and lighting at preprocess-

ing, and implementing precise load balancing schemes, would also contribute

significantly to the performance improvement. It would be interesting to

consider ways of utilising different numbers of processors, maintaining the

constraints on the original image, which would offer a more accurate testing

of the of the capabilities of the cluster and facilitate locating the threshold

number of processors that achieve speedup in this system. Another worth-

while project would be to use SCI (Scalable Coherent Interface), see [20] for

further details, rather than Ethernet as the interconnect, since this has an

enormous impact upon the scalability, as well as the capacity, of the cluster.

upgrading to high-speed graphics cards on the processors of the cluster would

give a far more realistic idea of the performance gain, as the current ones

installed are dire and responsible for a graphics bottleneck in the system. A

final application and worthy purpose of this project would be putting the

Chromium, on the improved cluster, to a practical use, such as realising a

CAVE. This is a cuboid room with tiled display projectors situated on all

sides, of which there are currently only a few hundred in existence.



Appendix A

Configuration File

The following is an example of a configuration file, A.1 and A.2. Written

in python, this is started with the mothership to supply all the required

information for Chromium run. This particular file was designed to run a

parallelised version of ROAM (the second method - dividing the view-port)

across the cluster. It runs three server nodes and three application nodes,

the computing and the rendering divided out across the cluster with one of

each node running on each machine.

84
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Figure A.1: Configuration File for Parallelised Method II



APPENDIX A. CONFIGURATION FILE 86

Figure A.2: Configuration File for Paralysed Method II, continued
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