
Shared Memory & MessageShared Memory & Message
Passing ProgrammingPassing Programming

on SCI-Connected Clusterson SCI-Connected Clusters

Joachim Worringen, RWTH Aachen

SCI Summer School 2000
Trinitiy College Dublin

Shared Memory & Message Passing Programming on SCI-Connected Clusters
SCI Summer School 2000, 2nd-4th October, Trinity College Dublin

AgendaAgenda

• How to utilize SCI-Connected Clusters

• SMI Library
– We have SISCI & Smile – why SMI?
– SMI Programming Paradigma
– SMI Functionality

• SCI-MPICH – an Example for using SMI
– Design of SCI-MPICH
– Special features of SCI-MPICH

Shared Memory & Message Passing Programming on SCI-Connected Clusters
SCI Summer School 2000, 2nd-4th October, Trinity College Dublin

Usage of ClustersUsage of Clusters

• All Clusters:
– More throughput
– Increased redundancy
– Higher application performance
ÕCommunication via OS services (TCP/IP)

• SCI-Connected Clusters:
– SCI not offered as a standard OS service
– I/O backend server
– Make best use of high-speed interconnect:

parallel multi-process applications

Shared Memory & Message Passing Programming on SCI-Connected Clusters
SCI Summer School 2000, 2nd-4th October, Trinity College Dublin

Why SMI?Why SMI?

• Higher abstraction level than SISCI:
– Providing application environment
– Single function calls for complex operattions
– Hiding of node & segment IDs
– Extension of SISCI functionality
– Resource management

• Lower abstraction level than SMILE:
– Utilization of multiple PCI-SCI adapters
– Utilization of DMA & Interrupts
– Full control of memory layout

Shared Memory & Message Passing Programming on SCI-Connected Clusters
SCI Summer School 2000, 2nd-4th October, Trinity College Dublin

PP PP

MM

PP

MM

PP

SMI Programming ParadigmaSMI Programming Paradigma

• Basic Model: SPMD
• Independent processes form an application
• Processes share explicitly created

Shared Memory Regions
• Multiple processes on each node

Shared Memory & Message Passing Programming on SCI-Connected Clusters
SCI Summer School 2000, 2nd-4th October, Trinity College Dublin

SMI FunctionalitySMI Functionality

• Set of ~70 API functions, but:
only 3 function calls to create an application
with shared memory

• Collective vs. individual functions:
– Collective: all processes must call to complete
– Individual: process-local completion

• Some (intended) similarities to MPI
• C/C++ and Fortran 77 bindings

• Shared library for Solaris, Linux, Windows

Shared Memory & Message Passing Programming on SCI-Connected Clusters
SCI Summer School 2000, 2nd-4th October, Trinity College Dublin

SMI AvailabilitySMI Availability

• SMP systems

• NUMA systems (SCI-Clusters)

Hardware platforms:
– Sparc, Intel, Alpha (soon)

Software platforms:
– Solaris, Linux, Windows NT/2000
– Uses threads, is partly threadsafe
– static or shared library

Shared Memory & Message Passing Programming on SCI-Connected Clusters
SCI Summer School 2000, 2nd-4th October, Trinity College Dublin

Initialization/ShutdownInitialization/Shutdown

Initialization: collective call to
SMI_Init(int *argc, char ***argv)

ÕPassing references to argc and argv to SMI
ÕDo not touch argc/argv before SMI_Init()!

Finalization: collective call to
SMI_Finalize()

Abort: individual call to
SMI_Abort(int error)

ÕImplicitely frees all resources allocated by SMI

Shared Memory & Message Passing Programming on SCI-Connected Clusters
SCI Summer School 2000, 2nd-4th October, Trinity College Dublin

Information GatheringInformation Gathering

• Topology information:
– Number of processes: SMI_Proc_size (int *sz)
– Local process rank: SMI_Proc_rank (int *rank)

– Number of nodes: SMI_Node_size (int *sz)

– Several more topology functions

• System/State information:
SMI_Query(smi_query_t q, int arg, void *result)

– SCI, SMI and system related information

• Timing functions:
SMI_Wtime(), ...

Shared Memory & Message Passing Programming on SCI-Connected Clusters
SCI Summer School 2000, 2nd-4th October, Trinity College Dublin

WatchdogWatchdog

• Observation of „heartbeat“ signals of all
processes of an application

• Missing signal for a certain period indicates
defunct process
ÕTermination of the whole application
ÕFreeing of all resources allocated via SMI

• Watchdog hinders debugging
ÕTurn off watchdog via SMI_Watchdog() or

command line option on startup

Shared Memory & Message Passing Programming on SCI-Connected Clusters
SCI Summer School 2000, 2nd-4th October, Trinity College Dublin

Shared Memory RegionsShared Memory Regions

• Inter-process communication is done solely
via shared memory
Õshared memory regions are always required

• Significant difference in access latency
between local and remote memory
ÕConsider data locality
ÕDifferent type of shared memory regions

• Passing pointers between processes makes
things easier

Shared Memory & Message Passing Programming on SCI-Connected Clusters
SCI Summer School 2000, 2nd-4th October, Trinity College Dublin

Setting up SHM RegionsSetting up SHM Regions

• Creating a shared memory region:
SMI_Create_shreg(int type, smi_shreg_info_t

*reginfo, int *id, char **addr)

• Shared region information:
– Size of the shared memory region
– PCI-SCI adapter to use
Information specific to some region types:
– Owner of the region: memory is local to the owner
– Custom distribution information
– Remote Segment information

Shared Memory & Message Passing Programming on SCI-Connected Clusters
SCI Summer School 2000, 2nd-4th October, Trinity College Dublin

SHM-Type UNDIVIDEDSHM-Type UNDIVIDED

• Basic Region Type:
one process (owner) exports a segment, all
others import it.

• FIXED or NON_FIXED, DELAYED

• Collective invocation

Shared Memory & Message Passing Programming on SCI-Connected Clusters
SCI Summer School 2000, 2nd-4th October, Trinity College Dublin

SHM-Type BLOCKEDSHM-Type BLOCKED

• Each process exports one segment

• All segment get concanated
ÕContinous region is created

• Only FIXED, not DELAYED
• Collective invocation

Shared Memory & Message Passing Programming on SCI-Connected Clusters
SCI Summer School 2000, 2nd-4th October, Trinity College Dublin

SHM-Type CUSTOMIZEDSHM-Type CUSTOMIZED

• User-defined distribution of segments

• All segments get concanated
ÕContinous region is created

• Only FIXED, not DELAYED
• Collective invocation

Shared Memory & Message Passing Programming on SCI-Connected Clusters
SCI Summer School 2000, 2nd-4th October, Trinity College Dublin

SHM-Type PT2PTSHM-Type PT2PT

• Two processes share a memory segment

• FIXED or NON_FIXED, DELAYED
• Non-collective, but bi-lateral invocation

Shared Memory & Message Passing Programming on SCI-Connected Clusters
SCI Summer School 2000, 2nd-4th October, Trinity College Dublin

SHM-Type LOCALSHM-Type LOCAL

• A single process exports a segment

• No other process is involved
ÕLocal completion semantics

• Segment is available for connections
• Only NONFIXED

Shared Memory & Message Passing Programming on SCI-Connected Clusters
SCI Summer School 2000, 2nd-4th October, Trinity College Dublin

SHM-Type REMOTESHM-Type REMOTE

• A single process imports an existing remote
segment

• No other process is involved
ÕLocal completion semantics

• Only NONFIXED

Remote process needs information!

Shared Memory & Message Passing Programming on SCI-Connected Clusters
SCI Summer School 2000, 2nd-4th October, Trinity College Dublin

SHM-Type FRAGMENTEDSHM-Type FRAGMENTED

• All processes export a segment and import all
other segments

• Segments do not get concanated
ÕNon-contignous region is created

• Faster than creating n UNDIVIDED regions

Shared Memory & Message Passing Programming on SCI-Connected Clusters
SCI Summer School 2000, 2nd-4th October, Trinity College Dublin

SHM-Type SMPSHM-Type SMP

• Create node-local shared regions
– different memory backing on each node
– different sizes possible on different nodes

• No remote memory access
• Collective operation

Shared Memory & Message Passing Programming on SCI-Connected Clusters
SCI Summer School 2000, 2nd-4th October, Trinity College Dublin

SHM-Region FlagsSHM-Region Flags

• Do not enforce identical addresses:
SMI_SHM_NONFIXED

• Do not connect immeadeletly:
SMI_SHM_DELAYED

• Register user memory as SCI segment:
SMI_SHM_REGISTER

• Keep the segment private (no export):
SMI_SHM_PRIVATE

Shared Memory & Message Passing Programming on SCI-Connected Clusters
SCI Summer School 2000, 2nd-4th October, Trinity College Dublin

Connecting to SHM RegionsConnecting to SHM Regions

• Why create regions with DELAYED flag?
– Faster creation
– Saving of resources if segment is not needed

• Determine connection state:
SMI_Query(SMI_Q_SMI_REGION_CONNECTED)

• Connect to a region:
SMI_Connect_shreg(int id, char **addr)

• The owner of a region is always connected
• Connecting does not do any harm

Shared Memory & Message Passing Programming on SCI-Connected Clusters
SCI Summer School 2000, 2nd-4th October, Trinity College Dublin

Deleting SHM RegionsDeleting SHM Regions

• Delete a shared memory region:
SMI_Free_shreg (int id)

• All processes who have created/connected to
the region need to participate

• Access to a region after it has been free‘d
ÕSIGSEGV

Shared Memory & Message Passing Programming on SCI-Connected Clusters
SCI Summer School 2000, 2nd-4th October, Trinity College Dublin

Memory ManagementMemory Management

• Dynamic allocation of memory of shared
regions (for any contignous region type)

• Region can be used directly or via SMI
memory manager – not both!

• Initialize Memory Management Unit:
SMI_Init_shregMMU(int region_id)

• Memory manager works with „buddy“
technique
ÕFast, but coarse granularity

Shared Memory & Message Passing Programming on SCI-Connected Clusters
SCI Summer School 2000, 2nd-4th October, Trinity College Dublin

Memory AllocationMemory Allocation

• Individual allocation:
SMI_Imalloc(int size, int id, char **addr)

• Collective allocation:
SMI_Cmalloc(int size, int id, char **addr)

• Freeing allocated memory:
SMI_Ifree(char *addr)
SMI_Cfree(char *addr)

• Freeing mode must match allocation mode!

Shared Memory & Message Passing Programming on SCI-Connected Clusters
SCI Summer School 2000, 2nd-4th October, Trinity College Dublin

Memory TransfersMemory Transfers

• Memory transfers possible via load/store
operations or memcpy()
Õwhy SMI functionality to copy memory?
- secure: including sequence check & store barrier
- optimized: twice the performance
- asynchronous: no CPU utilization

• Synchronous copying:
SMI_Memcpy(void *dst, void *src,

int len, int flags)

Shared Memory & Message Passing Programming on SCI-Connected Clusters
SCI Summer School 2000, 2nd-4th October, Trinity College Dublin

SynchronizationSynchronization

• Barrier Synchronization:
SMI_Barrier()

• Mutual exclusion via locks:
– Initialization:

SMI_Mutex_init (int *id)
SMI_Mutex_init_with_locality (int *id, int prank)

– Acquisition:
SMI_Mutex_lock (int id)
SMI_Mutex_trylock (int id)

SMI_Mutex_unlock (int id)

- Destruction:
SMI_Mutex_destroy (int id)

Shared Memory & Message Passing Programming on SCI-Connected Clusters
SCI Summer School 2000, 2nd-4th October, Trinity College Dublin

Progress CountersProgress Counters

• Each process has an atomic counter

• Use other processes‘ counter to synchronize
• Collective or non-collective

• Easier to use than locks and barriers

Shared Memory & Message Passing Programming on SCI-Connected Clusters
SCI Summer School 2000, 2nd-4th October, Trinity College Dublin

Progress Counters (cont.)Progress Counters (cont.)

• Initialization / Reset:
SMI_Init_PC (int *pc_id)
SMI_Reset_PC (int pc_id)

• Incrementing Counter:
SMI_Increment_PC (int pc_id, int val)

• Reading / Waiting Counter:
SMI_Get_PC (int pc_id, int rank, int *val)

SMI_Wait_individual_PC (int pc_id, int rank,
int val)

SMI_Wait_collective_PC (int pc_id, int val)

Shared Memory & Message Passing Programming on SCI-Connected Clusters
SCI Summer School 2000, 2nd-4th October, Trinity College Dublin

SignalizationSignalization

• Wait for events (signal) from other processes:
– wait for signal from specific process:
SMI_Signal_wait (int proc_rank)

– wait for signal from any process
SMI_Signal_wait (SMI_SIGNAL_ANY)

– waiting for a signal does not cost CPU cylces
Õthreads can block for a signal

• Trigger an event:
SMI_Signal_send (int proc_rank)

SMI_Signal_send (SMI_SIGNAL_BCAST)

Shared Memory & Message Passing Programming on SCI-Connected Clusters
SCI Summer School 2000, 2nd-4th October, Trinity College Dublin

Callback FunctionsCallback Functions

• Set up a callback function
SMI_Signal_setCallback (int proc_rank,

void (*cb_fcn)(void *), void *cb_arg,
smi_signal_handle *sh)

– SMI_SIGNAL_ANY can be used here, too

• Wait for completion of callback function:
SMI_Signal_joinCallback (smi_signal_handle *sh)

– Joining does not cost CPU cycles

• Current implementation uses threads; SISCI
callbacks will be used when available

Shared Memory & Message Passing Programming on SCI-Connected Clusters
SCI Summer School 2000, 2nd-4th October, Trinity College Dublin

„Message Passing“„Message Passing“

• SMI is no message passing library
• BUT: minimized inter-process message

exchange mechanisms
– useful i.e. for LOCAL/REMOTE region setup
– Message size limited to SMI_MP_MAXDATA
– Blocking or non-blocking message transfer

SMI_Send (void *buf, int len, int dest)
SMI_Recv (void *buf, int len, int src)
SMI_Isend (void *buf, int len, int dest)
SMI_Send_wait (int dest)

Shared Memory & Message Passing Programming on SCI-Connected Clusters
SCI Summer School 2000, 2nd-4th October, Trinity College Dublin

MiscMisc

Functionality of SMI not covered today:

• Load balancing:
– Static loop splitting
– Dynamic loop scheduling

• Different consistency modes:
– Replication of a shared region
– Different techniques to share a replicated region

Shared Memory & Message Passing Programming on SCI-Connected Clusters
SCI Summer School 2000, 2nd-4th October, Trinity College Dublin

Summary SMISummary SMI

• Development started in 1996:
– SBus-SCI adapters in Sun Sparcstation 20
– no SISCI available
– make SCI usage/NUMA programming less painful

• Marcus Dormanns until end of 1998:
– API for creation of parallel applications on shared

memory (SMP/NUMA/cc-NUMA) platforms
– Ph.D. thesis: Grid based parallelization techniques

• Joachim Worringen since 1998:
– extension of SMI as basis for other libraries or

services on SCI-SMP-clusters

Shared Memory & Message Passing Programming on SCI-Connected Clusters
SCI Summer School 2000, 2nd-4th October, Trinity College Dublin

SCI-MPICHSCI-MPICH

• MPI-1 implementation for SCI-connected
clusters

• Part of the MP-MPICH project:
– NT, Solaris x86/Sparc, Linux x86 (soon Alpha)
– Communication via Sockets, shared memory, SCI
ÕHeterogenous usage:

mixed platforms, mixed interconnects

• Based on the MPICH implementation
• Open-source, freely available

Shared Memory & Message Passing Programming on SCI-Connected Clusters
SCI Summer School 2000, 2nd-4th October, Trinity College Dublin

Development HistoryDevelopment History

Starting point: MPICH shared memory device
• replacement of shared memory allocation functions

with SMI functions
Õ working MPI, but bad performance (10% peak)

Õ Optimized layout of data structures
Õ performance doubled (20% peak)

Õ New communication protocols, completely new data
structures
Õ Good performance! (> 95% peak)

Õ New device ch_smi

Shared Memory & Message Passing Programming on SCI-Connected Clusters
SCI Summer School 2000, 2nd-4th October, Trinity College Dublin

MP-MPICH Design: GenericMP-MPICH Design: Generic

MPI-1MPI-1

ADI-2ADI-2

chch

Sockets,Sockets,
shmem,shmem,
VIA, SCI,VIA, SCI,
Myrinet, ...Myrinet, ...

Runtime DLL

Device Plugin

Shared Memory & Message Passing Programming on SCI-Connected Clusters
SCI Summer School 2000, 2nd-4th October, Trinity College Dublin

MP-MPICH Design: SCIMP-MPICH Design: SCI

User spaceUser space

Kernel spaceKernel space

Shared Memory & Message Passing Programming on SCI-Connected Clusters
SCI Summer School 2000, 2nd-4th October, Trinity College Dublin

ProtocolsProtocols

Different protocols in SCI-MPICH:
• SHORT protocol:

– Message length from 0 up to some 100‘s of byte
– Also used for control messages

• EAGER protocol:
– Message length up to some 10‘s of Kbyte
– Uses preallocated buffers

• RENDEZVOUS protocol:
– Arbitrary message length
– May use multiple passes to transmit data

Shared Memory & Message Passing Programming on SCI-Connected Clusters
SCI Summer School 2000, 2nd-4th October, Trinity College Dublin

SHORT ProtocolSHORT Protocol

• Separate message receive queues for each
process
– no queue-synchronization required

• Self-synchronizing messages
• Flexible size and number of message slots

Shared Memory & Message Passing Programming on SCI-Connected Clusters
SCI Summer School 2000, 2nd-4th October, Trinity College Dublin

EAGER ProtocolEAGER Protocol

• Use preallocated, fixed size receive buffers

• Send data „eagerly“, without asking receiver
• Inform receiver of data via control message

• Configurable number and size of buffers

Control-
Message

Shared Memory & Message Passing Programming on SCI-Connected Clusters
SCI Summer School 2000, 2nd-4th October, Trinity College Dublin

Sender Receiver

RNDV ProtocolRNDV Protocol

Ask to send

OK to send

Continue

Continue

Continue

Control Messages

Shared Memory & Message Passing Programming on SCI-Connected Clusters
SCI Summer School 2000, 2nd-4th October, Trinity College Dublin

Delayed ConnectionsDelayed Connections

• EAGER and RNDV messages are not
necessarily exchanged between all process-
pairs
– Set up connections on demand:
SMI_SHM_DELAYED and SMI_Connect_shreg()

• Startup-time is reduced

• Time to send first message is increased
ÕOverall execution time (often) decreases

Shared Memory & Message Passing Programming on SCI-Connected Clusters
SCI Summer School 2000, 2nd-4th October, Trinity College Dublin

Global/Local RegionsGlobal/Local Regions

• Intra-node and inter-node communication:
– SMP region type for intra-node communication
– other regions types for inter-node communication

• Identical protocols can be used
ÕSCI-MPICH is a good SMP-MPI, too

• Single-copy for intra-node messages:
- Works great for Windows NT
- Bad performance on Solaris
- Additional kernel module for Linux (BIP)

Shared Memory & Message Passing Programming on SCI-Connected Clusters
SCI Summer School 2000, 2nd-4th October, Trinity College Dublin

MPI Transfer TypesMPI Transfer Types

• MPI offers different messager transfers types:
– Synchronous: MPI_Send() / MPI_Recv()

• When function returns, send buffer can be reused, and
receive buffer contains new message

– Asynchronous: MPI_Isend() / MPI_Irecv()
• Posts send/receive job to the MPI library
• Job is not complete until matching MPI_Wait() returns

• Asynchronous transfers allow overlapping of
communication and computation

• Problem: many MPI implementations do not
transfer really asynchronously!

Shared Memory & Message Passing Programming on SCI-Connected Clusters
SCI Summer School 2000, 2nd-4th October, Trinity College Dublin

OverlappingOverlapping

• MPI scenario for overlapping of computation
and communication:
Sender Receiver
prepare send buffer setup receive buffer

MPI_Isend() MPI_Irecv()

do computation do computation
MPI_Wait() MPI_Wait()

reuse send buffer use receive buffer

ÕProgress of communication !?

Shared Memory & Message Passing Programming on SCI-Connected Clusters
SCI Summer School 2000, 2nd-4th October, Trinity College Dublin

Synchronous TransferSynchronous Transfer
Sender Receiver

MPI_Isend
MPI_Irecv

OK to send

Continue

Ask to send

MPI_Wait

MPI_Wait

Shared Memory & Message Passing Programming on SCI-Connected Clusters
SCI Summer School 2000, 2nd-4th October, Trinity College Dublin

Sender Receiver

Asynchronous TransferAsynchronous Transfer

MPI_Isend
MPI_Irecv

OK to send

Continue

Ask to send

MPI_Wait
MPI_Wait

Shared Memory & Message Passing Programming on SCI-Connected Clusters
SCI Summer School 2000, 2nd-4th October, Trinity College Dublin

Multi-Adapter SupportMulti-Adapter Support

• SMI Library supports usage of multiple
PCI-SCI-adapters

• Increase bisection bandwidth/throughput if
multiple PCI-buses are available

• Possible adapter scheduling:
– DEFAULT: use single default PCI-SCI adapter
– SMP: each process uses another PCI-SCI adapter
– IMPEXP: use different PCI-SCI adapter for

importing and exporting segments

Shared Memory & Message Passing Programming on SCI-Connected Clusters
SCI Summer School 2000, 2nd-4th October, Trinity College Dublin

ConfigurationConfiguration

• Many SCI-MPICH parameters are
configurable on startup

• Different configuration settings may perform
best for different applications

• Unreasonable settings are automatically
corrected

• Device configuration file ch_smi.conf

ÕMore on this in the lab session!

Shared Memory & Message Passing Programming on SCI-Connected Clusters
SCI Summer School 2000, 2nd-4th October, Trinity College Dublin

Summary SCI-MPICHSummary SCI-MPICH

• Open-source, free alternative to ScaMPI
• Based on MPCH: fully MPICH compatible
• Comparable performance on small to

medium-sized clusters
• Runs on Dolphin and Scali SCI clusters
• Demonstrates usage of SMI for library

development
• Part of MP-MPICH for heterogenous, cross-

cluster MPI programming
• Stress-testing of SCI hardware & drivers

