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AScali’s Mission:

Dedicated to provide
state-of-the-art middleware

and
system management software;
the key enabling technologies

for building
 scalable systems!
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A
• BMW, Germany, 2nd order
• Voith-Siemens Hydro
• Max Planck Institute für Plasmaphysik,

Germany
• University of New Mexico, USA
• University of Alberta, Canada
• University of Manitoba, Canada
• Etnus Software, USA
• HP labs, USA
• University of Florida, USA
• Northern Lights, Japan
• Uni-Heidelberg, Germany
• GMD, Germany
• Uni-Giessen, Germany
• Uni-Hannover, Germany
• Uni-Düsseldorf, Germany
• VA Linux Systems, USA
• Alta Technology, USA
• ASL Workstations, USA

Reference Installations

• Spacetec/Tromsø Satellite Station, Norway
• Norwegian Defense Research Establishment
• Parallab, Norway
• Paderborn Parallel Computing Center, Germany
• Spacebel, Belgium
• Aerospatiale, France
• Fraunhofer Gesellschaft, Germany
• Lockheed Martin Tactical Defense Systems, USA
• University of Geneva, Switzerland
• University of Oslo, Norway
• Uni-C. Denmark
• Paderborn Parallel Computing Center ”Phase-2”,

Germany
• University of Lund, Sweden
• University of Aachen, Germany
• DNV, Norway
• DaimlerChrysler, Germany
• DaimlerChrysler, Germany, 2nd order
• BMW, Germany
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A

Customer:Customer: Tromsø Satelite Tromsø Satelite StationStation
System: System: 12 CPU 3 node 12 CPU 3 node hyperSPARChyperSPARC, 150 MHz, 150 MHz
Installed: Installed: April 1996April 1996
Application: Application: RADARSAT Synthetic RADARSAT Synthetic Aparture Aparture Radar ProcessingRadar Processing
Type of Application: Type of Application: Digital Signal Processing, Real-TimeDigital Signal Processing, Real-Time



Slide 7

SC   LI
Scalable Linux Systems

A

Customer:Customer: Lockhed Lockhed Martin TDS Martin TDS EagenEagen..
System: System: 16 CPU, 8 node 16 CPU, 8 node UltraSPARCUltraSPARC,,

300 MHz, 16Gb memory300 MHz, 16Gb memory
Installed: Installed: May 1998May 1998
Application: Application: Div.Div.
Application Type:Application Type: DefenceDefence
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A

Customer:Customer: Chrysler DaimlerChrysler Daimler
System: System: 32 CPU, 16 node Pentium II,32 CPU, 16 node Pentium II,

500 MHz, 16Gb memory500 MHz, 16Gb memory
Installed: Installed: December 1999December 1999
Application: Application: FEKOFEKO
Application Type:Application Type: ElectroMagnetic ElectroMagnetic SimulationSimulation

Upgrade to 64 CPUs, November 2000Upgrade to 64 CPUs, November 2000
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ACustomer:Customer: PaderbornPaderborn center for Parallel Computing center for Parallel Computing
System: System: 192 CPU, 96 node Pentium II, 450 MHz192 CPU, 96 node Pentium II, 450 MHz
Installed: Installed: April 1999April 1999
Application: Research, Industry, ChessApplication: Research, Industry, Chess
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AScalability (N is #nodes)

• Latency
– Constant wrt. N (theory)
– O(log N) (practise)

• Bandwidth
– Constant per node
– Accumulated proportional to N
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A
MPI_Barrier() latency
(smaller is better)
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A
MPI_Alltoall() bandwidth
per compute node
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AFEKO: Parallel Speedup
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A
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A32 process Allgatherv



Slide 16

SC   LI
Scalable Linux Systems

AOutline

4 Who’s Scali?
4 Scalability issues with Shared Address Space

cluster architectures
4 Cons and Pros of a direct SCI network
4 Fault tolerant routing in a 2D SCI Torus
4 Low level SCI programming using ScaMPI
4 Node level parallelism. Would that be pthreads,

OpenMP, or MPI?
4 Cluster Management through Scali's Universe



Slide 17

SC   LI
Scalable Linux Systems

A
Shared Nothing
Communication Architecture
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A
Shared Nothing Data
Transfers

Application

System

Host Memory

User
Data

System
Buffer

Network Adapter
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A
Shared Address Space
Architecture

CPU

User
Instructions

CPU

User
Instructions

Memory Operations in a Packet Switched Network

User MemUser Mem
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A
Shared Address Space
from User Level

Virtual address space on A Virtual address space on B

Physical memory on A Physical memory on B

PCI address
space on A

PCI address
space on B

SCI system-wide physical physical address space
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A
Shared Address Space
Data Transfers
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AAtomic updates

• An update of a multi-byte entity is atomic if its side-
effect is never made partly visible. That is, the update
has either not (yet) occurred or it has already occurred.

• Memory consistency impacts the picture.
• Example (p points to a shared variable):

Producer:   for (i=0;; ++i) *p=i;
Consumer: for (old=*p;;) if (old!=*p) {

printf(“*p = %d\n”, *p); old = *p;
}

Result 1: 1,2,3,4,…,0xFE, 0xFF, 0x1FF, 0x100, 0x101, ...
Result 2: 1,2,3,4,…,0xFE, 0xFF, 0x000, 0x100, 0x101, ...
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AAtomic updates (cont’d)

Typedef struct {
    char *buffer;
    int  valid;
} t_msg;

Wrong:
Producer:   msg->buffer = source; msg.valid = TRUE;
Consumer: while (!msg->valid); consume(msg->buffer);

Correct:
Producer:   msg->buffer = source; membar(); msg.valid = TRUE;
Consumer: while (!msg->valid); consume(msg->buffer);
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AIdempotent Datastucture

• A datastructure is idempotent if it is consistent
after at least one update, as opposed to only
one update

• Consumer data structures are write-only, it is
disjunct wrt. write (i.e. the consumer does not
update it, and is private to one producer

• Important in situations where a remote update
might give failure indication and has to be re-
issued
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A
Scalability issues of Shared
Address Space Communication

• Ideally, one like zero-copy methodology
• However, input addressability of current

generation Dolphin PCI/SCI adapters is
limited to 2GB
– 1 byte per flops rule
– Today, close to 2Gflops/CPU ⇒⇒ 4Gflops/node
– FP performance increasing ~60% per year (Moore’s law)
– … and don’t forget locality of user level pages
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A
Scalability issues of Shared
Address Space Communication

Memory per Node & Percent Inbound SCI Addressability
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A
Scalability issues of Shared
Address Space Comm. (cont’d)

• Outbound addressing is an even more severe
problem:
– PCI chip-sets have no demand for supporting large

address space PCI targets, and will not get it in the
foreseeable future

– Hence, we are limited to max. 2GB outbound
addressing

– 64 nodes, else same as previous example:
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A
Scalability issues of Shared
Address Space Comm. (cont’d)

Accumulated Cluster Memory & Percent Outbound SCI Addressability
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A
Scalability issues of Shared
Address Space Comm. (cont’d)

• Zero-copy, Remote Memory Access
Dassociated with severe, over time increasing, limitations

• Alternatives:
– Use DMA
DNo direct user-to-user level communication
BHas the SCI architecture in general and Dolphin’s products

specifically an edge here?

– Hybrid solution, i.e. both DMA and RMA
• Good for specific problems, for example DSM

CDevelop a new host adapter architecture using residual address
control. Example, Cray E-register file used in T3{DE}
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A2D/3D Torus (D33X)

PCI 532MB/s

LC-3 LC-3

PSB66

B-Link 640MB/s

6x 667MB/s SCI links

LC-3
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A2D-Torus (64 nodes)

LC-2 LC-2

PCI

Bi-section
bandwidth: 14Gbyte/s
Longest
Latency: 1.85 µµsec

PSB
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A
3D-Torus, 4-ary 3-cube
(64 nodes)

LC-2

PCI

LC-2

Bi-section
bandwidth: 24Gbyte/s
Longest
Latency: 2.3 µµsec

LC-2

PSB
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ASwitch-less topology

• Distributed switching
– No single point of failure
– Automatic re-routing
– Simplified logistics

• Low latencies
– Each node has direct

access to the network

• Cost-effective usage of
excess SCI bandwidth vs.
PCI bandwidth
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A
Scali Configuration
System (Universe)

• Single point for:
– System configuration
– System management
– System observability
– Software installation
– Software update

• Heterogeneous systems:
– Operating Systems
– HW Architecture

• Manages:
– Nodes
– Console ports
– Power switches
– Interconnect

• Uses:
– SNMP
– rsh/ssh
– telnet
– ScaSH
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A
Universe:
System Architecture

3
4x4 2D Torus SCI cluster

Control Node
(Frontend)

GUI

SCI

Remote
Workstation

GUI

C
S

TCP/IP Socket

Server daemon

Node daemon
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A
Universe:
Physical Connectivity
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Frontend:
ScaConfSd

Client:
ScaConfTool - text based
ScaDeskTop - graphical
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A
Universe:
Fault Tolerance

• Graceful degradation
– Maximises connectivity

of alive nodes
– Partitions the system if

necessary

• Fail State Categories
– Reachable (1)
– Unreachable (2)
– Power Off (3)

• Single Ring Topology
– Limited routing options

12 13 14

11 16 15

12 13 14

11 16 15

Node 13 fails

SCI Ring
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A
Universe:
Fault Tolerance

• 2D Torus topology
– more routing options

• XY routing algorithm
example:

– Node 33 fails (3)
– Nodes on 33’s ringlets

becomes unavailable
– Cluster fractured with

current routing setting

14 24 34 44

13 23 33 43

12 22 32 42

11 21 31 41
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A
Universe:
Fault Tolerance

• Rerouting with XY
– Failed node logically

remapped to a corner
– End-point NodeID’s

unchanged
– Applications can

continue

• Problem:
– To many working

nodes unused

43 13 23 33

42 12 22 32

41 11 21 31

44 14 24 34
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A
Universe:
Fault Tolerance

• Solution: Apply the advanced algorithm
“Scali Routing”

– Scali routing maintains connectivity
between all  nodes with access to just
one working ringlet

• All nodes but the failed one can be
utilised as one big partition

• Exploits the register-insertion-ring
property of SCI, i.e buffer dependency
graph does not contained the bypassed
nodes

• Calculation of optimum routing tables is
handled by ScaConfSd automatically

43 13 23 33

42 12 22 32

41 11 21 31

44 14 24 34
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A
Low-level SCI programming
using ScaMPI

• ScaMPI has a lot of useful features:
– Launching of applications
– Abstraction of SCI nodeIds
– Debugging windows (gdb, TotalView or other)
– Manual launch windows (strace, ltrace,

LD_LIBRARY_PATH etc.)
– stdin redirection, collecting std{out,err}

• MPI has a rich set of features:
– Point-to-Point communication
– Communicators
– Collective operations
– MPI_Barrier()
– MPI_Wtime()
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A
Low-level SCI programming
using ScaMPI (cont’d)

These features can be combined with SCI level
programming, through Scali’s extension to MPI:
void * p; int me; unsigned sz;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &me);

if (me) {
p  = PMPI_TbInitRead(MPI_COMM_WORLD, 0);
sz = PMPI_TbGetSizeRead(MPI_COMM_WORLD, 0);

} else {
p  = PMPI_TbInitWrite(MPI_COMM_WORLD, 1);
sz = PMPI_TbGetSizeWrite(MPI_COMM_WORLD, 1);

}
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ANode level parallelism

• Straight or 1:1
– launch one MPI process per CPU in the system

• SMP-ish or 1:N
– Utilize OpenMP on the node level
– Use multitreaded libraries (e.g. ATLAS BLAS,

NAG, etc.)
– Use PTHREADS
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ANode level parallelism (cont’d)

• MG is a simplified multigrid kernel.
• MG uses highly structured long distance communication
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ANode level parallelism

• Examples using the 1:1 model:
– CCM3 - Atmospheric Simulation (NCAR)
– DALTON - Quantum Chemistry (UiO)
– RADYN - Astro Physics (UiO)

Benchmark
2 nodes, 1 

CPU per node
1 node, 2 

CPUs Ratio
CCM3 162,00 172,00 1,06
DALTON 4266,07 4124,46 0,97
RADYN 59,53 59,83 1,01

Elapsed (secs)
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