13BA5
Performance effect of Branch Prediction
$p_{r}\left[p_{t}(1+d)+\left(1-p_{t}\right) 1\right]+\left(1-p_{r}\right)\left[p_{t}(1+c)+\left(1-p_{t}\right)(1+c)\right]$
average number of cycles per branch instruction $=$ $p_{r}\left[p_{t}(1+d)+\left(1-p_{t}\right) 1\right]+\left(1-p_{r}\right)\left[p_{t}(1+c)+\left(1-p_{t}\right)(1+c)\right]=$ $p_{r}\left(p_{t} d+1\right)+\left(1-p_{r}\right)(1+c)$

Substituted into
$t_{\text {ave }}=p_{b}$ (average number of cycles per branch instruction) +
(1- p_{b})(average number of cycles per non-branch inst.)
For example $\mathrm{d}=1$ and $\mathrm{p}_{\mathrm{r}}=0.9$
For a 5 -stage pipe with $\mathrm{c}=3$
$\mathrm{t}_{\text {ave }}=1+3^{*} 0.2^{*} 0.1+1^{*} 0.2^{*} 0.65^{*} 0.9=1.12$
Efficienncy $=1 / t_{\text {ave }} * 100=89 \%$
with $p_{b}=$ probability instruction is a branch
$t_{\text {ave }}=p_{b}\left[p_{r}\left(p_{t} d+1\right)+\left(1-p_{r}\right)(1+c)\right]+\left(1-p_{b}\right)(1)$
$=1+c p_{b}\left(1-p_{r}\right)+d p_{b} p_{r} p_{t}$

- A compiler/assembler tecfinique is to delay Gracking for Kcycles after the branch instruction, providing time to fetch the target path.
- Ulse full instructions or $\mathfrak{N} O P$ Ps instructions are inserted

3BA5

Super-scalar vs.Super-pipelines

- Super-scalar and Very Long Instruction Word $(\mathcal{V L I} \mathcal{W})$ design exploits the figh circuit density of CMOS to provide multiple functional units and hence more parallelism.

Super-scalar vs.Super-pipelines Example

* For example with two fp-add pipes large vector additions can be distributed.

```
DO I=1 to 10000
        c(i)=a(i)+b(i)
END
DO I=1 to 10000 by 2
        c(i) = a(i)+b(i) c(i+1)=a(i+1)+b(i+1)
        ADDER 1
        ADDER_2
```

3BA5

Super-pipelines

© Superpipelines rely on:

+ High speed tecfnology
*Small pipe stages
\& Hence long pipes to increase the
performance.
\oplus Such a design is susceptible to control fiazards
\& Needs good brancf prediction to perform
well

Definitions

+Latency:
ФThe interval betwe en two initiations in a stage. Latencies
betwen reservations are forbidden latencies.

- Forbitten List:

ФThe vector forbidden latencies

$$
\oplus F=(4,1,0)
$$

- Collision Vector:
\& $=\left(\mathrm{C}_{\mathrm{n}}, \ldots, \mathrm{C}_{1}, \mathrm{C}_{0}\right)$
\pm where $c_{1}=\{1 \mathrm{i} \in \mathrm{F}, 0 \mathrm{i} \notin \mathrm{F}\}$
$\oplus \mathcal{E g} . \quad C=\left(C_{4}, C_{3}, C_{2}, C_{1}, C_{0}\right)$

$$
\mathrm{C}=(1,0,0,1,1)
$$

3BA5

Collision Vector

* When $\mathrm{C}=(1,0,0,1,1)$ it seen that $\mathrm{C}_{\mathrm{i}}=0$ means we may safely insert a newinput to the pipe.

$$
\oplus \mathcal{H e n c e} \text { at 2,3 or } 5,6
$$

+ If we do insert a new input at e.g. $\mathrm{t}=2$, then the forbitten latencies may alter, e.g.

Reservation Table

0, 2, 4
$0,1,2$
0, 2
Forbidden List

3BA5

Collision Vector

with altered forbitten latencies may

Reservation Table
Forbidden List

+ When it seen that $\mathrm{C}_{\mathrm{i}}=0$ means we may safely insert a ne winput to the pipe.

$$
\begin{aligned}
\oplus \mathrm{C}_{2} & =(1,0,0,1,1) O \mathcal{R} C=(0,0,1,0,0) \\
& =(1,0,1,1,1)
\end{aligned}
$$

3BA5
 State Diagram

- Hence we may decribe the forbidden latencies of
the pipe with a statediagram, starting at:

