+The Cycle

$$
\oplus \text { Cycle }=\mathrm{C}_{0} \mathrm{a}_{3}, \mathrm{C}_{0} \mathrm{a}_{3}, \mathrm{C}_{0} \mathrm{a}_{3}, \mathrm{C}_{0} \mathrm{a}_{3}, \ldots
$$

\oplus Has minimum ave rage latency (MAL) $=3$
and is regular
母This is termed the minimum latency

- $\mathrm{MAL}=(2+3) / 2=2.5$ Periods/Datum
\qquad
\oplus This is the maximum performance obtainable from this pipe 6 ut it is an irregular cycle (i.e. $t=2,3,2,3, .$.)

3BA5

Re-circulating Pipe
3BA5
Problem 3.1
$\$$ Of course any re-circulating pipe may be made non circulating by duplication of its stages. E.g. for our example

Assume that we have a pipeline with four stages that
performs an add operation on two input numbers.
\$ The pipeline has a delay of two units of time for each
stage.
\$ Also, ignore storage time, memory access time, time to set
up the pipeline controlcircuit, and so on
$\$$ It is necessary to sum 16 numbers by this pipeline.
Describe a methode that gives the minimum possible time
to perform the sum of the number.

* Write the total time required by our methode.

3BA5

```
Problem 3.1(More)
```

\& We wisf to compute:

$$
\text { - } \mathrm{S}=\sum \mathrm{a}_{\mathrm{i}}
$$

母 In a 4-stage f.p. pipe with input registers A and B .

* We le t A receive a_{i} and B accumulate the partial
sums P
- Initially B must be cleared.
- When a_{16} has beenfetched we collect the P_{i} in pairs
in A and B until we have constructed S

