

3BA5
 3BA2

Multiplication

- Multiplication of an m -6it number X by and n - 6 it number Y
$\oplus \mathrm{M}>\mathrm{N}$
也 To yield $\mathrm{Z}=\mathrm{X} \cdot \mathrm{Y}$ with $\mathrm{m}+\mathrm{n}$ bits
\oplus This may be accomplished by forming n partial products P_{i} where:

$$
P_{i}=Y_{i} \cdot X
$$

- This requires $\mathrm{m} \mathcal{A N} \mathcal{D}$ gates

3BA5
4-Bit Partial Products
$Z=P_{0}+2 \cdot P_{1}+2^{2} \cdot P_{2}+2^{3} \cdot P_{3}$

Partial Products

\& We then weighteach P_{i} with 2 and sum them:

$$
Z=P_{0}+2 \cdot P_{1}+2^{2} \cdot P_{2}+\ldots+2^{n-1} \cdot P_{n-1}
$$

© For example if $m=56$ and $n=8$ we use a Wallace tree of six CSAs to reduce 8 partial products to 2 which are complited by a single Carry Lookahe ad Adder.

3BA5, 13 th Lecture, M. Manzke, Page: 5

Wallace \mathcal{T} ree Multiplier

SBA5 Shift and Add Multiplic ation	Shift and Add Multiplic ation		
23	10111	Multiplicand	
19	10011	Multiplier	
	10111	$\leftarrow \mathrm{P}_{0}$	
	10111	$\leftarrow \mathrm{P}_{1} \times \mathbf{2}^{1}$	
	00000	$\leftarrow \mathrm{P}_{2} \times \mathbf{2}^{2}$	
	00000	$\leftarrow \mathrm{P}_{3} \times 2^{3}$	
	10111	$\leftarrow \mathrm{P}_{4} \times 2^{4}$	
437	110110101	Product	

3BA5 $\mathcal{H a r d}$ ware $\mathcal{M u l t}$ iplication

25	10111	Mutplizenc
18.	$\underline{10011}$	Murppizer

Iridal partial product

Add muthicicand, ainoe multpler bit ba 1 Partal produst atter add and belore efvith Partal product atter shit
Aff multicicand, shes maipleer tir is 1 Partial product ator add and kelowe si it ${ }^{\text {t }}$ Parial produat astor ehit Partial produet ator shit Partial product aftor shit Add mutpolicand, sinoe muitpier tat is 1 Partial prodikt atter add and belore shiff

13BA5
 Binary Multiplier Diagram

* Ifis effectively halves the number of partial products in a multiplication.
- Principle:

$$
\begin{aligned}
& Z=X^{*} Y \\
& X=00111 \ldots 100 \\
& X=2^{k+1}-2^{j}
\end{aligned}
$$

Bootf's Algorithm

k-j+1

Bootf's Algoritfim

Worst case

- Of course in general a multiplier will have more than one such sequence of consecutive $O \mathcal{N} E S$.
The most extrem case is that of alternating zero and one.
- Resulting in $n / 2$

Worst case $=01010101010101$

3BA5
 Bootf's Algoritfm
 Sequences of three bits

\oplus Thus to deted and generate all the appropriate partial products we examine ave rlapping sequences of three Gits:

