
1

3BA5, 10th Lecture, M. Manzke,Page: 1

Encoding an Instruction

The previous design decisions (e.g. bits of branch
displacement) influence the instruction encoding.

It determents the size of the program and the
implementation of the processor.

The operation is encode in the opcode field.
The important decision is how to encode the

addressing modes with the operation.
ISA with many addressing modes require address

specifier fields to associate addressing modes with the
operand.

3BA5, 10th Lecture, M. Manzke,Page: 2

Addressing Modes[1]

Useful in array
addressing

Regs[R3]<-
Regs[R3] +
Mem[Regs[R1]+Regs[R2]]

Add R3,(R1+R2)Index

Accessing using a
pointer

Regs[R4]<-
Regs[R4] +
Mem[Regs[R1]]

Add R4,(R1)Register indirect

Accessing local
variables and simulates
register indirect/direct
addressing

Regs[R4]<-
Regs[R4] +
Mem[100+Regs[R1]]

Add R4,100(R1)Displacement

For constants.Regs[R4]<-
Regs[R4] + 3

Add R4,#3Immediate

When a value is in a
register.

Regs[R4]<-
Regs[R4] + Regs[R3]

Add R4,R3Register

When usedRegister transferExample
instruction

Addressing
mode

3BA5, 10th Lecture, M. Manzke,Page: 3

Addressing Modes[2]

If R3 is the address of
a pointer p, then
mode yields *p.

Regs[R1]<-
Mem[MEM[Regs[R3]]]

Add R1,@(R3)Memory indirect

Used to index arrays.Regs[R1]<-Regs[R1] +
Mem[100+Regs[R2]+
Regs[R3]*d]

Add R1,100(R2)[R3]Scaled

Stepping through
arrays.

Regs[R2]<- Regs[R2]-d
Regs[R1]<-

Mem[Mem[Regs[R2]]

Add R1,-(R2)Autodecrement

Stepping through
arrays.

Regs[R1]<-
Mem[Mem[Regs[R2]]

Regs[R2]<- Regs[R2]+d

Add R1,(R2)+Autoincrement

Useful to access static
data.

Regs[R1]<-
Mem[1001]

Add R1,(1001)Direct or
absolute

When usedRegister transferExample
instruction

Addressing
mode

3BA5, 10th Lecture, M. Manzke,Page: 4

ISA Encoding

Load-store ISAs can encode the addressing mode in
the opcode.

The number of registers and number of addressing
modes both have a significant impact on the size of the
instruction.

The ISA should balance:
Number of registers and addressing modes
The impact on the size of the instruction

(-> program)
Size that can be efficient implemented.

2

3BA5, 10th Lecture, M. Manzke,Page: 5

Variations in Instruction Encoding
Figure 2.23 - Hennessy & Patterson

3BA5, 10th Lecture, M. Manzke,Page: 6

80x86 and RISC

The 80x86 instructions vary between 1 and 17 bytes.
These programs are smaller than RISC architectures.
Some RISC architectures (ARM Thumb and MIPS 16)

reduce the code size by up to 40% for embedded
application through:

Narrow instructions
Fewer operations
Smaller addresses
Smaller immediate fields
Fewer registers
Two-address formats and not three

Some architectures use compression.

3BA5, 10th Lecture, M. Manzke,Page: 7

ISA and Compilers

The ISA is a compiler target.
The compiler significantly affects the

performance.
Understanding of compilers is necessary to

implement an efficient instruction set.
The figure on the following slide shows the

structure of recent compilers.

3BA5, 10th Lecture, M. Manzke,Page: 8

Compiler
Figure 2.24 - Hennessy & Patterson

3

3BA5, 10th Lecture, M. Manzke,Page: 9

Optimisation Classification

High-level Optimisation
Performed on source and fed to later optimisations passes.

Local Optimisation
Optimises code in a straight-line code fragment.

Global Optimisation
Extends local optimisation across branches (loops).

Register Allocation
Links registers with operands.

Processor Dependent Optimisations
Take advantage of specific architectural knowledge.

3BA5, 10th Lecture, M. Manzke,Page: 10

Register Allocation

Register allocation has a high impact on performance.
Algorithms are based on graph coloring

Create a graph that provides candidates for
register allocation

Limit set of colors so that no two adjacent nodes
in a dependency graph have the same color.

Try to allocate registers for all active variables
Is NP-complete but heuristic algorithms run in

near near-linear time (needs >=16 registers).

3BA5, 10th Lecture, M. Manzke,Page: 11

Optimisation Impact

Difficult to separate local and processor-dependent
optimisations from code-generator transformations.

The following slide provides an example:
The subsequent slide shows various optimisations
The slide illustrates the importance of looking at

optimised code.
May remove instructions completely

3BA5, 10th Lecture, M. Manzke,Page: 12

Optimisation Types
12 small FORTRAN and Pascal programs

N.MChoose the shortes branch displacement that reaches target.Branch offset optimisation

N.MReorder instruction to improve pipeline performacePipeline scheduling

N.M.Many example, such as replace multiply by a constant with add
and shifts

Strenght reduction

Depends on processor knowledgeProcessor dependent

2%Simplify/eliminate array addressing calculation within loopsInduction variable

16%Remove code from a loop that computes same value each iteration
of the loop

Code motion

11%Replace all instances of a variable A that has been assigned
X(I.e.,A=X) with X

Copy propagation

13%Same as local, but this version crosses branchesGlobal common subexpression
elimination

Across a branchGlobal

N.MRearrange expression tree to minimize resources needed for
expression evaluation

Stack height reduction

22%Replace all instances of a variable that is assigned a constant with
the constand

Constand propagation

18%Replace two instances of the same computation by single copy Common subexpression elimination

Within straight-line codeLocal

N.MReplace procedure call by procedure body Procedure integration

At or near the source level:prosssor independent High-level

Percentage of the total
number of optimisation
transformes

ExplanationOptimisation name

N.M. = Not Measured

4

3BA5, 10th Lecture, M. Manzke,Page: 13

Change in Instruction Counts
(Optimisation level)
Figure 2.26 - Hennessy & Patterson

3BA5, 10th Lecture, M. Manzke,Page: 14

Impact of Compiler Technology
Architecture

Compiler and high-level languages affects the use of
the ISA.

Important questions:
How are variables allocated and addressed?
How many registers are needed to allocate variables

appropriately?
High-level languages allocate data:

On the stack to allocate local variables
In global data area to allocate statically declared objects
On the heap to allocate dynamic objects

3BA5, 10th Lecture, M. Manzke,Page: 15

Aliased Variables

Register allocation for heap objects is impossible
because they use pointers

The same problem may arise for global and stack
objects.

p = &a /* gets address of a in p */
a = … /* assigns to a directly */
p = … / uses p to assign to a */
…a… /* accesses a */

