Bootf's Algoritfim
Partial Product

Multiplier		Partial Product weighted with	
$\mathrm{X}_{\mathrm{i}+1}, \mathrm{X}_{\mathrm{i}}, \quad \mathrm{X}_{\mathrm{i}-1}$	Rational		
$0 \quad 0 \quad 0$	no 1 => add zero	+0	
$0 \quad 0 \quad 1$	end of string	+Y	
$0 \quad 10$	string of length 1	+Y	
$\begin{array}{lll}0 & 1 & 1\end{array}$	end of string	+2Y	
100	start of string	-2Y	
1001	end/start of string		
110	start of string	-y	
111	continuation of string	-0	

3895, 14th Lecture, M. Manzke, Page: 1
3BA5
Shift and $\mathfrak{A D D}$
Demonstration of Booth [lnit]

$$
\text { Let } \quad \begin{array}{ll}
\mathbf{X}=111101=-3 \\
& \mathbf{Y}=000111=+7
\end{array}
$$

Reg. S.A.Q = 13 bit shift register
$Q_{-1}=$ overlap
$+Y=000111$
$-\mathbf{Y}=111001$

Sfift and $\mathcal{A D D}$

Demonstration of Booth

$$
\begin{aligned}
& \frac{\mathrm{S}}{0} \frac{\mathrm{~A}}{000000} \frac{\mathrm{Q}}{111101.0^{-1}} \\
& 0000111 \text {--- -- } \\
& \text { S.A, } \mathrm{Q}_{-1} \leftarrow 0, \mathrm{Q} \leftarrow \mathrm{X} \\
& \mathbf{A} \leftarrow \mathbf{A}+\mathbf{Y} \\
& 000001 \quad 111111.0 \\
& \text { 2*ashr(S.A.Q) } \\
& \mathbf{A} \leftarrow \mathbf{A}-\mathbf{Y} \\
& 1 \quad 111 \quad 110 \quad 101 \quad 111.1 \\
& \text { 2*ashr(S.A.Q) } \\
& \text { - } 111 \text {---- --- ---. } \\
& A \leftarrow A-0 \\
& 1 \quad 111111101011.1 \\
& \text { 2*ashr(S.A.Q) }
\end{aligned}
$$

$38 / 5$

Floating-point \mathcal{N} (umbers

```
X= mm}\cdot\mp@subsup{b}{}{e
l:lol
```

```
b}=
```

b}=
e = exponent - bias
e = exponent - bias
bias = 2j-k-1}-
if (m f 0)then m = 1.mantissa
if (s = 0)then X > 0
if (s = 1)then }X<

```


\section*{Normalisation}
* In order to preserve maximum precision non-zero members have their exponent adjusted so that the ir \(\mathcal{M S} \mathcal{B}\) is always 1 .
\(\oplus\) Hence it does not need to be stored
\(\rightarrow\) Is is called the fidden 6 it

\section*{3 3A5}

IEEE 754 Floating-point Standard
\(\oplus\) In 1982 twenty different floating-point formats were in use
* Causing serious portability proble ms - In 1985 this standard, derived from a 1979

IEEES pecification

paper \(6 y\) Kafian, Stone and Coonen, was adopted and remains.

Single \((-1)^{\mathrm{S}} \times(1 . \mathrm{m}) \times 2^{\mathrm{e}-127}\) Double \((-1)^{\mathrm{S}} \times(1 . \mathrm{m}) \times 2^{\mathrm{e}-1023}\)```

