3BA5

$\mathfrak{A L U}$ Design

- The fundamental operation of the arithmetric is addition.
* All otfers:
- Subtraction
\oplus Multiplication
- Divis on
* are implemented in terms of it.
\& We need therefore an efficient implementation.

3BA5, $11^{\text {th }}$ Lecture, M. Manzke, Page: 1

```
3BA5
N-Git Ripple-Carry-Adder (RCA)
\(38 / 2\)
\(\mathcal{N}\) - - it Ripple-Carry-Adder (RCA)
\(n\) full adders
```

- An n-bit ripple-carry-adder is constructed from n full-adders

full_adder

Cout

$$
\begin{aligned}
& S=x \oplus y \oplus C_{\text {in }} \\
& C_{\text {out }}=X Y+x C_{\text {in }}+y C_{\text {in }}
\end{aligned}
$$

BA5, $11^{\text {th }}$ Lecture, M. Manzke, Page: 2

3615

RCA Equations

$$
\begin{aligned}
& S_{i}=x_{i} \oplus y_{i} \oplus C_{i} \\
& C_{i, 1}=X_{i} Y_{i}+x C_{i}+y C_{i}
\end{aligned}
$$

\oplus Hence, using an $\mathfrak{A N D}$ +wire d-OR and n-6it RCA intruduces n gate delays.
$\oplus \mathcal{F}$ or 64 bit calculations this is too slow母(64 gate de lays)

3BA5

Carry Lookahead
Boole an Expression

$$
\begin{aligned}
C_{i+1} & =x_{i} y_{i}+C_{i}\left(x_{i}+y_{i}\right) \\
C_{1} & =x_{0} y_{0}+C_{0}\left(x_{0}+y_{0}\right) \\
C_{2} & =x_{1} y_{1}+C_{1}\left(x_{1}+y_{1}\right) \\
& =x_{1} y_{1}+\left[x_{0} y_{0}+C_{0}\left(x_{0}+y_{0}\right)\right]\left(x_{1}+y_{1}\right)
\end{aligned}
$$

with $g_{i}=x_{i} y_{i} \quad$ Generate Carry

$$
p_{i}=x_{i}+y_{i} \text { Carry Propagate }
$$

$C_{i+1}=g_{i}+p_{i} C_{i}$

Carry Lookafiead
Boole an Expression

$$
\begin{aligned}
C_{i+1} & =g_{i}+p_{i} C_{i} \\
C_{1} & =x_{0} y_{0}+c_{0}\left(x_{0}+y_{0}\right) \\
& =g_{0}+C_{0} p_{0} \\
C_{2} & =x_{1} y_{1}+C_{1}\left(x_{1}+y_{1}\right) \\
& =x_{1} y_{1}+\left[x_{0} y_{0}+C_{0}\left(x_{0}+y_{0}\right)\right]\left(x_{1}+y_{1}\right) \\
& =g_{1}+p_{1} g_{0}+p_{0} p_{1} C_{0} \\
C_{3} & =g_{2}+p_{2} g_{1}+p_{1} p_{2} g_{0}+p_{0} p_{1} p_{2} C_{0} \\
C_{4} & =g_{3}+p_{3} g_{2}+p_{2} p_{3} g_{1}+p_{1} p_{2} p_{3} g_{0}+p_{0} p_{1} p_{2} p_{3} C_{0}
\end{aligned}
$$

3BA5

Carry Lookafiae d Adder

$$
c_{i+1}=g_{i}+p_{i} g_{i-1}+p_{i} p_{i-1} g_{i-2}+\ldots+p_{i} p_{i-1} \ldots p_{0} c_{0}
$$

\oplus This requires just two gate delays:

3BA5

Groups of Input Bits

- For example, le t fan-in $=4$ and define:
\& $\mathrm{G}_{\mathrm{i}}^{\prime}$ A carry out is generated in the $i^{\text {th }}$ group of four input 6 its
\oplus One to generate g_{i} and p_{i}
$\dagger \mathcal{A n o t h e r ~ t o ~} \mathcal{A} \mathcal{N} \mathcal{D}$ them
\oplus Again we can use wired $O \mathcal{R}$

$$
\begin{aligned}
& G_{0}^{\prime}=g_{3}+p_{3} g_{2}+p_{2} p_{3} g_{1}+p_{1} p_{2} p_{3} g_{0} \\
& P_{0}^{\prime}=p_{0} p_{1} p_{2} p_{3} \\
& C_{4}=G_{0}^{\prime}+C_{0} P_{0}^{\prime} \\
& C_{8}=G_{1}^{\prime}+P_{1} G_{0}^{\prime}+P_{0}{ }^{\prime} P_{1}{ }^{\prime} C_{0} \\
& C_{12}=G_{2}{ }^{\prime}+P_{2}^{\prime} G_{1}{ }^{\prime}+P_{1} P_{2}^{\prime} P^{\prime} G_{0}^{\prime}+P_{0}{ }^{\prime} P_{1}{ }^{\prime} P_{2}{ }^{\prime} C_{0}
\end{aligned}
$$

$\oplus \mathcal{B u t}$, it requires $\mathcal{A N} \mathcal{D}$ gates with a fan in of n
© we build the lookakead circuit as a multi-levelcircuit

$$
\begin{array}{l|l}
\text { 3BA5 } & \mathrm{C}_{4}=\mathrm{G}_{0}{ }^{\prime}+\mathrm{C}_{0} \mathrm{P}_{0}{ }^{\prime} \\
\mathrm{C}_{8}=\mathrm{G}_{1}{ }^{\prime}+\mathrm{P}_{1}{ }^{\prime} \mathrm{G}_{0}{ }^{\prime}+\mathrm{P}_{0}{ }^{\prime} \mathrm{P}_{1}{ }^{\prime} \mathrm{C}_{0}
\end{array}
$$

3BA5

 Genetate $\mathrm{G}^{\prime \prime}$ and Propagate P^{\prime}- The next level of genetate G" and propagate P" terms will caover 16 6its

$$
\begin{aligned}
G^{\prime \prime} & =G_{3}{ }^{\prime}+P_{3}{ }^{\prime} G_{2}{ }^{\prime}+P_{3}{ }^{\prime} P_{2}{ }^{\prime} G_{1}{ }^{\prime}+P_{3}{ }^{\prime} P_{2}{ }^{\prime} P_{1}{ }^{\prime} G_{0} \\
P^{\prime \prime} & =P_{3}{ }^{\prime} P_{2}{ }^{\prime} P_{1}{ }^{\prime} P_{0}
\end{aligned}
$$

4BAA5

64-6it Adder Propergation Delay
© We can implement a 64-6it adder using $\mathcal{A N} \mathcal{D}$-or logic with a fan-in $=4$ and a maximum propergation delay of:

$$
\begin{aligned}
\mathrm{t}_{\mathrm{pmax}} & =3\left(\mathrm{G}_{1}{ }^{\prime}\right)+2\left(\mathrm{G}_{1}{ }^{\prime \prime}\right)+2\left(\mathrm{C}_{48}\right)+2\left(\mathrm{C}_{60}\right)+3\left(\mathrm{~S}_{63}\right) \\
& =12 \text { gate delays }
\end{aligned}
$$

© Compare this with RCA using $\mathcal{A N} \mathcal{D}$ - wire dOR which requires 64 gate delays.
† If we add a third layer ($\mathrm{G}^{\prime \prime}, \mathrm{P}^{\prime \prime \prime}$) we can construct a $4 \times 64=256$ bit adder with maximum delay:

$$
t_{\operatorname{pmax}}=3+2+2+2+2+2+3
$$

3BA5, $11^{\text {th }}$ Lecture, M. Manzke, Page: 13

$$
\begin{aligned}
\mathrm{t}_{\mathrm{pmax}} & =3+2+2+2+\dot{ } \\
& =16 \text { gate delays }
\end{aligned}
$$

3615

```
Carry S ave Adder (CSA)
```

- In situations where we have a lot of numbers to add:
\oplus Multiplication (adding partial products)
¢Accumulation Loop
- We can defer the propergation of carries until the last last addition.
-- CLA

```
```

S=X+Y+Z +W

```
S=X+Y+Z +W
    =(X+Y + Z) +W
    =(X+Y + Z) +W
    =2\timesC1+S1+W
    =2\timesC1+S1+W
    =2\timesC2+S2
    =2\timesC2+S2
    -CSA1
    -CSA1
    -- CSA 2
    -- CSA 2
    = S3
```

 = S3
    ```

3BA5, 11 th Lecture, M. Manzke, Page: 14```

