
1

3BA5, 11th Lecture, M. Manzke,Page: 1

ALU Design

The fundamental operation of the arithmetric is
addition.

All others:
Subtraction
Multiplication
Divison

are implemented in terms of it.
We need therefore an efficient implementation.

3BA5, 11th Lecture, M. Manzke,Page: 2

N-bit Ripple-Carry-Adder (RCA)
n full adders

S = x ⊕ y ⊕ Cin
Cout=XY + xCin +yCin

An n-bit ripple-carry-adder is constructed from
n full-adders

3BA5, 11th Lecture, M. Manzke,Page: 3

4-bit Ripple Carry Adder

3BA5, 11th Lecture, M. Manzke,Page: 4

RCA Equations

Si = xi ⊕ yi ⊕ Ci
Ci+1=XiYi + xCi +yCi

Hence, using an AND+wired-OR and n-bit RCA
intruduces n gate delays.

For 64 bit calculations this is too slow
(64 gate delays)

2

3BA5, 11th Lecture, M. Manzke,Page: 5

Carry Lookahead
Boolean Expression

Ci+1 = xiyi + Ci(xi + yi)

C1 = x0y0 + C0(x0 + y0)
C2 = x1y1 + C1(x1 + y1)

= x1y1 + [x0y0 + C0(x0 + y0)](x1 + y1)

with gi = xiyi Generate Carry
pi = xi + yi Carry Propagate

Ci+1 = gi + piCi

3BA5, 11th Lecture, M. Manzke,Page: 6

Carry Lookahead
Boolean Expression

Ci+1 = gi + piCi

C1 = x0y0 + C0(x0 + y0)
= g0 + C0p0

C2 = x1y1 + C1(x1 + y1)
= x1y1 + [x0y0 + C0(x0 + y0)](x1 + y1)
= g1 + p1g0 + p0p1C0

C3 = g2 + p2g1 + p1p2g0 + p0p1p2C0
C4 = g3 + p3g2 + p2p3g1 + p1p2p3g0 + p0p1p2p3C0

3BA5, 11th Lecture, M. Manzke,Page: 7

4-bit Carry Lookahead Adder

3BA5, 11th Lecture, M. Manzke,Page: 8

C4 Carry Block
C4 = g3 + p3g2 + p2p3g1 + p1p2p3g0 + p0p1p2p3C0

3

3BA5, 11th Lecture, M. Manzke,Page: 9

Carry Lookahaed Adder

Ci+1 = gi + pigi-1 + pipi-1gi-2 + … + pipi-1…p0C0

This requires just two gate delays:
One to generate gi and pi

Another to AND them
Again we can use wired OR
But, it requires AND gates with a fan in of n
In practice we can only efficiently build single gates

with a limited fan-in
we build the lookahead circuit as a multi-level circuit

3BA5, 11th Lecture, M. Manzke,Page: 10

Groups of Input Bits

For example, let fan-in = 4 and define:
Gi’ A carry out is generated in the ith group of four input bits

Pi’ A carry out is propagated by the ith group of four input bits

G0’ = g3 + p3g2 + p2p3g1 + p1p2p3g0
P0’ = p0p1p2p3
C4 = G0’ + C0P0’
C8 = G1’ + P1’G0’ + P0’P1’C0
C12 = G2’ + P2’G1’ + P1’P2’G0’ + P0’P1’P2’C0

3BA5, 11th Lecture, M. Manzke,Page: 11

C4 = G0’ + C0P0’
C8 = G1’ + P1’G0’ + P0’P1’C0

3BA5, 11th Lecture, M. Manzke,Page: 12

Genetate G’’ and Propagate P’’

The next level of genetate G’’ and propagate P’’
terms will caover 16 bits

G’’ = G3’ + P3’G2’ + P3’P2’G1’ + P3’P2’P1’G0
P’’ = P3’P2’P1’P0

4

3BA5, 11th Lecture, M. Manzke,Page: 13

64-bit Adder Propergation Delay

We can implement a 64-bit adder using AND-or logic
with a fan-in = 4 and a maximum propergation delay of:

tpmax = 3(G1’) + 2(G1’’) + 2(C48) + 2(C60) + 3(S63)
= 12 gate delays

tpmax = 3 + 2 + 2 + 2 + 2 + 2 + 3
= 16 gate delays

Compare this with RCA using AND-wiredOR which
requires 64 gate delays.

If we add a third layer (G’’’, P’’’) we can construct
a 4x64 = 256 bit adder with maximum delay:

3BA5, 11th Lecture, M. Manzke,Page: 14

Carry Save Adder (CSA)

In situations where we have a lot of numbers to add:
Multiplication (adding partial products)
Accumulation Loop

We can defer the propergation of carries until the
last last addition.

S = X + Y + Z + W
= (X + Y + Z) + W -- CSA 1
= 2 x C1 + S1 + W -- CSA 2
= 2 x C2 + S2 -- CLA
= S3

