
3BA4 VLSI Design 1

3BA4 Design Rules

Design Rules for

Weste & Eshraghian CMOS Process (λ = 0.5 µ m)

/users/Public/BAICT/3BA4/3BA4-rules.txt

TITLE "Weste&Eshraghian CMOS (lambda=0.5micron) design rules"

These are design rule that match those in this textbook.

3BA4 VLSI Design 2

Key Concepts

• Idea: compute “error layers”.

• Computational Tool: “Mask Operations”

– Compute new (pseudo-)layers in terms of old ones

– Maskop AND:

l1 AND l2 gives a new layer that corresponds to the overlap of layers l1 and l2

– Maskop OR:

l1 OR l2 gives a new layer that corresponds to the total extent of both layers l1 and l2

– Maskop NOT:

l1 NOT l2 gives a new layer that corresponds to all of layer l1 that is not covered by l2.

• A design rules file specifies how to compute “error layers”, that graphically show the extent of a

particular error.

The error layer definition has the form: Error Layer Name { error layer definition }



3BA4 VLSI Design 3

Layer Definitions

substrate = ALL NOT Nwell

ndiff = Nplus AND substrate

vddn = Nwell AND Nplus

vssp = Pplus AND substrate

pdiff = Nwell AND Pplus

diff = Nplus OR Pplus

active = ndiff OR pdiff

ngate = Poly AND ndiff

pgate = Poly AND pdiff

gate = ngate OR pgate

wired = Nplus OR Pplus

wire = wired OR Poly

vmetal = Metal2 OR Metal3

3BA4 VLSI Design 4

General Rules

All lines must be vertical, horizontal or at forty-five degrees:

Skew_Edges{ DRAWN SKEW }

Poly should not overlap substrate contact diffusions:

badptran = Poly AND vssp

badntran = Poly AND vddn

Bad_Gates { badntran OR badptran }



3BA4 VLSI Design 5

Special Error Layer Operations

There are special mask operations used specifically to generate error layers for certain problems.

INTERNAL Moves all edges inward the amount specified — notes any contact with other edges as a

violation

EXTERNAL Moves all edges outward the amount specified — notes any contact with other edges as

a violation

COINCIDENT EDGE Flags any edges of two shapes lying on top of one another

ENCLOSURE Flags any edges of one layer not inside another by desired margin

NOT INSIDE Flags any layer shapes not inside shapes of another layer.

These operations typically take one or two layer names as parameters — to support both checks

within one layer, and between two different layers.

3BA4 VLSI Design 6

Minimum Widths

(Letters and numbers refer to Weste&Eshraghian)

A1_Nwell_Width { INTERNAL Nwell < 5 }

B1_Active_Width {

INTERNAL Nplus < 1.5

INTERNAL Pplus < 1.5

}

C1_Poly_Width { INTERNAL Poly < 1 }

E1_Cut_Width { INTERNAL Ccut < 1 }

F1_Metal1_Width { INTERNAL Metal1 < 1.5 }



3BA4 VLSI Design 7

Minimum Separations (self)

// N-Wells at same potential

A2_Nwell_Sep { EXTERNAL Nwell < 3 }

// N-Wells at different potentials

A3_Nwell_PD { EXTERNAL Nwell < 4 }

B2_Active_Sep {

EXTERNAL Nplus < 1.5

EXTERNAL Pplus < 1.5

}

C2_Poly_Sep { EXTERNAL Poly < 1 }

D4_Gate_Sep { EXTERNAL gate < 1.5 }

E2_Cut_Sep { EXTERNAL Ccut < 1 }

F2_Metal1_Sep { EXTERNAL Metal1 < 1.5 }

3BA4 VLSI Design 8

Minimum Separations (other)

B5_Nwell_ndiff_Sep {

EXTERNAL Nwell ndiff < 2.5

COINCIDENT EDGE Nwell ndiff }

B6_Nwell_vssp_Sep {

EXTERNAL Nwell vssp < 1.5

COINCIDENT EDGE Nwell vssp }

C3_Poly_Active_Sep {

EXTERNAL Poly Nplus < 0.5

EXTERNAL Poly Pplus < 0.5

COINCIDENT EDGE Poly Nplus

COINCIDENT EDGE Poly Pplus }

E7_gate_Cut_sep {

EXTERNAL gate Ccut < 1

COINCIDENT EDGE gate Ccut }



3BA4 VLSI Design 9

Transistor Extensions

C4_Gate_Ext {

ENCLOSURE active Poly < 1

3BA4 VLSI Design 10

Contact Overlaps

B3_NW_pdiff_Overlap {

ENCLOSURE pdiff Nwell < 2.5

COINCIDENT EDGE pdiff Nwell

}

B4_NW_vddn_Overlap {

ENCLOSURE vddn Nwell < 1.5

COINCIDENT EDGE vddn Nwell

}

E4_wire_Cut_Ovl {

ENCLOSURE Ccut wire < 1

COINCIDENT EDGE Ccut wire

}

E6_Metal1_Cut_Ovl {

ENCLOSURE Ccut Metal1 < 0.5

COINCIDENT EDGE Ccut Metal1

}



3BA4 VLSI Design 11

Badly Formed Contacts

Cut_Conn {

Ccut NOT INSIDE Metal1

Ccut NOT INSIDE wire

}

Via_Conn {

Via NOT INSIDE Metal1

Via NOT INSIDE vmetal

}

3BA4 VLSI Design 12

Netlist Extraction and Comparison

How to check your layout against a netlist specification:

1. Obtain Reference netlist

• presented in SPICE format

2. Extract Test netlist from your Layout

• use ICTrace (M) Palette

• save as HSPICE format, with .net extension

3. Use NetCheck program to compare them.

• written in-House, in Haskell (http://www.haskell.org )

• A bundle of “Literate Haskell Scripts” (.lhs)

• Executed via Hugs interpreter

http://www.haskell.org�


3BA4 VLSI Design 13

SPICE Format

Excerpt from Reference.net

m3 5 14 3 pmos l=1u w=1.5u

m4 8 3 7 nmos l=1u w=1.5u

Translation:

m3— MOSFET Number

5 14 3 — Nodes connected to s/d (5), gate (14) and other s/d (3).

pmos l=1u w=1.5u — MOSFET type, length and width (u=µ m)

In Haskell

{3 |-> MOS{d1=5,g=14,d2=3,t=P,l=1.0,w=1.5},

4 |-> MOS{d1=8,g=3,d2=7,t=N,l=1.0,w=1.5}}

3BA4 VLSI Design 14

The Reference Network

m0 3 14 1 nmos l=1u w=1.5u

m1 3 15 1 pmos l=1u w=1.5u

m2 5 15 3 nmos l=1u w=1.5u

m3 5 14 3 pmos l=1u w=1.5u

m4 8 3 7 nmos l=1u w=1.5u

m5 6 3 8 pmos l=1u w=4.5u

m6 5 8 7 nmos l=1u w=1.5u

m7 6 8 5 pmos l=1u w=4.5u

m8 13 17 5 nmos l=1u w=1.5u

m9 13 16 5 pmos l=1u w=1.5u



3BA4 VLSI Design 15

A Good network

m1 2 3 9 nmos l=1.0u w=1.5u

m2 2 4 9 pmos l=1.0u w=1.5u

m3 0 9 10 nmos l=1.0u w=1.5u

m4 1 9 10 pmos l=1.0u w=4.5u

m5 0 10 8 nmos l=1.0u w=1.5u

m6 1 10 8 pmos l=1.0u w=4.5u

m7 9 4 8 nmos l=1.0u w=1.5u

m8 9 3 8 pmos l=1.0u w=1.5u

m9 8 5 7 nmos l=1.0u w=1.5u

m10 8 6 7 pmos l=1.0u w=1.5u

3BA4 VLSI Design 16

How to compare them?

The node numbers don’t matter — the overall connectivity does.

Showing that two graphs have the same shape is known as the Graph Isomorphism problem.

It is hard to solve in general (NP-Complete)

The NetCheck program works for small networks.



3BA4 VLSI Design 17

NetCheck processing

1. Get Reference netlist

2. Get Test netlist

3. Compare Connection Types

4. If different, report mismatches and quit

5. Otherwise, Compare Graphs

6. If different, report mismatches and quit/

7. Otherwise, report “TEST NETWORK OK”

3BA4 VLSI Design 18

Connection Types

For every node, we count:

g no No. of gates to which this node is connected

n sd no No. of nMOS source/drain terminals to which this node is connected

p sd no No. of pMOS source/drain terminals to which this node is connected

In the program, a connection type is written out as:

ConnType{g_no=1,n_sd_no=3,p_sd_no=0}



3BA4 VLSI Design 19

Comparing Connection Types

We scan the netlist computing connection types for every circuit node.

{3 |-> ConnType{g_no=1,n_sd_no=3,p_sd_no=0},

,4 |-> ConnType{g_no=0,n_sd_no=1,p_sd_no=1},

,5 |-> ConnType{g_no=1,n_sd_no=3,p_sd_no=0}}

We then invert this so for all connection types present, we list the set of nodes with that type.

{ConnType{g_no=1,n_sd_no=3,p_sd_no=0} |-> {3,5},

,ConnType{g_no=0,n_sd_no=1,p_sd_no=1} |-> {4}}

We compare these for the Reference and Test netlists

— both netlists must have the same collection of connection types,

— and each should map to a set of the same size.

This test captures most mistakes!

3BA4 VLSI Design 20

Network Graphs

We map each node to a set of the nodes to which it is connected via source/drain regions, labelled

with details of the gate node, and transistor type and size.

3 |-> {(5,CH 6 N 1.0 1.5),(7,CH 8 P 1.0 4.5)}

Here 3 connects to 5 via nMOS with gate node 6, and to 7 via pMOS with gate node 8.

Nodes with the same connection type are searched to see if we can find a match.

We report an error if no match found.


